請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97379
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李佳翰 | zh_TW |
dc.contributor.advisor | Jia-Han Li | en |
dc.contributor.author | 吳彥廷 | zh_TW |
dc.contributor.author | Yen-Ting Wu | en |
dc.date.accessioned | 2025-05-22T16:08:00Z | - |
dc.date.available | 2025-05-23 | - |
dc.date.copyright | 2025-05-22 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-05-05 | - |
dc.identifier.citation | [1] S. R. Flaxman et al., “Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis,” Lancet Glob. Health, vol. 5, no. 12, pp. e1221–e1234, Dec. 2017, doi: 10.1016/S2214-109X(17)30393-5.
[2] K. Lam, A. D. Lu, Y. Shi, and K. E. Covinsky, “Assessing Telemedicine Unreadiness Among Older Adults in the United States During the COVID-19 Pandemic,” JAMA Intern. Med., vol. 180, no. 10, pp. 1389–1391, Oct. 2020, doi: 10.1001/jamainternmed.2020.2671. [3] R. J. W. Truscott, “Age-related nuclear cataract-oxidation is the key,” Exp. Eye Res., vol. 80, no. 5, pp. 709–725, May 2005, doi: 10.1016/j.exer.2004.12.007. [4] S. K. Khokhar, G. Pillay, C. Dhull, E. Agarwal, M. Mahabir, and P. Aggarwal, “Pediatric cataract,” Indian J. Ophthalmol., vol. 65, no. 12, pp. 1340–1349, Dec. 2017, doi: 10.4103/ijo.IJO_1023_17. [5] D. J. Apple et al., “Posterior capsule opacification,” Surv. Ophthalmol., vol. 37, no. 2, pp. 73–116, 1992, doi: 10.1016/0039-6257(92)90073-3. [6] L. Werner et al., “Capsular bag opacification after experimental implantation of a new accommodating intraocular lens in rabbit eyes,” J. Cataract Refract. Surg., vol. 30, no. 5, pp. 1114–1123, May 2004, doi: 10.1016/j.jcrs.2003.09.044. [7] O. Findl, W. Buehl, P. Bauer, and T. Sycha, “Interventions for preventing posterior capsule opacification,” Cochrane Database Syst. Rev., vol. 2010, no. 2, p. CD003738, Feb. 2010, doi: 10.1002/14651858.CD003738.pub3. [8] “Big cats in borderlands: challenges and implications for transboundary conservation of Asian leopards.” Accessed: Mar. 24, 2025. [Online]. Available: https://www.researchgate.net/publication/333640841_Big_cats_in_borderlands_challenges_and_implications_for_transboundary_conservation_of_Asian_leopards [9] A. M. J. Turnbull, G. J. Crawford, and G. D. Barrett, “Methods for Intraocular Lens Power Calculation in Cataract Surgery after Radial Keratotomy,” Ophthalmology, vol. 127, no. 1, pp. 45–51, Jan. 2020, doi: 10.1016/j.ophtha.2019.08.019. [10] P. Kanclerz, F. Toto, A. Grzybowski, and J. L. Alio, “Extended Depth-of-Field Intraocular Lenses: An Update,” Asia-Pac. J. Ophthalmol. Phila. Pa, vol. 9, no. 3, pp. 194–202, 2020, doi: 10.1097/APO.0000000000000296. [11] “Visual Performance of a Quadrifocal (Trifocal) Intraocular Lens Following Removal of the Crystalline Lens - PubMed.” Accessed: Mar. 24, 2025. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/28923587/ [12] S. Maedel, J. R. Evans, A. Harrer-Seely, and O. Findl, “Intraocular lens optic edge design for the prevention of posterior capsule opacification after cataract surgery,” Cochrane Database Syst. Rev., vol. 8, no. 8, p. CD012516, Aug. 2021, doi: 10.1002/14651858.CD012516.pub2. [13] J. J. Rozema, D. A. Atchison, and M.-J. Tassignon, “Statistical eye model for normal eyes,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 7, pp. 4525–4533, Jun. 2011, doi: 10.1167/iovs.10-6705. [14] A. Rayamajhi, M. Helmer, M. Hetz, and C. Neumann, “The human eye: From Gullstrand’s eye model to ray tracing today,” Lux Jr. 2021 15 Int. Forum Für Den Lichttechnischen Nachwuchs 04 – 06 Juni 2021 Ilmenau Tagungsband, pp. 201–209, 2021, doi: 10.22032/dbt.49329. [15] “Field Guide to Visual and Ophthalmic Optics | (2004) | Schwiegerling | Publications | SPIE.” Accessed: Mar. 24, 2025. [Online]. Available: https://spie.org/publications/book/592975 [16] H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” JOSA A, vol. 14, no. 8, pp. 1684–1695, Aug. 1997, doi: 10.1364/JOSAA.14.001684. [17] M. S. D. Almeida and L. A. Carvalho, “Different schematic eyes and their accuracy to the in vivo eye: a quantitative comparison study,” Braz. J. Phys., vol. 37, no. 2a, pp. 378–387, Jun. 2007, doi: 10.1590/S0103-97332007000300008. [18] M. S. Millán and F. Vega, “Through-Focus Energy Efficiency and Longitudinal Chromatic Aberration of Three Presbyopia-Correcting Intraocular Lenses,” Transl. Vis. Sci. Technol., vol. 9, no. 12, p. 13, Nov. 2020, doi: 10.1167/tvst.9.12.13. [19] “In Vitro Chromatic Performance of Three Presbyopia-Correcting Intraocular Lenses with Different Optical Designs.” Accessed: Mar. 26, 2025. [Online]. Available: https://www.mdpi.com/2077-0383/11/5/1212 [20] Y. Xing, Y. Liu, K. Li, X. Li, D. Liu, and Y. Wang, “Approach to the design of different types of intraocular lenses based on an improved sinusoidal profile,” Biomed. Opt. Express, vol. 14, no. 6, pp. 2821–2838, Jun. 2023, doi: 10.1364/BOE.491762. [21] J. Fernández, F. Ribeiro, N. Burguera, M. Rodríguez-Calvo-de-Mora, and M. Rodríguez-Vallejo, “Visual and patient-reported outcomes of an enhanced versus monofocal intraocular lenses in cataract surgery: a systematic review and meta-analysis,” Eye, vol. 39, no. 5, pp. 883–898, Apr. 2025, doi: 10.1038/s41433-025-03625-4. [22] C. Phillips, C. Stein, and J. Wein, “Task Scheduling in Networks,” SIAM J. Discrete Math., vol. 10, no. 4, pp. 573–598, Nov. 1997, doi: 10.1137/S0895480194279057. [23] G. Łabuz, T. M. Yildirim, R. Khoramnia, H.-S. Son, and G. U. Auffarth, “Optical function of intraocular lenses in different opacification patterns: metrology analysis of 67 explants,” J. Cataract Refract. Surg., vol. 47, no. 9, p. 1210, Sep. 2021, doi: 10.1097/j.jcrs.0000000000000553. [24] S. E. Krug and D. J. Rabb, “Digital phase correction of a partially coherent sparse aperture system,” JOSA A, vol. 34, no. 5, pp. A47–A55, May 2017, doi: 10.1364/JOSAA.34.000A47. [25] Z. Yang, “Smartphone-based optical sensing,” Grad. Theses Diss., Jan. 2016, [Online]. Available: https://ecommons.udayton.edu/graduate_theses/1159 [26] “(PDF) Optical system for the measurement of the surface topography of additively manufactured parts,” ResearchGate, Dec. 2024, Accessed: Mar. 26, 2025. [Online]. Available: https://www.researchgate.net/publication/362068853_Optical_system_for_the_measurement_of_the_surface_topography_of_additively_manufactured_parts [27] D. C. Sims, O. Cossairt, Y. Yu, and S. K. Nayar, “Stretchcam: Zooming Using Thin, Elastic Optics,” Apr. 19, 2018, arXiv: arXiv:1804.07052. doi: 10.48550/arXiv.1804.07052. [28] B. Dong, Y. Yang, and C. Xue, “Theoretical principle and design of high-imaging-quality refractive-diffractive optical elements by multifocal-simultaneous aberration-correction method,” Results Phys., vol. 59, p. 107570, Apr. 2024, doi: 10.1016/j.rinp.2024.107570. [29] “(PDF) EDOF intraocular lens design: shift in image plane vs object vergence,” ResearchGate, Oct. 2024, doi: 10.1186/s12886-023-03144-4. [30] F. Omidi, M. Zangiabadian, A. H. Shahidi Bonjar, M. J. Nasiri, and T. Sarmastzadeh, “Influenza vaccination and major cardiovascular risk: a systematic review and meta-analysis of clinical trials studies,” Sci. Rep., vol. 13, no. 1, p. 20235, Nov. 2023, doi: 10.1038/s41598-023-47690-9. [31] Y. Xing et al., “Fabrication and performance evaluation of a design for an extended depth-of-focus intraocular lens based on an improved sinusoidal profile,” Biomed. Opt. Express, vol. 15, no. 6, pp. 3932–3949, Jun. 2024, doi: 10.1364/BOE.521105. [32] S. P. Bang, H. Jung, K. Y. Li, and G. Yoon, “Comparison of modal and zonal wavefront measurements of refractive extended depth of focus intraocular lenses,” Biomed. Opt. Express, vol. 15, no. 3, pp. 1618–1629, Feb. 2024, doi: 10.1364/BOE.513529. [33] H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A Opt. Image Sci. Vis., vol. 14, no. 8, pp. 1684–1695, Aug. 1997, doi: 10.1364/josaa.14.001684. [34]Rozema, J. J., Atchison, D. A., & Tassignon, M. J. (2011). Statistical eye model for normal eyes. Investigative ophthalmology & visual science, 52(7), 4525-4533. [35] J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res., vol. 22, no. 8, pp. 997–1003, 1982, doi: 10.1016/0042-6989(82)90036-0. [36] F. Vega, M. Valentino, F. Rigato, and M. S. Millán, “Optical design and performance of a trifocal sinusoidal diffractive intraocular lens,” Biomed. Opt. Express, vol. 12, no. 6, pp. 3338–3351, May 2021, doi: 10.1364/BOE.421942. [37] M. Vacalebre et al., “Advanced Optical Wavefront Technologies to Improve Patient Quality of Vision and Meet Clinical Requests,” Polymers, vol. 14, no. 23, p. 5321, Dec. 2022, doi: 10.3390/polym14235321. [38] “Imaging quality of intraocular lenses | Request PDF,” ResearchGate, Mar. 2025, doi: 10.1016/j.jcrs.2005.01.033. [39] J. S. Haddad, L. Gouvea, J. L. Ferreira, R. Ambrósio, G. O. Waring, and K. M. Rocha, “Impact of a Chromatic Aberration-Correcting Intraocular Lens on Automated Refraction,” J. Refract. Surg. Thorofare NJ 1995, vol. 36, no. 5, pp. 334–339, May 2020, doi: 10.3928/1081597X-20200403-01. [40] D. Siedlecki and H. S. Ginis, “On the longitudinal chromatic aberration of the intraocular lenses,” Optom. Vis. Sci. Off. Publ. Am. Acad. Optom., vol. 84, no. 10, pp. 984–989, Oct. 2007, doi: 10.1097/OPX.0b013e318157ac82. [41] J. L. Alió, A. B. Plaza-Puche, J. Javaloy, and M. J. Ayala, “Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL,” J. Refract. Surg. Thorofare NJ 1995, vol. 28, no. 2, pp. 100–105, Feb. 2012, doi: 10.3928/1081597X-20120110-01. [42] “Abbe Number and Longitudinal Chromatic Aberration (LCA) | Bausch + Lomb Surgical.” Accessed: Mar. 24, 2025. [Online]. Available: https://bauschsurgical.eu/blog-learning/blog/abbe-number-and-longitudinal-chromatic-aberration-lca/ [43] A. Miks, J. Novak, and P. Novak, “Algebraic and numerical analysis of imaging properties of thin tunable-focus fluidic membrane lenses with parabolic surfaces,” Appl. Opt., vol. 52, no. 10, pp. 2136–2144, Apr. 2013, doi: 10.1364/AO.52.002136. [44] “Pitfalls of Using NIR-Based Clinical Instruments to Test Eyes Implanted with Diffractive Intraocular Lenses.” Accessed: Mar. 26, 2025. [Online]. Available: https://www.mdpi.com/2075-4418/13/7/1259 [45] F. Vega, M. Valentino, F. Rigato, and M. S. Millán, “Optical design and performance of a trifocal sinusoidal diffractive intraocular lens,” Biomed. Opt. Express, vol. 12, no. 6, pp. 3338–3351, Jun. 2021, doi: 10.1364/BOE.421942. [46] “Enhanced Depth of Focus Intraocular Lenses: Through Focus Evaluation of Wavefront-Shaping versus Diffractive Optics | Biomedicine Hub | Karger Publishers.” Accessed: Mar. 27, 2025. [Online]. Available: https://karger.com/bmh/article/8/1/25/832689 [47] R. Bellucci and M. C. Curatolo, “A New Extended Depth of Focus Intraocular Lens Based on Spherical Aberration,” J. Refract. Surg., vol. 33, no. 6, pp. 389–394, Jun. 2017, doi: 10.3928/1081597X-20170329-01. [48] E. Can, E. C. Senel, S. T. S. Holmström, and D. P. Piñero, “Comparison of the optical behaviour of five different multifocal diffractive intraocular lenses in a model eye,” Sci. Rep., vol. 13, no. 1, p. 19646, Nov. 2023, doi: 10.1038/s41598-023-47102-y. [49] H.-S. Son, G. Łabuz, R. Khoramnia, T. M. Yildirim, and G. U. Auffarth, “Laboratory analysis and ray visualization of diffractive optics with enhanced intermediate vision,” BMC Ophthalmol., vol. 21, no. 1, p. 197, May 2021, doi: 10.1186/s12886-021-01958-8. [50] M. Vacalebre, “Design, analysis and characterization of an optical system based on the modulation of aberrations applied on a medical device”. [51] Y. C. Fang, T.-K. Liu, C.-M. Tsai, J.-H. Chou, H.-C. Lin, and W. T. Lin, “Extended optimization of chromatic aberrations via a hybrid Taguchi–genetic algorithm for zoom optics with a diffractive optical element,” J. Opt. Pure Appl. Opt., vol. 11, no. 4, p. 045706, Jan. 2009, doi: 10.1088/1464-4258/11/4/045706. [52] Z. Tang and H. Gross, “Extended aberration analysis in symmetry-free optical systems - part I: method of calculation,” Opt. Express, vol. 29, no. 24, pp. 39967–39982, Nov. 2021, doi: 10.1364/OE.439862. [53] T. Hall, “MODELING THE EFFECTS OF CHROMATIC ABERRATIONS IN OPTICAL SYSTEMS”. [54] A. Leinonen, “Benefits of aspherical optics for spherical optics devices with optical resolution”. [55] “(PDF) In: Medical Physics, COLOR VISION AND WAVEFRONT ABERRATIONS OF THE HUMAN EYE,” in ResearchGate. doi: 10.13140/2.1.3803.2641. [56] J. Laatikainen, “Design of Apochromatic Lenses”. [57] A. Laskin, “Basics of Optics on Imaging Quality and Aberrations,” in Handbook of Laser Micro- and Nano-Engineering, K. Sugioka, Ed., Cham: Springer International Publishing, 2020, pp. 1–54. doi: 10.1007/978-3-319-69537-2_62-2. [58] “(PDF) Ocular Aberrations and their Measurement,” ResearchGate. Accessed: Mar. 27, 2025. [Online]. Available: https://www.researchgate.net/publication/268414612_Ocular_Aberrations_and_their_Measurement [59] L. Spadea, M. I. Giannico, M. Formisano, and L. Alisi, “Visual Performances of a New Extended Depth-of-Focus Intraocular Lens with a Refractive Design: A Prospective Study After Bilateral Implantation,” Ther. Clin. Risk Manag., vol. Volume 17, pp. 727–738, Jul. 2021, doi: 10.2147/TCRM.S320422. [60] J. Loicq, N. Willet, and D. Gatinel, “Topography and longitudinal chromatic aberration characterizations of refractive–diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg., vol. 45, no. 11, pp. 1650–1659, Nov. 2019, doi: 10.1016/j.jcrs.2019.06.002. [61] L. Salvá, S. García, S. García-Delpech, A. Martínez-Espert, and V. Ferrando, “Optical Performance of a Segmented Extended-Depth-of-Focus Intraocular Lens under the Influence of Different Values of Spherical Aberration Generated by Refractive Surgery,” J. Clin. Med., vol. 12, no. 14, Art. no. 14, Jan. 2023, doi: 10.3390/jcm12144758. [62] “(PDF) Clinical Retinal Image Quality of a Non-diffractive Wavefront-Shaping Extended Depth of Focus (Vivity) Intraocular Lens,” ResearchGate, Nov. 2024, doi: 10.3928/1081597X-20221130-04. [63] J. Xu, T. Zheng, and Y. Lu, “Effect of Decentration on the Optical Quality of Monofocal, Extended Depth of Focus, and Bifocal Intraocular Lenses,” J. Refract. Surg., vol. 35, no. 8, pp. 484–492, Aug. 2019, doi: 10.3928/1081597X-20190708-02. [64] R. Schmid, H. Luedtke, and A. F. Borkenstein, “Enhanced Depth-of-focus Intraocular Lenses: Latest Wavefront-shaped Optics versus Diffractive Optics,” Optom. Vis. Sci., vol. 99, no. 4, p. 335, Apr. 2022, doi: 10.1097/OPX.0000000000001894. [65] “Optical Performance of a Segmented Extended-Depth-of-Focus Intraocular Lens under the Influence of Different Values of Spherical Aberration Generated by Refractive Surgery.” Accessed: Mar. 27, 2025. [Online]. Available: https://www.mdpi.com/2077-0383/12/14/4758 [66] D. Greve, E. Bertelmann, D. Pilger, and C. von Sonnleithner, “Visual outcome and optical quality of a wavefront-engineered extended depth-of-focus intraocular lens,” J. Cataract Refract. Surg., vol. 47, no. 9, p. 1139, Sep. 2021, doi: 10.1097/j.jcrs.0000000000000604. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97379 | - |
dc.description.abstract | 本研究針對延展焦深人工水晶體進行光學設計與成像品質評估,旨在解決傳統單焦與多焦人工水晶體存在的視力不穩定、色差與光暈問題。研究採用Liou & Brennan人眼模型為基礎,結合Zemax光學模擬進行延焦型人工水晶體的設計,特別著重後曲面繞射結構與前曲面非球面優化。
在材料方面,選用PH30S水凝膠,並藉由光譜儀量測其折射率與阿貝數,再導入光學模擬模型中,提升設計準確性。後曲面設計部分則導入改良正弦相位函數來控制不同繞射階數的能量分佈,前曲面則利用Binary 2自由曲面公式進行優化,使成像表現在不同距離上達到平衡,降低視覺切換帶來的不適。 實驗結果顯示,所設計之延展焦深人工水晶體能有效延展視覺焦深,在遠、中、近三距離皆提供穩定的視覺品質,並藉由調制轉換函數分析驗證其高對比度成像能力;同時,在降低色差與光暈現象上亦具明顯改善。整體而言,本研究提出之延展焦深人工水晶體設計兼具光學效能與材料可行性,未來可望提升白內障患者的術後生活品質,並提供臨床應用新選擇。 | zh_TW |
dc.description.abstract | This study focuses on the optical design and imaging quality evaluation of Extended Depth of Focus (EDOF) intraocular lenses (IOLs), aiming to address the issues of visual instability, chromatic aberration, and halo effects commonly found in traditional monofocal and multifocal IOLs. Based on the Liou & Brennan eye model and using Zemax optical simulation software, the design emphasizes optimization of the posterior diffractive surface and anterior aspheric surface.
In terms of material, PH30S hydrogel was selected. Its refractive index and Abbe number were measured using a spectrophotometer and then imported into the optical simulation to improve design accuracy. The posterior surface design incorporated a modified sinusoidal phase function to control energy distribution among diffraction orders, while the anterior surface was optimized using the Binary 2 freeform surface formula to achieve balanced imaging performance across various distances and reduce visual discomfort during focus transitions. Experimental results show that the designed EDOF IOL effectively extends the visual depth of focus, providing stable image quality at far, intermediate, and near distances. High contrast imaging performance was verified through Modulation Transfer Function (MTF) analysis. Additionally, significant improvements in reducing chromatic aberration and halo effects were observed. Overall, the proposed EDOF IOL design demonstrates both optical efficacy and material feasibility, with strong potential to enhance postoperative visual outcomes for cataract patients and offer a new clinical solution. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-22T16:08:00Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-05-22T16:08:00Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES ix 第一章、 緒論 1 1.1 研究背景 1 1.2 研究目的及動機 2 第二章、 文獻回顧 5 2.1 人眼光學模型選擇 5 2.2 人工晶體之光學品質與色差表現 9 2.3 人工晶體之光學設計 10 2.4 人工晶體之光學品質分析(調制轉換函數,Modulation Transfer Function) 13 第三章、 研究方法 16 3.1 建構人眼模型 16 3.2 後曲面-延焦人工水晶體光學設計 19 3.3 後曲面參數設計 21 3.4 前曲面結構設計 25 3.5 人工水晶體材料折射率以及色散相關參數 25 3.6 人工水晶體成像品質測量儀器 28 第四章、 結果與討論 35 4.1 人眼模型 35 4.2 人工水晶體材料-水凝膠樣品量測 38 4.3 後曲面結構設計 40 4.4 前曲面結構設計 45 4.5 成像分析 49 4.5.1 MTF 值 49 4.5.2 MTF 值之實驗量測 50 4.5.3 光扇圖(Ray Fan) 55 4.5.4 光斑圖(Spot Diagram) 56 4.5.5 縱向像差分析(Longitudinal Aberration Analysis) 59 4.5.6 點擴散函數(Point Spread Function, PSF) 61 第五章、 總結與未來展望 64 REFERENCE 65 | - |
dc.language.iso | zh_TW | - |
dc.title | 延焦人工水晶的光學設計與影像品質評估 | zh_TW |
dc.title | Optical Design and Imaging Quality Analysis of Extended Depth of Focus Intraocular Lens | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 顏家鈺;施博仁;王富正;張恆華 | zh_TW |
dc.contributor.oralexamcommittee | Jia-Yush Yen;Po-Jen Shih;Fu-Cheng Wang;Herng-Hua Chang | en |
dc.subject.keyword | 延展焦深人工水晶體,繞射結構設計,非球面光學設計,水凝膠材料,調制轉換函數, | zh_TW |
dc.subject.keyword | Extended Depth of Focus Intraocular Lens,Diffractive Structure Design,Aspheric Optical Design,Hydrogel Material,Modulation Transfer Function, | en |
dc.relation.page | 69 | - |
dc.identifier.doi | 10.6342/NTU202500902 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-05-05 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
dc.date.embargo-lift | 2030-05-05 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-2.pdf 目前未授權公開取用 | 4.07 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。