Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97367
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅楸善zh_TW
dc.contributor.advisorChiou-Shann Fuhen
dc.contributor.author丁浩軒zh_TW
dc.contributor.authorHao-Hsuan Tingen
dc.date.accessioned2025-05-07T16:12:57Z-
dc.date.available2025-05-08-
dc.date.copyright2025-05-07-
dc.date.issued2025-
dc.date.submitted2025-04-24-
dc.identifier.citation[1] J. Benesty, J. Chen, and Y. Huang, "A Generalized Mvdr Spectrum," IEEE Signal Processing Letters, Vol. 12, No. 12, pp. 827-830, 2005.
[2] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, "Simple Online and Realtime Tracking," Proceedings of IEEE International Conference on Image Processing, Phoenix, AZ, pp. 3464-3468, 2016.
[3] R. J. Campello, D. Moulavi, and J. Sander, "Density-Based Clustering Based on Hierarchical Density Estimates," Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining, Gold Coast, Australia, pp. 160-172, 2013.
[4] V. Cerf and R. Kahn, "A Protocol for Packet Network Intercommunication," IEEE Transactions on Communications, Vol. 22, No. 5, pp. 637-648, 1974.
[5] K. Date and R. Nagi, "GPU-Accelerated Hungarian Algorithms for the Linear Assignment Problem," Parallel Computing, Vol. 57, pp. 52-72, 2016.
[6] D. L. Davies and D. W. Bouldin, "A Cluster Separation Measure," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 1, No. 2, pp. 224-227, 1979.
[7] D. Eppstein, "Solving Single-Digit Sudoku Subproblems," Proceedings of International Conference on Fun with Algorithms, Venice, Italy, pp. 142-153, 2012.
[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise," Proceedings of KDD, Vol. 96, No. 34, pp. 226-231, 1996.
[9] G. Evensen, "Sequential Data Assimilation with a Nonlinear Quasi‐Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics," Journal of Geophysical Research: Oceans, Vol. 99, No. C5, pp. 10143-10162, 1994.
[10] J. Y. Han, "Multi-Touch Interaction Wall," Proceedings of ACM SIGGraph Emerging Technologies, Boston, Massachusetts, pp. 25-es, 2006.
[11] J. Y. Han, "Low-Cost Multi-Touch Sensing through Frustrated Total Internal Reflection," Proceedings of Annual ACM Symposium on User Interface Software and Technology, Seattle, Washington, pp. 115-118, 2005.
[12] Y. Hong, H. Yoon, D. Jung, Y. Yoon, and Y. Seol, "Experiential Media Wall Utilizing Hand Gesture Recognition," Proceedings of International Conference on Information and Education Technology, Yamaguchi, Japan, pp. 387-391, 2024.
[13] S. J. Julier and J. K. Uhlmann, "New Extension of the Kalman Filter to Nonlinear Systems," Proceedings of Signal Processing, Sensor Fusion, and Target Recognition VI, Vol. 3068, pp. 182-193, 1997.
[14] R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Transactions of the ASME–Journal of Basic Engineering, Vol. 82 (Series D), pp. 35-45, 1960.
[15] R. E. Kalman and R. S. Bucy, "New Results in Linear Filtering and Prediction Theory," Transactions of the ASME–Journal of Basic Engineering, Vol. 83, No. 1, pp. 95-108, 1961.
[16] H. Kim and D. W. Fellner, "Interaction with Hand Gesture for a Back-Projection Wall," Proceedings of Computer Graphics International, Crete, Greece, pp. 395-402, 2004.
[17] H. W. Kuhn, "The Hungarian Method for the Assignment Problem," Naval Research Logistics Quarterly, Vol. 2, No. 1‐2, pp. 83-97, 1955.
[18] H. Liu et al., "Real-Time Arm Gesture Recognition in Smart Home Scenarios via Millimeter Wave Sensing," Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 4, No. 4, pp. 1-28, 2020.
[19] L. McInnes and J. Healy, "Accelerated Hierarchical Density Clustering," arXiv 1705.07321, 2017.
[20] L. McInnes, J. Healy, and S. Astels, "HDBSCAN: Hierarchical Density Based Clustering," J. Open Source Softw., Vol. 2, No. 11, p. 205, 2017.
[21] J. Munkres, "Algorithms for the Assignment and Transportation Problems," Journal of the Society for Industrial and Applied Mathematics, Vol. 5, No. 1, pp. 32-38, 1957.
[22] S. Palipana, D. Salami, L. A. Leiva, and S. Sigg, "Pantomime: Mid-Air Gesture Recognition with Sparse Millimeter-Wave Radar Point Clouds," Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 5, No. 1, pp. 1-27, 2021.
[23] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, "Pointnet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space," Advances in Neural Information Processing Systems, Long Beach, CA, Vol. 30, pp. 5105-5114, 2017.
[24] I. S. Reed, R. M. Gagliardi, and L. B. Stotts, "A Recursive Moving-Target-Indication Algorithm for Optical Image Sequences," IEEE Transactions on Aerospace and Electronic Systems, Vol. 26, No. 3, pp. 434-440, 1990.
[25] S. D. Regani, C. Wu, B. Wang, M. Wu, and K. R. Liu, "Mmwrite: Passive Handwriting Tracking Using a Single Millimeter-Wave Radio," IEEE Internet of Things Journal, Vol. 8, No. 17, pp. 13291-13305, 2021.
[26] H. Rohling, "Radar Cfar Thresholding in Clutter and Multiple Target Situations," IEEE Transactions on Aerospace and Electronic Systems, No. 4, pp. 608-621, 1983.
[27] P. J. Rousseeuw, "Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis," Journal of Computational and Applied Mathematics, Vol. 20, pp. 53-65, 1987.
[28] S. F. Schmidt, "Application of State-Space Methods to Navigation Problems," Advances in Control Systems, Vol. 3, pp. 293-340, 1966.
[29] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, "DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN," ACM Transactions on Database Systems, Vol. 42, No. 3, pp. 1-21, 2017.
[30] A. Sengupta, F. Jin, R. Zhang, and S. Cao, "Mm-Pose: Real-Time Human Skeletal Posture Estimation Using Mmwave Radars and CNNs," IEEE Sensors Journal, Vol. 20, No. 17, pp. 10032-10044, 2020.
[31] B. Wang, Z. Sun, X. Jiang, J. Zeng, and R. Liu, "Kalman Filter and Its Application in Data Assimilation," Atmosphere, Vol. 14, No. 8, pp. 1319-1338, 2023.
[32] Z. Wang, D. Jiang, B. Sun, and Y. Wang, "A Data Augmentation Method for Human Activity Recognition Based on Mmwave Radar Point Cloud," IEEE Sensors Letters, Vol. 7, No. 5, pp. 1-4, 2023.
[33] R. Zahra et al., "Camera-Based Interactive Wall Display Using Hand Gesture Recognition," Intelligent Systems with Applications, Vol. 19, No. 200262, pp. 1-8, 2023.
[34] J. Zhang et al., "A Survey of Mmwave-Based Human Sensing: Technology, Platforms and Applications," IEEE Communications Surveys & Tutorials, Vol. 25, No. 4, pp. 2052-2087, 2023.
[35] Q. Zhu, L. Fan, and N. Weng, "Advancements in Point Cloud Data Augmentation for Deep Learning: A Survey," Pattern Recognition, Vol. 153, No. 110532, pp. 1-18, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97367-
dc.description.abstract隨著人機互動技術的迅速發展,智慧空間與互動系統的應用日益廣泛。牆面互動系統因其直觀的界面與大規模顯示特性,已在教育及公共空間等領域獲得廣泛應用。近年來,毫米波(mmWave)雷達技術在互動牆系統中的應用,成為克服傳統人機互動方法局限性的有力解決方案。本研究提出丁手勢 (TingGesture),一個創新的系統,運用毫米波雷達技術實現互動牆應用中的精確手勢定位。該系統包含四個關鍵模組:點雲映射、熱圖去噪、階層式聚類演算法 (HDBSCAN)以及深度學習回歸校準,這些模組協同運作以實現高精度的手部位置追蹤。
本研究首先將毫米波點雲數據映射到熱圖上,接著採用雙軌中值模糊去雜訊策略,有效保留空間細節同時消除雜訊。隨後應用 HDBSCAN 聚類算法識別手部位置並移除殘餘雜訊,其中最佳參數通過窮舉搜索確定。為解決座標投影中的扇形失真和擴張問題,系統實施深度學習回歸模型進行校準。
實驗結果顯示 TingGesture 相較於傳統方法具有優越性能。在訓練路徑上,系統將均方根誤差(RMSE)從 14.376 公分顯著降低至 8.819 公分,在測試路徑上則從 13.153 公分降低至 8.632 公分。與雷達內建的人數計數算法相比,TingGesture在所有空間維度上都展現出更高的精確度,即使在各種傳輸延遲條件下,定位誤差增加仍能保持在 5%以下。
本研究展示了 TingGesture 在互動牆應用中實現精確手勢定位的有效性。通過全面的實驗驗證,該系統相較於傳統方法在定位精確度和運算效能方面都有顯著提升。
zh_TW
dc.description.abstractWith the rapid advancement of human-computer interaction technologies, smart spaces and interactive systems have become increasingly prevalent in modern applications. Interactive wall systems, featuring intuitive interfaces and large-scale displays, have gained widespread adoption in educational, exhibition, and public spaces. In recent years, the integration of millimeter-wave (mmWave) radar technology into interactive wall systems has emerged as a promising solution to overcome the limitations of traditional human-computer interaction methods. This study introduces TingGesture, an innovative system leveraging mmWave radar for precise hand gesture localization in interactive wall applications. The methodology encompasses four key modules: Point Cloud Mapping, Heat Map Denoising, HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise) Clustering, and Deep Learning Regression Calibration, working in concert to achieve high-precision hand position tracking.
TingGesture first maps mmWave point cloud data onto a heat map, followed by a dual-track median blur denoising strategy that effectively preserves spatial details while eliminating noise. HDBSCAN clustering is then applied to identify hand positions and remove residual noise, with optimized parameters determined through exhaustive search. To address the fan-shaped distortion and expansion issues in coordinate projection, a deep learning regression model is implemented for calibration.
Experimental results demonstrate TingGesture's superior performance compared with conventional methods. TingGesture achieves a significant reduction in Root Mean Square Error (RMSE) from 14.376 cm to 8.819 cm on the training path, and from 13.153 cm to 8.632 cm on the testing path. When compared with the radar's built-in people counting algorithm, TingGesture shows enhanced accuracy spatially, maintaining positioning error increases below 5% even under various transmission delay conditions.
This research demonstrates the effectiveness of TingGesture in achieving precise hand gesture localization for interactive wall applications. Through comprehensive experimental validation, the system shows significant improvements in positioning accuracy and computational efficiency compared with conventional methods.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-07T16:12:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-05-07T16:12:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Millimeter-Wave Radar for Projected Interactive Wall 2
1.3 Thesis Organization 4
Chapter 2 Related Works 6
2.1 Overview 6
2.2 Interactive Wall Systems 6
2.3 Millimeter-Wave Radar Human Sensing 10
Chapter 3 Background 17
3.1 DBSCAN 18
3.2 HDBSCAN 20
3.3 Multiple Object Tracking 23
3.3.1 Kalman Filter 23
3.3.2 Hungarian Algorithm 26
3.4 Deep Learning Regression 28
Chapter 4 Methodology 31
4.1 Overview 31
4.2 Point Cloud Mapping 32
4.3 Heat Map Denoising 34
4.3.1 Median Blur 35
4.3.2 Gaussian Blur 37
4.3.3 Opening Operation 37
4.3.4 Result Comparison 38
4.4 HDBSCAN 41
4.5 Data Collection 43
4.5.1 Application 43
4.5.2 Time Alignment 47
4.5.3 Environment Setup 50
4.5.4 Data Collection 52
4.6 HDBSCAN Cluster Optimization 54
4.6.1 Parameters Optimization 54
4.6.2 Evaluation 56
4.7 Deep Learning Regression Calibration 57
4.7.1 Overview 57
4.7.2 Data Labeling 61
4.7.3 Data Augmentation 61
4.8 Hand Tracking and Motion 63
Chapter 5 Experimental Results 64
5.1 Overview 64
5.2 Cluster Optimization 64
5.3 Regression Performance 67
5.4 Application Error 70
Chapter 6 Conclusion and Future Works 73
Chapter 7 References 76
-
dc.language.isoen-
dc.subject深度學習zh_TW
dc.subject回歸校正zh_TW
dc.subject階層式聚類演算法zh_TW
dc.subject互動式系統zh_TW
dc.subject毫米波雷達zh_TW
dc.subjectRegression Calibrationen
dc.subjectMillimeter-Wave Radaren
dc.subjectInteractive Systemen
dc.subjectHierarchical Clusteringen
dc.subjectDeep Learningen
dc.title丁手勢:基於 3D 毫米波手勢定位的牆面互動系統zh_TW
dc.titleTingGesture: 3D Millimeter-Wave Gesture Localization for Wall-Based Interactive Systemen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee方瓊瑤;康淳政zh_TW
dc.contributor.oralexamcommitteeChiung-Yao Fang;Chun-Jeng Kangen
dc.subject.keyword毫米波雷達,互動式系統,階層式聚類演算法,深度學習,回歸校正,zh_TW
dc.subject.keywordMillimeter-Wave Radar,Interactive System,Hierarchical Clustering,Deep Learning,Regression Calibration,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202500864-
dc.rights.note未授權-
dc.date.accepted2025-04-25-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved