Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97360
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 王彥雯 | zh_TW |
dc.contributor.advisor | Charlotte Wang | en |
dc.contributor.author | 李耿聿 | zh_TW |
dc.contributor.author | Geng-Yu Li | en |
dc.date.accessioned | 2025-05-07T16:11:04Z | - |
dc.date.available | 2025-05-08 | - |
dc.date.copyright | 2025-05-07 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-04-29 | - |
dc.identifier.citation | Anil, N., & Sreeletha, S. H. (2018). EMG based gesture recognition using machine learning. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1560-1564). IEEE.
Benalcázar, M. E., Jaramillo, A. G., Zea, A., Páez, A., & Andaluz, V. H. (2017, August). Hand gesture recognition using machine learning and the Myo armband. In 2017 25th European Signal Processing Conference (EUSIPCO) (pp. 1040-1044). IEEE. Cardinale, M., & Varley, M. C. (2017). Wearable training-monitoring technology: applications, challenges, and opportunities. International Journal of Sports Physiology and Performance, 12(s2), S2-55. Chernick, M. R. (2001). Wavelet methods for time series analysis. Technometrics, 43(4), 491–491. Côté-Allard, U., Fall, C. L., Drouin, A., Campeau-Lecours, A., Gosselin, C., Glette, K., ... & Gosselin, B. (2019). Deep learning for electromyographic hand gesture signal classification using transfer learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(4), 760-771. Cox, M. G. (1972). The numerical evaluation of B-splines. IMA Journal of Applied Mathematics, 10(2), 134-149. Daubechies, I. (1992). Ten lectures on wavelets. Society for Industrial and Applied Mathematics. De Boor, C. (1972). On calculating with B-splines. Journal of Approximation Theory, 6(1), 50-62. De Boor, C. (2001). A practical guide to splines. Springer. Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3), 425-455. Fan, J. (2018). Local polynomial modelling and its applications: monographs on statistics and applied probability 66. Routledge. Kneip, A., & Gasser, T. (1992). Statistical tools to analyze data representing a sample of curves. The Annals of Statistics, 1266-1305. Kokoszka, P., & Reimherr, M. (2017). Introduction to functional data analysis. Chapman and Hall/CRC. Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674-693. Mann, S. (1997). Wearable computing: A first step toward personal imaging. Computer, 30(2), 25-32. Ramsay, J. (2024). fda: Functional Data Analysis. R package version 6.1.9, https://github.com/jamesramsay5/fda. Ramsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis (2nd ed.). Springer New York. Ramsay, J., Hooker, G., & Graves, S. (2009). Functional data analysis with R and MATLAB. Springer. Russey, C. (2021, March 18). PepsiCo’s use of Kinetic Reflex Wearable bolstering worker safety. Wearable Technologies. https://wt-obk.wearable-technologies.com/2021/03/pepsicos-use-of-kinetic-reflex-wearable-bolstering-worker-safety/ Shin, J., Miah, A. S. M., Kabir, M. H., Rahim, M. A., & Al Shiam, A. (2024). A methodological and structural review of hand gesture recognition across diverse data modalities. IEEE Access. Vijayan, V., McKelvey, N., Condell, J., Gardiner, P., & Connolly, J. (2020). Implementing pattern recognition and matching techniques to automatically detect standardized functional tests from wearable technology. In 2020 31st Irish Signals and Systems Conference (ISSC) (pp. 1-6). IEEE. Vijayan, V., Connolly, J. P., Condell, J., McKelvey, N., & Gardiner, P. (2021). Review of wearable devices and data collection considerations for connected health. Sensors, 21(16), 5589. Xi, N., Chen, J., Jabari, S., & Hamari, J. (2024). Wearable gaming technology: A study on the relationships between wearable features and gameful experiences. International Journal of Human-Computer Studies, 181, 103157. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97360 | - |
dc.description.abstract | 隨著穿戴式裝置日益普及,其內建感測器所蒐集的資料被廣泛應用於健康監控、運動分析與娛樂等領域,其中以加速度計為核心的資料蒐集方式特別適合應用於手勢辨識任務。這類資料具備連續、可即時追蹤等優勢,然而也同時伴隨來自個體差異、重複測量誤差與感測環境干擾等高變異性與雜訊的挑戰。為了解決穿戴式裝置中手勢資料在辨識任務中常面臨的資料變異的問題,本研究試圖探討透過函數型資料分析方法之資料處理流程,是否能在有限樣本條件下,提升資料品質並壓縮非結構性變異,進而穩定後續手勢分類之進行。研究資料來自48位受試者針對10種手勢進行重複施作所產生的加速度時間序列資料,經過函數平滑化、資料對齊、與函數型主成份分析三道處理流程,依序透過三階B-樣條基底函數建構連續時間函數,再將所有資料統一對齊至首條樣本的時間軌跡以校正相位及振幅差異,最後通過函數型主成份分析提取能解釋90%以上變異的主成份以進行資料函數重構,進一步壓縮資料雜訊。研究最後以總變異、組內變異、組間變異三項指標評估資料於各處理階段的離散情形,結果顯示資料平滑化與主成份分析降維具穩定去噪效果,而對齊步驟在不同手勢上的效果則有所差異,尤其當手勢本質結構差異較大時,對齊反而可能增加資料變異。此外,主成份重構後的曲線保留了關鍵的波峰與轉折訊號,成功去除了局部擾動與高頻干擾,顯示函數型主成份分析方法兼具抑制雜訊與保留訊號的能力。綜合而言,本研究證實在穿戴式手勢資料的資料處理流程上,函數型資料分析在高度變異時間序列資料中具備良好的穩定性與解釋性,未來可進一步應用於樣本有限或跨個體情境下的手勢辨識任務中,作為強化辨識能力與模型穩定性的依據。 | zh_TW |
dc.description.abstract | With the growing prevalence of wearable devices, data collected from embedded sensors—particularly accelerometers—have been widely applied to health monitoring, sports analytics, and interactive systems. Accelerometer-based data are well-suited for hand gesture recognition due to their continuous and real-time tracking capabilities. However, these data pose challenges such as high variability and noise from individual differences, repeated measurements, and environmental disturbances. This study explores if employing a data processing flow based on functional data analysis (FDA) can enhance data quality and reduce unstructured variation, leading to stabilized gesture classification under limited sample conditions.
The dataset comprises time-series accelerometer signals from 48 participants performing 10 hand gestures repeatedly. The pipeline includes functional smoothing using third-order B-spline basis functions, temporal alignment of all curves to the first sample trajectory, and functional principal component analysis (FPCA). Components explaining over 90% of the total variance were retained for reconstructing the signals and compressing noise. To assess the impact of each processing step, the study evaluates total, within-subject, and between-subject variance. Results indicate that smoothing and FPCA consistently reduce noise and improve data structure, while alignment yields mixed effects, especially increasing variation in gestures with greater structural differences. The reconstructed curves preserve key waveform features, such as peaks and turning points, while effectively suppressing local perturbations and high-frequency noise. This FDA-based pipeline demonstrates strong potential for stabilizing high-variability gesture data. It provides a robust and interpretable preprocessing procedure for wearable sensor applications and offers practical value for improving recognition performance in small-sample or cross-subject scenarios. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-07T16:11:04Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-05-07T16:11:04Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目次 iv 圖次 vi 表次 vii 第一章 背景與動機目的 1 1.1 穿戴式裝置介紹 1 1.2 穿戴式裝置常蒐集的變數 2 1.3 文獻回顧 2 1.4 函數型資料分析的介紹 4 1.5 研究動機與目的 4 第二章 材料與方法 6 2.1 手勢動作辨識資料集介紹 6 2.2 函數型資料分析介紹 7 2.2.1 建構函數型資料 7 2.2.2 函數型資料利用伸縮與平移對齊(registration & alignment) 8 2.2.3 函數型主成份分析與維度縮減 9 2.3 研究流程 10 第三章 研究結果 11 3.1 原始資料探索 11 3.2對齊後結果 12 3.3降維後結果 14 3.4 資料變異 15 第四章 結論與討論 17 4.1 結論 17 4.2 討論 18 參考文獻 19 附錄 21 附件一 受試者之基本資料 21 附件二 受試者不同手勢之樣本數 22 附件三 相同受試者不同動作之三軸線圖—原始資料 23 附件四 相同受試者相同動作重複測量之三軸線圖-原始資料 24 附件五 不同受試者相同動作之三軸線圖-原始資料 26 附件六 相同受試者不同動作之三軸線圖-資料對齊後 28 附件七 相同受試者相同動作重複測量之三軸線圖-資料對齊後 29 附件八 不同受試者相同動作之三軸線圖-資料對齊後 31 附件九 相同受試者不同動作之三軸線圖-函數型主成份分析重構 33 附件十 相同受試者相同動作重複測量之三軸線圖-函數型主成份分析重構 34 附件十二 各軸資料經函數型主成份分析後重構使用之特徵函數圖 38 附件十三 四個資料處理階段下不同手勢之資料離散程度圖 41 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用函數型資料分析探討穿戴式裝置資料變異來源的處理 | zh_TW |
dc.title | Handling Variability in Wearable Device Data via Functional Data Analysis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蕭朱杏;張升懋;李百靈 | zh_TW |
dc.contributor.oralexamcommittee | Chuhsing Kate Hsiao;Sheng-Mao Chang;Pai-Ling Li | en |
dc.subject.keyword | 穿戴式裝置資料,函數型資料分析,函數平滑化,雜訊抑制,函數型主成份分析, | zh_TW |
dc.subject.keyword | wearable devices data,functional data analysis,smoothing,noise reduction,functional principal component analysis, | en |
dc.relation.page | 43 | - |
dc.identifier.doi | 10.6342/NTU202500861 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-04-29 | - |
dc.contributor.author-college | 共同教育中心 | - |
dc.contributor.author-dept | 統計碩士學位學程 | - |
dc.date.embargo-lift | 2025-05-08 | - |
Appears in Collections: | 統計碩士學位學程 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-113-2.pdf Access limited in NTU ip range | 10.95 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.