請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97359
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許永真 | zh_TW |
dc.contributor.advisor | Yung-Jen Hsu | en |
dc.contributor.author | 張仲喆 | zh_TW |
dc.contributor.author | Chung-Che Chang | en |
dc.date.accessioned | 2025-05-07T16:10:48Z | - |
dc.date.available | 2025-05-08 | - |
dc.date.copyright | 2025-05-07 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2025-04-25 | - |
dc.identifier.citation | [1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
[2] S. Arora, A. Narayan, M. F. Chen, L. Orr, N. Guha, K. Bhatia, I. Chami, and C. Re. Ask me anything: A simple strategy for prompting language models. In The Eleventh International Conference on Learning Representations, 2023. [3] M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski, L. Gianinazzi, J. Gajda, T. Lehmann, H. Niewiadomski, P. Nyczyk, and T. Hoefler. Graph of thoughts: Solving elaborate problems with large language models. Proceedings of the AAAI Conference on Artificial Intelligence, 38(16):17682–17690, Mar. 2024. [4] K. Bousmalis, G. Vezzani, D. Rao, C. M. Devin, A. X. Lee, M. B. Villalonga, T. Davchev, Y. Zhou, A. Gupta, A. Raju, et al. Robocat: A self-improving generalist agent for robotic manipulation. Transactions on Machine Learning Research, 2024. [5] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012. [6] Z. Chen, W. Du, W. Zhang, K. Liu, J. Liu, M. Zheng, J. Zhuo, S. Zhang, D. Lin, K. Chen, and F. Zhao. T-eval: Evaluating the tool utilization capability of large language models step by step. In L.-W. Ku, A. Martins, and V. Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9510–9529, Bangkok, Thailand, Aug. 2024. Association for Computational Linguistics. [7] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021. [8] Q. Dong, L. Li, D. Dai, C. Zheng, J. Ma, R. Li, H. Xia, J. Xu, Z. Wu, T. Liu, B. Chang, X. Sun, L. Li, and Z. Sui. A survey on in-context learning, 2024. [9] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Yang, A. Fan, et al. The llama 3 herd of models, 2024. [10] M. Gao, X. Hu, J. Ruan, X. Pu, and X. Wan. Llm-based nlg evaluation: Current status and challenges, 2024. [11] X. Guo and S. Vosoughi. Serial position effects of large language models, 2024. [12] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring massive multitask language understanding, 2021. [13] S. Hong, M. Zhuge, J. Chen, X. Zheng, Y. Cheng, C. Zhang, J. Wang, Z. Wang, S. K. S. Yau, Z. Lin, L. Zhou, C. Ran, L. Xiao, C. Wu, and J. Schmidhuber. Metagpt: Meta programming for a multi-agent collaborative framework, 2023. [14] D. Huang, J. M. Zhang, M. Luck, Q. Bu, Y. Qing, and H. Cui. Agentcoder: Multi-agent-based code generation with iterative testing and optimisation, 2024. [15] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners: Extracting actionable knowledge for embodied agents. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 9118–9147. PMLR, 17–23 Jul 2022. [16] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch, Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language models. In K. Liu, D. Kulic, and J. Ichnowski, editors, Proceedings of The 6th Conference on Robot Learning, volume 205 of Proceedings of Machine Learning Research, pages 1769–1782. PMLR, 14–18 Dec 2023. [17] B. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang, et al. Do as i can, not as i say: Grounding language in robotic affordances. In K. Liu, D. Kulic, and J. Ichnowski, editors, Proceedings of The 6th Conference on Robot Learning, volume 205 of Proceedings of Machine Learning Research, pages 287–318. PMLR, 14–18 Dec 2023. [18] R. Islam and O. M. Moushi. Gpt-4o: The cutting-edge advancement in multimodal llm. Authorea Preprints, 2024. [19] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023. [20] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. d. l. Casas, E. B. Hanna, F. Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024. [21] J. Jiang, F. Wang, J. Shen, S. Kim, and S. Kim. A survey on large language models for code generation. arXiv preprint arXiv:2406.00515, 2024. [22] W. Jiao, W. Wang, J. tse Huang, X. Wang, S. Shi, and Z. Tu. Is chatgpt a good translator? a preliminary study. In ArXiv, 2023. [23] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez, H. Zhang, and I. Stoica. Efficient memory management for large language model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles, 2023. [24] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoy- anov, and L. Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online, July 2020. Association for Computational Linguistics. [25] S. Li, X. Puig, C. Paxton, Y. Du, C. Wang, L. Fan, T. Chen, D.-A. Huang, E. Akyürek, A. Anandkumar, et al. Pre-trained language models for interactive decision-making. Advances in Neural Information Processing Systems, 35:31199–31212, 2022. [26] T. Li, G. Zhang, Q. D. Do, X. Yue, and W. Chen. Long-context llms struggle with long in-context learning, 2024. [27] X. Liang, H. Wang, Y. Wang, S. Song, J. Yang, S. Niu, J. Hu, D. Liu, S. Yao, F. Xiong, et al. Controllable text generation for large language models: A survey. arXiv preprint arXiv:2408.12599, 2024. [28] B. Y. Lin, Y. Fu, K. Yang, F. Brahman, S. Huang, C. Bhagavatula, P. Ammanabrolu, Y. Choi, and X. Ren. Swiftsage: A generative agent with fast and slow thinking for complex interactive tasks. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages 23813–23825. Curran Associates, Inc., 2023. [29] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang. Lost in the middle: How language models use long contexts. Transactions of the Association for Computational Linguistics, 12:157–173, 2024. [30] X. Liu, H. Yu, H. Zhang, Y. Xu, X. Lei, H. Lai, Y. Gu, H. Ding, K. Men, K. Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint arXiv:2308.03688, 2023. [31] T. Lu, M. Gao, K. Yu, A. Byerly, and D. Khashabi. Insights into llm long-context failures: When transformers know but don’t tell, 2024. [32] B. P. Majumder, B. D. Mishra, P. Jansen, O. Tafjord, N. Tandon, L. Zhang, C. Callison-Burch, and P. Clark. Clin: A continually learning language agent for rapid task adaptation and generalization, 2023. [33] K. Nottingham, B. P. Majumder, B. Dalvi Mishra, S. Singh, P. Clark, and R. Fox. Skill set optimization: Reinforcing language model behavior via transferable skills. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, and F. Berkenkamp, editors, Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages 38409–38425. PMLR, 21–27 Jul 2024. [34] Y. Qin, S. Liang, Y. Ye, K. Zhu, L. Yan, Y. Lu, Y. Lin, X. Cong, X. Tang, B. Qian, S. Zhao, L. Hong, R. Tian, R. Xie, J. Zhou, M. Gerstein, dahai li, Z. Liu, and M. Sun. ToolLLM: Facilitating large language models to master 16000+ real-world APIs. In The Twelfth International Conference on Learning Representations, 2024. [35] Y. Qin, K. Song, Y. Hu, W. Yao, S. Cho, X. Wang, X. Wu, F. Liu, P. Liu, and D. Yu. InFoBench: Evaluating instruction following ability in large language models. In L.-W. Ku, A. Martins, and V. Srikumar, editors, Findings of the Association for Computational Linguistics ACL 2024, pages 13025–13048, Bangkok, Thailand and virtual meeting, Aug. 2024. Association for Computational Linguistics. [36] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 11 2019. [37] N. Robinson, P. Ogayo, D. R. Mortensen, and G. Neubig. ChatGPT MT: Competitive for high- (but not low-) resource languages. In P. Koehn, B. Haddow, T. Kocmi, and C. Monz, editors, Proceedings of the Eighth Conference on Machine Translation, pages 392–418, Singapore, Dec. 2023. Association for Computational Linguistics. [38] T. Schick and H. Schütze. It’s not just size that matters: Small language mod- els are also few-shot learners. In K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, editors, Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2339–2352, Online, June 2021. Association for Computational Linguistics. [39] N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: lan- guage agents with verbal reinforcement learning. In A. Oh, T. Naumann, A. Glober- son, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages 8634–8652. Curran Associates, Inc., 2023. [40] A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown, A. Santoro, A. Gupta, A. Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615, 2022. [41] S. E. Taylor and S. K. Schneider. Cognition, 7(2):174–194, 1989. Coping and the simulation of events. Social [42] G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth, K. Millican, et al. Gemini: A family of highly capable multimodal models, 2024. [43] G. Team, P. Georgiev, V. I. Lei, R. Burnell, L. Bai, A. Gulati, G. Tanzer, D. Vincent, Z. Pan, S. Wang, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context, 2024. [44] G. Team, M. Riviere, S. Pathak, P. G. Sessa, C. Hardin, S. Bhupatiraju, L. Hussenot, T. Mesnard, B. Shahriari, A. Ramé, et al. Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024. [45] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. [46] P. Veličković, A. P. Badia, D. Budden, R. Pascanu, A. Banino, M. Dashevskiy, R. Hadsell, and C. Blundell. The clrs algorithmic reasoning benchmark, 2022. [47] V. Vidal et al. A lookahead strategy for heuristic search planning. In ICAPS, pages 150–160, 2004. [48] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anand- kumar. Voyager: An open-ended embodied agent with large language models. Transactions on Machine Learning Research, 2024. [49] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang, X. Chen, Y. Lin, W. X. Zhao, Z. Wei, and J. Wen. A survey on large language model based autonomous agents. Frontiers of Computer Science, 18(6), Mar. 2024. [50] R. Wang, P. Jansen, M.-A. Côté, and P. Ammanabrolu. ScienceWorld: Is your agent smarter than a 5th grader? In Y. Goldberg, Z. Kozareva, and Y. Zhang, edi- tors, Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 11279–11298, Abu Dhabi, United Arab Emirates, Dec. 2022. As- sociation for Computational Linguistics. [51] J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, F. Xia, E. Chi, Q. V. Le, and D. Zhou. Chain-of-thought prompting elicits reasoning in large language mod- els. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, edi- tors, Advances in Neural Information Processing Systems, volume 35, pages 24824– 24837. Curran Associates, Inc., 2022. [52] Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang, J. Wang, S. Jin, E. Zhou, et al. The rise and potential of large language model based agents: A survey. arXiv preprint arXiv:2309.07864, 2023. [53] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. R. Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. [54] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. R. Narasimhan, and Y. Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International Conference on Learning Representations, 2023. [55] W. Yin, J. Hay, and D. Roth. Benchmarking zero-shot text classification: Datasets, evaluation and entailment approach, 2019. [56] A. Zhao, D. Huang, Q. Xu, M. Lin, Y.-J. Liu, and G. Huang. Expel: Llm agents are experiential learners. Proceedings of the AAAI Conference on Artificial Intelligence, 38(17):19632–19642, Mar. 2024. [57] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong, et al. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023. [58] J. Zhou, T. Lu, S. Mishra, S. Brahma, S. Basu, Y. Luan, D. Zhou, and L. Hou. Instruction-following evaluation for large language models. arXiv preprint arXiv:2311.07911, 2023. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97359 | - |
dc.description.abstract | 當前以大型語言模型(LLM)驅動的 Agent 展現了在互動文本環境中執行序列決策任務的潛力。然而,由於這些 LLM Agent 難以意識到執行某個動作所需的前提條件,因此在執行任務的關鍵步驟時經常失敗。與此不同,人類則通過心理模擬,藉由曾獲得的經驗想像動作及其後果的過程,來判別能滿足前置條件所需的動作。為了解決這一問題,我們提出了一種名為MENtal Simulation Agent(MENSA)的方法。MENSA 利用 LLM 生成未來的「動作-觀察對」以達到進行預測的效果,並根據對未來的預測查找過去相關的經驗提供給 Agent,從而在不進行模型參數微調的情況下提升 LLM Agent 的性能表現。我們在互動文本環境ScienceWorld 中評估了我們提出的方法,結果顯示,MENSA 不僅在使用較大的模型(如 GPT-4o-mini)時,相比之前的最先進方法提高了 15.8 分(29%),並且在不同尺寸 LLM 中,包括較小的模型(如 Phi-3-mini)在內,也一樣獲得性能的提升,進步幅度達到 11.9 分(57.5%)。 | zh_TW |
dc.description.abstract | Large language models (LLMs) powered agents have shown the potential to perform sequential decision-making tasks in interactive text environments. However, these LLM agents often fail at executing the key steps to achieve tasks because they are not aware of the preconditions required for an action. Unlike these agents, humans, on the other hand, use mental simulation, a process of imagining actions and their consequences from experience, to identify the actions needed to satisfy the preconditions. To address this, we propose a MENtal Simulation Agent (MENSA). MENSA leverages LLMs to generate a forecast of action-observation pairs for future time steps. Based on the forecast, it then retrieves relevant past experiences to improve the performance of the LLM agent without fine-tuning. We evaluate our method in the interactive text environment ScienceWorld to show that MENSA not only outperforms previous state-of-the-art by +15.8 points (29%) when using a larger model (e.g., GPT-4o-mini) but also consistently improves the performance across different sizes of LLMs including smaller ones such as Phi-3-mini with improvement of +11.9 points (57.5%). | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-07T16:10:48Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-05-07T16:10:48Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xiii Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Result and Contribution . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 2 Related Work 7 2.1 Sequential Decision Making with LLMs . . . . . . . . . . . . . . . . 7 2.2 Mental Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Capability Evaluation in LLMs . . . . . . . . . . . . . . . . . . . . 9 Chapter 3 Problem Definition 11 3.1 Sequential Decision Making . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter 4 Methodology 15 4.1 Mental Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.1 Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.2 Experience Retriever . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.3 Dynamic Prompt Trimmer . . . . . . . . . . . . . . . . . . . . . . 20 4.2 Executor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.1 Admissible Action Translator . . . . . . . . . . . . . . . . . . . . . 23 4.3 Experience Learner . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3.1 Experience Set Construction . . . . . . . . . . . . . . . . . . . . . 24 4.3.2 Experience Set Refinement . . . . . . . . . . . . . . . . . . . . . . 25 Chapter 5 Experiments and Results 27 5.1 Benchmark Environment . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.4.1 Forecast Steps in Experience Retrieval. . . . . . . . . . . . . . . . . 33 5.4.2 Experience Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4.3 Experience Retrieval Approaches. . . . . . . . . . . . . . . . . . . 36 Chapter 6 Discussion 39 6.1 How does the number of the forecast step affects performance and token cost? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.2 How does LLM capability affect performance? . . . . . . . . . . . . 40 Chapter 7 Conclusion 43 7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.2 Limitation and Future Work . . . . . . . . . . . . . . . . . . . . . . 44 References 45 Appendix A — Examples 55 A.1 Decision-Making Example . . . . . . . . . . . . . . . . . . . . . . . 55 A.2 Experience Example . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Appendix B — Task Selection and Environment Details 61 Appendix C — ScienceWorld Performance By Task 63 Appendix D — Computing Infrastructure Specifications 67 | - |
dc.language.iso | en | - |
dc.title | MENSA: 利用心理模擬進行大型語言模型代理的動態經驗檢索 | zh_TW |
dc.title | MENSA: Leveraging Mental Simulation for Dynamic Experience Retrieval in LLM Agents | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 傅立成 | zh_TW |
dc.contributor.coadvisor | Li-Chen Fu | en |
dc.contributor.oralexamcommittee | 郭彥伶;孫紹華;詹詩涵 | zh_TW |
dc.contributor.oralexamcommittee | Yen-Ling Kuo;Shao-Hua Sun;Shih-Han Chan | en |
dc.subject.keyword | 大語言模型,大語言模型代理人,心智模擬,提示工程,少樣本上下文學習, | zh_TW |
dc.subject.keyword | Large Language Model,LLM-based Agent,Mental Simulation,Prompt Engineering,Few-shot In-context Learning, | en |
dc.relation.page | 67 | - |
dc.identifier.doi | 10.6342/NTU202404517 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-04-25 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 資訊工程學系 | - |
dc.date.embargo-lift | 2025-05-08 | - |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-2.pdf | 1.96 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。