Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97353
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許正一zh_TW
dc.contributor.advisorZeng-Yei Hseuen
dc.contributor.author楊家語zh_TW
dc.contributor.authorChia-Yu Yangen
dc.date.accessioned2025-05-07T16:09:15Z-
dc.date.available2025-05-08-
dc.date.copyright2025-05-07-
dc.date.issued2025-
dc.date.submitted2025-04-30-
dc.identifier.citation中央氣象局。2023。池上氣象站氣候資料年報表。民國113年3月2日,取自https://codis.cwa.gov.tw/StationData。
中華人民共和國生態環境部。2018。土壤環境質量農用地土壤污染風險管控標準。取自https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/W020190626595
212456114.pdf。
何春蓀。1986。臺灣地質圖概論–臺灣地質圖說明書。經濟部中央地質調查所,163頁。
陳肇夏。1998。臺灣的變質岩。經濟部中央地質調查所,144–179頁。
環境部。2011。土壤污染管制標準。取自https://law.moj.gov.tw/LawClass/LawAll.
aspx?PCode=O0110005。
Abaka-Wood, G.B., Zanin, M., Addai-Mensah, J., Skinner, W., 2019. Recovery of rare earth elements minerals from iron oxide-silicate rich tailings – Part 1: Magnetic separation. Miner. Eng. 136, 50-61.
Abedini, A., Azizi, M.R., Calagari, A.A., 2019. Ree mobility and tetrad effects in bauxites: an example from the kanisheeteh deposit, NW iran. Acta Geodynamica et Geomaterialia 16(1), 11-26.
Anand, R., Gilkes, R., 1984. Mineralogical and chemical properties of weathered magnetite grains from lateritic saprolite. J. Soil Sci. 35(4), 559-567.
Aide, M., Smith-Aide, C., 2003. Assessing soil genesis by rare-earth elemental analysis. Soil Sci. Soc. Am. J. 67(5), 1470-1476.
Alexander, E.B., 2004. Serpentine soil redness, differences among peridotite and serpentinite materials, Klamath mountains, California. Int. Geol. Rev. 46(8), 754–764.
Alexander, E.B., Coleman, R.G., Keeler–Wolfe, T., Harrison, S.P., 2007. Serpentine geoecology of western North America: geology, soils, and vegetation. Oxford University Press, USA.
Alexander, E.B., 2014. Arid to humid serpentine soils, mineralogy, and vegetation across the Klamath Mountains, USA. Catena 116, 114-122.
Alexander, E.B., 2019. Ultramafic Aridisols on a sequence of fluvial terraces in Baja California. Geoderma Reg. 17, e00219.
Ali, W., Zhang, H., Mao, K., Shafeeque, M., Aslam, M.W., Yang, X., Zhong, L., Feng, X., Podgorski, J., 2022. Chromium contamination in paddy soil-rice systems and associated human health risks in Pakistan. Sci. Total Environ. 826, 153910.
Alloway, B.J., 2012. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, Netherland.
Arakaki, A., Nakazawa, H., Nemoto, M., Mori, T., Matsunaga, T., 2008. Formation of magnetite by bacteria and its application. J. R. Soc. Interface 5(26), 977-999.
Ayoubi, S., Bahmani, S., 2023. Variation of heavy metals, magnetic susceptibility, and some chemical properties in the Lichen–rock interface on various parent rocks in west of Iran. Phys. Chem. Earth. A/B/C. 129, 103303.
Baker, D.E., Amacher, M.C., 1983. Nickel, copper, zinc, and cadmium, in: A.L. Page (Ed.)., Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Agronomy Monographs 9, Am. Soc. Agron. Soil Sci. Soc. Am., Madison, WI, USA, pp. 323–336.
Barnes, S.J., Roeder, P.L., 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 42(12), 2279-2302.
Becquer, T., Quantin, C., Sicot, M., Boudot, J.P., 2003. Chromium availability in ultramafic soils from New Caledonia. Sci. Total Environ. 301(1), 251–261.
Becquer, T., Quantin, C., Rotte–Capet, S., Ghanbaja, J., Mustin, C., Herbillon, A.J., 2006. Sources of trace metals in Ferralsols in New Caledonia. Eur. J. Soil Sci. 57(2), 200–213.
Blake, G.R., Hartge, K., 1986. Bulk density, in: Klute, A. (Ed.), Methods of soil analysis: Part 1 Physical and mineralogical methods. Agronomy Monographs 9 (2nd ed.), America Society of Agronomy and Soil Science Society of America, Madison, WI, USA, pp. 363–375.
Bompoti, N., Chrysochoou, M., Dermatas, D., 2015. Geochemical Characterization of Greek Ophiolitic Environments Using Statistical Analysis. Environ. Process. 2 (Suppl 1), 5–21.
Bonnemains, D., Carlut, J., Escartín, J., Mével, C., Andreani, M., Debret, B., 2016. Magnetic signatures of serpentinization at ophiolite complexes. Geochem. Geophys. Geosyst. 17(8), 2969-2986.
Botsou, F., Karageorgis, A.P., Dassenakis, E., Scoullos, M., 2011. Assessment of heavy metal contamination and mineral magnetic characterization of the Asopos River sediments (Central Greece). Mar. Pollut. Bull. 62(3), 547-563.
Brilhante, S.A., Silva, Y.J.A.B.d., Medeiros, P.L.d., Nascimento, C.W.A.d., Silva, Y.J.A.B.d., Ferreira, T.O., Otero, X.L., Silva, A.H.N., Sousa, M.G., Alcantara, V.C., Araújo, J.K.S., Junior, V.S.S., 2024. Geochemistry of rare Earth elements in rocks and soils along a Cretaceous volcano-sedimentary Basin in Northeastern Brazil. Geoderma Reg. 36, e00756.
Brooks, R.R., 1987. Serpentine and its vegetation: a multidisciplinary approach. Discorides Press, Portland.
Caillaud, J., Proust, D., Righi, D., Martin, F., 2004. Fe-rich clays in a weathering profile developed from serpentinite. Clays Clay Miner. 52(6), 779-791.
Caillaud, J., Proust, D., Philippe, S., Fontaine, C., Fialin., M., 2009. Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma 149(3–4), 199–208.
Challis, G., Grapes, R., Palmer, K., 1995. Chromian muscovite, uvarovite, and zincian chromite; products of regional metasomatism in Northwest Nelson, New Zealand. Can. Mineral. 33(6), 1263–1284.
Chang, C., Li, F., Liu, C., Gao, J., Tong, H., Chen, M., 2016. Fractionation characteristics of rare earth elements (REEs) linked with secondary Fe, Mn, and Al minerals in soils. Acta Geochimica 35, 329-339.
Chapela Lara, M., Buss, H.L., Pett-Ridge, J.C., 2018. The effects of lithology on trace element and REE behavior during tropical weathering. Chem. Geol. 500, 88-102.
Chen, C.C. 2018. The feasibility of X–ray fluorescence spectrometry for measuring characteristic elements of serpentine soils. Unpublished master’s thesis, National Taiwan University, Taipei.
Cheng, C.H., Jien, S.H., Tsai, H., Chang, Y.H., Chen, Y.C., Hseu, Z.Y., 2009. Geochemical element differentiation in serpentine soils from the ophiolite complexes, eastern Taiwan. Soil Sci. 174(5), 283–291.
Cheng, C.H., Jien, S.H., Izuka, Y., Tsai, H., Chang, Y.H., Hseu, Z.Y., 2011. Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Sci. Soc. Am. J. 75(2), 659–668.
Chrysochoou, M., Theologou, E., Bompoti, N., Dermatas, D., Panagiotakis, I., 2016. Occurrence, origin and transformation processes of geogenic chromium in soils and sediments. Curr. Pollut. Rep. 2(4), 224–235.
Churchman, G.J., Lowe, D.J., 2012. Alteration, formation, and occurrence of minerals in soils. CRC press.
Compton, J.S., White, R.A., Smith, M., 2003. Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chem. Geol. 201(3-4), 239-255.
Cuadros, J., Dekov, V.M., Fiore, S., 2008. Crystal chemistry of the mixed-layer sequence talc–talc-smectite–smectite from submarine hydrothermal vents. Am. Mineral. 93(8-9), 1338-1348.
D'Amico, M., Julitta, F., Previtali, F., Cantelli, D., 2008. Podzolization over ophiolitic materials in the western Alps (Natural Park of Mont Avic, Aosta Valley, Italy). Geoderma 146(1), 129-137.
De Jong, E., Pennock, D., Nestor, P., 2000. Magnetic susceptibility of soils in different slope positions in Saskatchewan, Canada. Catena 40(3), 291–305.
de Mello, D.C., Demattê, J.A. Silvero, N.E., Di Raimo, L.A., Poppiel, R.R., Mello, F.A., Souza, A.B., Safanelli, J.L., Resende, M.E., Rizzo R., 2020. Soil magnetic susceptibility and its relationship with naturally occurring processes and soil attributes in pedosphere, in a tropical environment. Geoderma 372, 114364.
de Souza Braz, A. M., Fernandes, A. R., Ferreira, J. R., Alleoni, L. R. F., 2013. Prediction of the distribution coefficients of metals in Amazonian soils. Ecotoxicol. 95, 212-220.
Deng, W., Wang, F., Liu, W., 2023. Identification of factors controlling heavy metals/metalloid distribution in agricultural soils using multi-source data. Ecotoxicol. 253, 114689.
Deschamps, F., Godard, M., Guillot, S., Hattori, K., 2013. Geochemistry of subduction zone serpentinites: A review. Lithos 178, 96–127.
Dilshara, P., Abeysinghe, B., Premasiri, R., Dushyantha, N., Ratnayake, N., Senarath, S., Sandaruwan Ratnayake, A., Batapola, N., 2024. The role of nickel (Ni) as a critical metal in clean energy transition: applications, global distribution and occurrences, production-demand and phytomining. J. Asian Earth Sci. 259, 105912.
Dixon, J.B., Weed, S.B., Parpitt, R., 1990. Minerals in soil environments. Soil Sci. 150(2), 562.
dos Santos, F.R., de Oliveira, J.F., Bona, E., Barbosa, G.M., Melquiades, F.L., 2021. Evaluation of pre–processing and variable selection on energy dispersive X–ray fluorescence spectral data with partial least square regression: A case of study for soil organic carbon prediction. Spectrochim. Acta, Part B 175, 106016.
dos Santos, J.C.B., Le Pera, E., de Oliveira, C.S., de Souza Júnior, V.S., de Araújo Pedron, F., Corrêa, M.M., de Azevedo, A.C.., 2019. Impact of weathering on REE distribution in soil–saprolite profiles developed on orthogneisses in Borborema Province, NE Brazil. Geoderma 347, 103–117.
Dublet, G., Juillot, F., Morin, G., Fritsch, E., Fandeur, D., Ona-Nguema, G., Brown Jr, G. E., 2012. Ni speciation in a New Caledonian lateritic regolith: A quantitative X-ray absorption spectroscopy investigation. Geochim. Cosmochim. Acta. 95, 119-133.
Elayakumar, K., Dinesh, A., Manikandan, A., Palanivelu, M., Kavitha, G., Prakash, S., Thilak Kumar, R., Jaganathan, S.K., Baykal, A., 2019. Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157-165.
Evans, M., Heller F., 2003. Environmental magnetism: principles and applications of enviromagnetics. Oxford University Press, USA.
Fandeur, D., Juillot, F., Morin, G., Olivi, L., Cognigni, A., Ambrosi, J.-P., Guyot, F.o., Fritsch, E., 2009a. Synchrotron-based speciation of chromium in an Oxisol from New Caledonia: importance of secondary Fe-oxyhydroxides. Am. Mineral. 94(5-6), 710-719.
Fandeur, D., Juillot, F., Morin, G., Olivi, L., Cognigni, A., Webb, S.M., Ambrosi, J.-P., Fritsch, E., Guyot, F., Brown, J., Gordon E., 2009b. XANES evidence for oxidation of Cr (III) to Cr (VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia. Environ. Sci. Technol. 43(19), 7384-7390.
Fanlo, I., Gervilla, F., Mateo, E., Irusta, S., 2008. X–ray photoelectron spectroscopy characterization of natural chromite from Mercedita Mine (Eastern Cuba): quantification of the Fe3+/Fe2+ ratio. Eur. J. Mineral. 20(1), 125–129.
Feitosa, M.M., da Silva, Y.J.A.B., Biondi, C.M., Alcantara, V.C., do Nascimento, C.W.A., 2020. Rare Earth elements in rocks and soil profiles of a tropical volcanic archipelago in the Southern Atlantic. Catena 194, 104674.
Ferreira, M. D. S., Fontes, M.P.F., Bellato, C. R., Neto, J.d.O.M., Lima, H.N., Fendorf S., 2021. Geochemical signatures and natural background values of rare earth elements in soils of Brazilian Amazon. Environ, Pollut. 277, 116743.
Fontes, M.P.F., 1992. Iron Oxide-Clay Mineral Association in Brazilian Oxisols: A Magnetic Separation Study. Clays Clay Miner. 40, 175–179.
Fu, W., Yang, J., Yang, M., Pang, B., Liu, X., Niu, H., Huang, X., 2014. Mineralogical and geochemical characteristics of a serpentinite-derived laterite profile from East Sulawesi, Indonesia: Implications for the lateritization process and Ni supergene enrichment in the tropical rainforest. J. Asian Earth Sci. 93, 74-88.
Fujii, K., Hartono, A., Funakawa, S., Uemura, M., Kosaki, T., 2011. Distribution of Ultisols and Oxisols in the serpentine areas of East Kalimantan, Indonesia. Pedologist 55(2), 63-76.
Gardner, W.H., 1986. Water content. in: A. Klute (Ed.), Methods of Soil Analysis, Part 1. Agronomy Monographs 9 (2nd ed.), Am. Soc. Agron. Soil Sci. Soc. Am., Madison, WI, USA, pp. 493–544.
Garnier, J., Quantin, C., Martins, E., Becquer, T., 2006. Solid speciation and availability of chromium in ultramafic soils from Niquelândia, Brazil. J. Geochem. Explor. 88(1-3), 206-209.
Garnier, J., Quantin, C., Guimarães, E.M., Becquer, T., 2008. Can chromite weathering be a source of Cr in soils? Mineral. Mag. 72(1), 49–53.
Garnier, J., Quantin, C., Guimarães, E.M., Garg, V.K., Martins, E.S., Becquer, T., 2009. Understanding the genesis of ultramafic soils and catena dynamics in Niquelandia, Brazil. Geoderma 151(3–4), 204–214.
Garnier, J., Quantin, C., Guimarães, E.M., Vantelon, D., Montargès-Pelletier, E., Becquer, T., 2013. Cr (VI) genesis and dynamics in Ferralsols developed from ultramafic rocks: The case of Niquelândia, Brazil. Geoderma 193, 256-264.
Gee, G., Bauder, J., 1979. Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Sci. Soc. Am. J. 43(5), 1004–1007.
Gnandi, K., Tobschall, H.J., 2003. Distribution patterns of rare–earth elements and uranium in tertiary sedimentary phosphorites of Hahotoé–Kpogamé, Togo. J. Afr. Earth. Sci. 37(1–2), 1–10.
Gomez, C., Lagacherie, P., Coulouma. G., 2008. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma 148(2), 141–148.
Guan, Q., Zhao, R., Wang, F., Pan, N., Yang, L., Song, N., Xu, C., Lin, J., 2019. Prediction of heavy metals in soils of an arid area based on multi-spectral data. J Environ Manage. 243, 137-143.
Henderson, P., 1984. General geochemical properties and abundances of the rare earth elements, Developments in geochemistry. Elsevier, Amsterdam, Netherland, pp. 1-32.
Hodel, F., Macouin, M., Trindade, R.I.F., Araujo, J.F., Respaud, M., Meunier, J.F., Cassayre, L., Rousse, S., Drigo, L., Schorne‐Pinto, J., 2020. Magnetic properties of ferritchromite and Cr‐magnetite and monitoring of Cr‐spinels alteration in ultramafic and mafic rocks. Geochem. Geophys. Geosyst. 21(11), e2020GC009227.
Horen, H., Soubrand, M., Kierczak, J., Joussein, E., Néel, C., 2014. Magnetic characterization of ferrichromite in soils developed on serpentinites under temperate climate. Geoderma 235, 83–89.
Hseu, Z. Y., 2006. Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil Sci. 171(4), 341-353.
Hseu, Z., Tsai, H., Hsi, H., Chen, Y., 2007. Weathering sequences of clay minerals in soils along a serpentinitic toposequence. Clays Clay Miner. 55(4), 389-401.
Hseu, Z.Y., Iizuka, Y., 2013. Pedogeochemical characteristics of chromite in a paddy soil derived from serpentinites. Geoderma 202, 126-133.
Hseu, Z.Y., Lai, Y.J., 2017. Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan. Environ. Geochem. Health 39(6), 1325-1334.
Hseu, Z.Y., Zehetner, F., Fujii, K., Watanabe, T., Nakao, A., 2018. Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient. Geoderma 327, 97-106.
Ion, A., Cosac, A., 2023. Rare earth elements distribution in topsoil from Ditrău Alkaline Massif area, eastern Carpathians, Romania. Heliyon 9(3), e13976.
Ito, A., Otake, T., Maulana, A., Sanematsu, K., Sufriadin, Sato, T., 2021. Geochemical constraints on the mobilization of Ni and critical metals in laterite deposits, Sulawesi, Indonesia: A mass-balance approach. Resour. Geol. 71(3), 255-282.
IUSS Working Group WRB., 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
Jordanova, N., 2016. Soil magnetism: Applications in pedology, environmental science and agriculture. Academic press, Elsevier, Amsterdam, Netherland.
Jordanova, N., Mokreva, A., Jordanova, D., Tcherkezova, E., Stoyanova, V., 2024. Mineral magnetic properties of urban forest soils tailored to soil quality indicator. Catena 234, 107569.
Kabata–Pendias, A., 2000. Trace elements in soils and plants. CRC press, Florida, USA.
Karimi, A., Haghnia, G.H., Ayoubi, S., Safari T., 2017. Impacts of geology and land use on magnetic susceptibility and selected heavy metals in surface soils of Mashhad plain, northeastern Iran. J. Appl. Geophys. 138, 127–134.
Kelepertzis, E., Galanos, E., Mitsis I., 2013. Origin, mineral speciation and geochemical baseline mapping of Ni and Cr in agricultural topsoils of Thiva Valley (central Greece). J. Geochem. Explor. 125, 56–68.
Kierczak, J., Pedziwiatr, A., Waroszewski, J., Modelska M., 2016. Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate. Geoderma 268, 78–91.
Kierczak, J., Pietranik, A., Pędziwiatr A., 2021. Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. Sci. Total Environ. 755, 142620.
Kierczak, J., Neel, C., Bril, H., Puziewicz, J., 2007. Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma 142(1–2), 165–177.
Kypritidou, Z., Kelepertzis, E., Kritikos, I., Kapaj, E., Skoulika, I., Kostakis, M., Vassilakis, E., Karavoltsos, S., Boeckx, P., Matiatos, I., 2024. Geochemistry and origin of inorganic contaminants in soil, river sediment and surface water in a heavily urbanized river basin. Sci. Total Environ. 927, 172250.
Lara, M.C., Buss, H.L., Pett–Ridge J.C., 2018. The effects of lithology on trace element and REE behavior during tropical weathering. Chem. Geol. 500, 88–102.
Laveuf, C., Cornu, S., 2009. A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma 154(1-2), 1-12.
Lee, B., Sears, S., Graham, R., Amrhein, C., Vali, H., 2003. Secondary mineral genesis from chlorite and serpentine in an ultramafic soil toposequence. Soil Sci. Soc. Am. J. 67(4), 1309-1317.
Lessovaia, S., Dultz, S., Polekhovsky, Y., Krupskaya, V., Vigasina, M., Melchakova, L., 2012. Rock control of pedogenic clay mineral formation in a shallow soil from serpentinous dunite in the Polar Urals, Russia. Appl. Clay Sci., 64, 4-11.
Lilli, M.A., Nikolaidis, N.P., Karatzas, G.P., Kalogerakis, N., 2019. Identifying the controlling mechanism of geogenic origin chromium release in soils. J. Hazard. Mater. 366, 169–176.
Lu, S.G., 2000. Lithological factors affecting magnetic susceptibility of subtropical soils, Zhejiang Province, China. Catena 40(4), 359-373.
Lu, S.G., Xue, Q.F., Zhu, L., Yu, J.Y., 2008. Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China. Catena 73(1), 23–33.
Ma, X., Xia, D., Liu, X., Liu, H., Fan, Y., Chen, P., Yu, Q., 2022. Application of magnetic susceptibility and heavy metal bioaccessibility to assessments of urban sandstorm contamination and health risks: Case studies from Dunhuang and Lanzhou, Northwest China. Sci. Total Environ. 830, 154801.
Maher, B.A., Alekseev, A., Alekseeva T., 2002. Variation of soil magnetism across the Russian steppe: its significance for use of soil magnetism as a palaeorainfall proxy. Quat. Sci. Rev. 21(14–15), 1571–1576.
Marsh, J.S., 1991. REE fractionation and Ce anomalies in weathered Karoo dolerite. Chem. Geol. 90(3), 189-194.
Mateus, A.C.C., Varajão, A.F.D.C., Oliveira, F.S.d., Petit, S., Schaefer, C.E.G.R., 2021. Geochemical evolution of soils developed from pyroclastic rocks of Trindade Island, South Atlantic. Braz. J. Geol. 51(1), e20200073.
Mayhew, L. E., Ellison, E. T., 2020. A synthesis and meta-analysis of the Fe chemistry of serpentinites and serpentine minerals. Phil. Trans. R. Soc. A 378(2165), 20180420.
Mazhari, S., Attar, R.S., 2015. Rare earth elements in surface soils of the Davarzan area, NE of Iran. Geoderma Reg. 5, 25-33.
McGrath, S., Smith, S., 1990. Chromium and nickel, in: Alloway B. J. (Ed.), Heavy metals in soils, Blackie Academic and Professional, London, UK, pp 152–174.
McKeague, J., Day, J., 1966. Dithionite–and oxalate–extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46(1), 13–22.
Mehra, O., Jackson, M., 2013. Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7 (1), 317– 327.
Mihajlovic, J., Bauriegel, A., Stärk, H.-J., Roßkopf, N., Zeitz, J., Milbert, G., Rinklebe, J., 2019. Rare earth elements in soil profiles of various ecosystems across Germany. Appl. Geochem. 102, 197-217.
Miyashiro, A., 1975. Classification, characteristics, and origin of ophiolites. J. geol. 83(2), 249-281.
Morita, Y., 1987. Studies on origin of “dark-red” color of dark-red soils derived from serpentine. Pedologist 31(1), 14–25.
Moritsuka, N., Matsuoka, K., Katsura, K., Sano, S., Yanai, J., 2021. Laboratory and field measurement of magnetic susceptibility of Japanese agricultural soils for rapid soil assessment. Geoderma 393, 115013.
Morrison, J.M., Goldhaber, M.B., Mills, C.T., Breit, G.N., Hooper, R.L., Holloway, J.M., Diehl, S.F., Ranville, J.F., 2015. Weathering and transport of chromium and nickel from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California, USA. Appl. Geochem. 61, 72-86.
Morrison, J.M., Goldhaber, M.B., Lee, L., Holloway, J.M., Wanty, R.B., Wolf, R.E., Ranville, J.F., 2009. A regional–scale study of chromium and nickel in soils of northern California, USA. Appl. Geochem. 24(8), 1500–1511.
Mullins, C.E. 1977. Magnetic susceptibility of the soil and its significance in soil science–a review. J. Soil Sci. 28(2), 223–246.
Nagatsuka, S. 1997. Ecological Atlas of Soils in Japan. Fuji Techno System, Tokyo, Japan.
Ndjigui, P.-D., Bilong, P., Bitom, D., Dia, A., 2008. Mobilization and redistribution of major and trace elements in two weathering profiles developed on serpentinites in the Lomié ultramafic complex, South-East Cameroon. J. Afr. Earth. Sci., 50(5), 305-328.
Negri, S., Giannetta, B., Till, J., de Souza, D. O., Said-Pullicino, D., Bonifacio, E., 2024. Fire simulation effects on the transformation of iron minerals in alpine soils. Geoderma 444, 116858.
Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter, in: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H. (Eds.), Methods of soil analysis: Part 3 Chemical methods, Agronomy Monographs 9 (2nd ed.), Am. Soc. Agron. Soil Sci. Soc. Am., Madison, WI, USA, pp. 961–1010.
Nguyen-Thanh, L., Hoang-Minh, T., Herbert, H.-J., Kasbohm, J., Lai, L.T., Nguyen, M.N., Mählmann, R.F., 2017. Development of Fe-rich clay minerals in a weathering profile derived from serpentinized ultramafic rock in Nui Nua massif, Vietnam. Geoderma 308, 159-170.
Oze, C., Fendorf, S., Bird, D.K., Coleman, R.G., 2004a. Chromium geochemistry of serpentine soils. Int. Geol. Rev. 46(2), 97-126.
Oze, C., Fendorf, S., Bird, D.K., Coleman, R.G., 2004b. Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. Am. J. Sci. 304(1), 67–101.
Oze, C., Bird, D.K., Fendorf, S., 2007. Genesis of hexavalent chromium from natural sources in soil and groundwater. PNAS 104(16), 6544-6549.
Papike, J., 1996. Pyroxene as a recorder of cumulate formational processes in asteroids, Moon, Mars, Earth; reading the record with the ion microprobe. Am. Mineral. 81(5-6), 525-544.
Perrier, N., Gilkes, R.J., Colin, F., 2006. Heating Fe oxide-rich soils increases the dissolution rate of metals. Clays Clay Miner. 54, 165-175.
Proctor, J., Stanley, R.J.W., 1971. The Plant Ecology of Serpentine: I. Serpentine Vegetation of England and Scotland. J. Ecol. 59(2), 375–395.
Pyrgaki, K., Argyraki, A., Botsou, F., Kelepertzis, E., Paraskevopoulou, V., Karavoltsos, S., Mitsis, I., Dassenakis, E., 2021. Hydrogeochemical investigation of Cr in the ultramafic rock–related water bodies of Loutraki basin, Northeast Peloponnese, Greece. Environ. Earth Sci. 80(2), 1–18.
Quantin, C., Ettler, V., Garnier, J., Šebek, O., 2008. Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. C. R. Geosci. 340(12), 872-882.
R Core Team. 2023. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
Rabenhorst, M., Foss, J., Fanning, D., 1982. Genesis of Maryland soils formed from serpentinite. Soil Sci. Soc. Am. J. 46(3), 607-616.
Rasooli, N., Farpoor, M.H., Mahmoodabadi, M., Boroujeni, I.E., 2022. Pedoenvironmental variations assessment using magnetic susceptibility in Lut Watershed, Central Iran. J. Appl. Geophys. 198, 104582.
Ratié, G., Garnier, J., Calmels, D., Vantelon, D., Guimarães, E., Monvoisin, G., Nouet, J., Ponzevera, E., Quantin, C., 2018. Nickel distribution and isotopic fractionation in a Brazilian lateritic regolith: Coupling Ni isotopes and Ni K-edge XANES. Geochim. Cosmochim. Acta. 230, 137-154.
Ravel, B., Newville, M., 2005. Athena, Artemis, Hephaestus: data analysis for X–ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4), 537–541.
Reeves, R., Baker, A., Becquer, T., Echevarria, G., Miranda, Z., 2007. The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Plant Soil 293(1–2), 107–119.
Ren, L., Cohen, D.R., Rutherford, N.F., Zissimos, A.M., Morisseau, E.G., 2015. Reflections of the geological characteristics of Cyprus in soil rare earth element patterns. Appl. Geochem. 56, 80-93.
RIVM, 2001. Technical Evaluation of Intervention Values for Soil/Sediment and Groundwater: Human and Ecotoxicological Risk Assessment and Derivation of Risk Limits in the Netherlands. Report No. 711701023. National Institute for Public Health and the Environment. Accessed November 21, 2024. Retrieved from https://www.rivm.nl/bibliotheek/rapporten/711701023.pdf.
Robles–Camacho, J., Armienta. M., 2000. Natural chromium contamination of groundwater at Leon Valley, Mexico. J. Geochem. Explor. 68(3), 167–181.
Russell, J. D., Birnie, A., Fraser, A. R., 1984. High-gradient magnetic separation (HGMS) in soil clay mineral studies. Clay Miner. 19(5), 771-778.
Saiano, F., Scalenghe, R., 2019. Soil REE patterns as tracers of the emplacement of metal-rich anthropogenic materials. A case study in Moa (Cuba). J. Soils Sediments 19, 2777-2784.
Sarmast, M., Farpoor, M.H., Boroujeni, I.E., 2017. Magnetic susceptibility of soils along a lithotoposequence in southeast Iran. Catena 156, 252-262.
Schwertmann, U., Latham, M., 1986. Properties of iron oxides in some new caledonian oxisols. Geoderma 39(2), 105–123.
Shacklette, H.T., Boerngen, J.G., 1984. Element concentrations in soils and other surficial materials of the conterminous United States. US Government Printing Office Washington, DC, USA.
Shaw, J., West, L., Hajek, B., 2001. Ca–Mg ratios for evaluating pedogenesis in the piedmont province of the southeastern United States of America. Can. J. Soil Sci. 81(4), 415–421.
Sidhu, P., Gilkes, R., Posner, A., 1980. The behavior of Co, Ni, Zn, Cu, Mn, and Cr in magnetite during alteration to maghemite and hematite. Soil Sci. Soc. Am. J. 44(1), 135-138.
Siebecker, M.G., Chaney, R.L., Sparks, D.L., 2017. Nickel speciation in several serpentine (ultramafic) topsoils via bulk synchrotron-based techniques. Geoderma 298, 35-45.
Singer, M.J., Verosub, K.L., Fine, P., TenPas, J., 1996. A conceptual model for the enhancement of magnetic susceptibility in soils. Quat. Int. 34, 243–248.
Siqueira, D., Marques Jr, J., Pereira, G., Teixeira, D., Vasconcelos, V., Júnior, O.C., Martins, E.d.S., 2015. Detailed mapping unit design based on soil–landscape relation and spatial variability of magnetic susceptibility and soil color. Catena 135, 149-162.
Soil Science Division Staff., 2017. Soil survey manual, C. Ditzler, K. Scheffe, and H.C. Monger (eds.), USDA Handbook 18, Government Printing Office, Washington, D.C., USA.
Soil Survey Staff, 2022. Keys to Soil Taxonomy (13th ed.), USDA–Natural Resources Conservation Service, Government Printing Office, Washington, D.C., USA.
Stoops, G. 2003. Guidelines for analysis and description of soil and regolith thin sections. Soil Sci. Soc. Am., Inc., Madison, WI, USA.
Sun, S., Deng, T., Ao, M., Mo, Y., Li, J., Liu, T., Yang, W., Jin, C., Qiu, R., Tang, Y., 2023. Release of chromium from Cr (III)- and Ni (II)-substituted goethite in presence of organic acids: Role of pH in the formation of colloids and complexes. Sci. Total Environ. 904, 166979.
Sumner, M.E., Miller, W.P., 1996. Cation Exchange Capacity and Exchange Coefficients. in: Sparks, D. L. (Ed.), Methods of Soil Analysis. Part 3; Chemical Methods. J Am Soc Agron and Soil Sci. Soc. Am., Madison, Wisconsin, USA, pp. 1201–1229.
Szuszkiewicz, M., Lukasik, A., Magiera, T., Mendakiewicz, M., 2016. Combination of geo– pedo– and technogenic magnetic and geochemical signals in soil profiles – Diversification and its interpretation: A new approach. Environ. Pollut. 214, 464–477.
Takeda, A., Tsukada, H., Takaku, Y., Hisamatsu, S. I., Inaba, J., Nanzyo, M., 2006. Extractability of major and trace elements from agricultural soils using chemical extraction methods: Application for phytoavailability assessment. Soil Sci. Plant Nutr. 52(4), 406-417.
Tassi, E., Grifoni, M., Bardelli, F., Aquilanti, G., La Felice, S., Iadecola, A., Lattanzi, P., Petruzzelli, G., 2018. Evidence for the natural origins of anomalously high chromium levels in soils of the Cecina Valley (Italy). Environ. Sci. Processes Impacts 20(6), 965–976.
Thomas, G.W., 1996. Soil pH and soil acidity, in: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H. (Eds.), Methods of soil analysis: Part 3 Chemical methods. Am. Soc. Agron. Soil Sci. Soc. Am., Madison, WI, USA, pp. 475–490.
Thompson, R., Oldfield, F., 2012. Environmental magnetism. Springer, Dordrecht, Netherland.
Tripathy, S.K., Murthy, Y.R., Singh, V., Suresh, N., 2016. Processing of ferruginous chromite ore by dry high–intensity magnetic separation. Miner. Process. Extr. Metall. Rev. 37(3), 196–210.
Tsadilas, C., Rinklebe, J., Selim, M., 2018. Nickel in soils and plants. CRC press, Florida, USA.
Ulrich, M., Cathelineau, M., Muñoz, M., Boiron, M.–C., Teitler, Y., Karpoff, A.M., 2019. The relative distribution of critical (Sc, REE) and transition metals (Ni, Co, Cr, Mn, V) in some Ni–laterite deposits of New Caledonia. J. Geochem. Explor. 197, 93–113.
US EPA, 2024. Regional Screening Levels (RSLs) for Chemical Contaminants. Retrieved from https://www.epa.gov/risk/regional-screening-levels-rsls.
Vermeire, M.-L., Cornu, S., Fekiacova, Z., Detienne, M., Delvaux, B., Cornélis, J.-T., 2016. Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chem. Geol. 446, 163-174.
Vilela, E.F., Guilherme, L.R.G., Silva, C.A., Zinn, Y.L., 2020. Trace elements in soils developed from metamorphic ultrabasic rocks in Minas Gerais, Brazil. Geoderma Regional 21, e00279.
Vinzi, V. E., Russolillo G., 2013. Partial least squares algorithms and methods. Wiley Interdisciplinary Reviews: Comput. Stat. 5(1), 1–19.
Wang, C., Ma, R., Wang, J., Zhong, C., Zhao, Y., Browne, P., 2023. Fractionations of heavy metals and their correlations with magnetic susceptibility in soil from a typical alluvial island in the lower yangtze river, China. J. Cleaner Prod. 418, 138060.
Wang, H., Chen, Y., Ji, J., Li, X., William Hedding, D., Chen, J., 2023. Chemical weathering intensity controls the accumulation of nickel in rice (Oryza sativa L.) cultivated in basalt-derived paddy fields. Geoderma 434, 116494.
Wei, Y.L., Hsu, L.H., Paul Wang, H., Chen, K.W., 2007. XAS study of chromium recoverable from plating sludge. J. Electron. Spectrosc. Relat. Phenom. 156–158, 204–207.
Wilke, M., Farges, F., Petit, P.E., Brown Jr, G.E., Martin, F., 2001. Oxidation state and coordination of Fe in minerals: An Fe K–XANES spectroscopic study. Am. Mineral. 86(5–6), 714–730.
Wohlfarth, E., 1959. Hard magnetic materials. Adv. Phys. 8(30), 87-224.
Wu, C.Y., Chu, M.F., Huang, K.F., Hseu, Z.Y., 2022. Rare earth elements associated with pedogenic iron oxides in humid and tropical soils from different parent materials. Geoderma 423, 115966.
Wu, C.Y., Hseu, Z.Y., 2023. Pedochemical behaviors of rare earth elements in soil profiles along a lithosequence in eastern Taiwan. Catena 225, 107047.
Yamamoto, K., Yamashita, F., Adachi, M., 2005. Precise determination of REE for sedimentary reference rocks issued by the geological survey of Japan. Geochem. J. 39(3), 289–297.
Yang, C.Y., 2020. Evaluating chromium and nickel dynamics and availability in serpentine soils along the Eastern Asia island arc during pedogenesis. Unpublished master’s thesis, National Taiwan University, Taipei.
Yang, C.Y., Nguyen, D.Q., Ngo, H.T.T., Navarrete, I.A., Nakao, A., S.T. Huang, S.T., Hseu, Z.Y., 2022. Increases in Ca/Mg ratios caused the increases in the mobile fractions of Cr and Ni in serpentinite–derived soils in humid Asia. Catena 216, 106418.
Yusoff, Z.M., Ngwenya, B.T., Parsons, I., 2013. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chem. Geol. 349, 71–86.
Zhou, B., Li, Z., Chen, C., 2017. Global potential of rare earth resources and rare earth demand from clean technologies. Miner. 7(11), 203.
Ziemniak, S.E., Castelli, R.A., 2003. Immiscibility in the Fe3O4–FeCr2O4 spinel binary. J. Phys. Chem. Solids 64(11), 2081–2091.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97353-
dc.description.abstract蛇綠岩套 (ophiolite)是由不同岩性比例組成的混同岩體 (mélange),其出露地表風化後的土壤多統稱為蛇紋岩土壤 (serpentine soils)。蛇紋岩土壤特徵為鈣鎂比值低於一般土壤,鉻 (Cr)、鎳 (Ni)等重金屬濃度過高,使其土壤肥力及環境品質受限。其中,鉻與鎳的分布及釋出,可能受到母質特性差異而在礦物崩解及轉變上表現不同。蛇紋岩土壤中抗風化能力強的鉻尖晶石 (Cr-spinels)為鉻主要來源;鎳則主要存在於易風化的矽酸鹽礦物 (silicate minerals)。然而,鉻尖晶石的風化程度仍可能因元素取代及淋洗強度而有所不同。因此,本研究旨在解析臺灣東部蛇紋岩土壤中鉻和鎳礦物的來源及其在土壤化育過程的特徵,並透過土壤磁化率揭示這些元素的分布和行為模式。本研究從臺灣東部四個蛇綠岩套無毛山、銅安山、電光及石頭山採集共九個剖面,46個化育層土壤樣本,並透過供試土壤的形態、微形態特徵、元素組成、理化性質、礦物特性反映土壤化育作用及鉻、鎳分佈差異。接著,利用濕式及乾式磁分離土壤搭配電子微探、X光電子能譜及X光吸收光譜鑑定鉻和鎳來源礦物及其風化特徵,並以0.1N HCl萃取鉻和鎳加以驗證。進一步地,本研究以微波輔助酸消化法,得到稀土元素 (rare earth elements, REEs)的分佈及其分化指標,最後運用偏最小平方回歸 (partial least squares regression)以土壤磁化率作為綜合指標,量化供試土壤中鉻和鎳礦物特性與化育作用之關係。供試土壤被分類為多種不同風化作用影響和化育程度的土壤,包括深棕至黑色的淺層新成土 (Lithic Udorthents)和淺層弱育土 (Lithic Dystrudepts)、黃棕至黑色的弱育土 (Typic Humudepts)、具黏粒遷移或伴隨棕化作用的暗紅棕至黑色淋餘土 (Mollic Hapludalfs),以及經強烈淋溶、黏粒移動與鐵鋁質化的黃紅至暗紅棕色極育土 (Typic Hapludults)。研究發現,鉻和鎳主要來自強磁性礦物,如磁鐵礦和鉻尖晶石,這些礦物隨著風化逐漸崩解,新的非磁性礦物生成積累,導致元素的釋放和遷移,從而使鉻和鎳在不同化育程度的剖面中呈現出各自的分布特徵。其中強磁性礦物中鐵和鉻能穩定地保留,鎳和鎂則相對容易流失。然而,鐵和鉻部分被氧化,加速礦物的風化。土壤磁化率反映了蛇紋岩土壤中礦物的風化和化育過程,特別是鉻和鎳的分布特性。初期土壤磁化率由初生強磁性礦物主導,隨著土壤化育,反磁性初生矽酸鹽類礦物崩解以及次生亞鐵磁性礦物生成,土壤磁性增強。然而,當風化作用加劇,初生強磁性礦物嚴重溶解,次生反磁性矽酸鹽和反鐵磁性鐵氧化物逐漸主導土壤的磁性,導致磁化率顯著下降。鉻、鎳和REEs在土壤中的分佈皆受到母質與化育作用影響。REEs來源廣泛,並在含鉻的鐵氧化物礦物中富集。土壤化育釋放大量的鐵和鎂等鹽基離子,促使大量的鐵氧化物及黏土礦物形成並吸持初生礦物釋出的鉻、鎳和REEs。因此,REEs的分佈進一步支持了鉻、鎳的礦物來源特性。總上所述,本研究表明,土壤磁化率是一個有效的綜合指標,能夠統合不同風化階段的礦物組成、化育作用以及鉻、鎳、REEs等元素的分布特性。這些研究結果對蛇紋岩土壤的環境風險評估和管理具有重要應用價值,為高鉻和鎳背景土壤的分類和風險控制提供了科學依據。然而,本研究僅使用臺灣東部九個蛇紋岩土壤剖面作為樣本,未來可加入更多氣候區的樣本,以更全面驗證研究結果。zh_TW
dc.description.abstractThe soils formed from ophiolites exposed to surface weathering are commonly referred to as serpentine soils. These soils are characterized by a low calcium-to-magnesium ratio and elevated concentrations of chromium (Cr) and nickel (Ni), limiting their fertility and environmental quality. The distribution and release of Cr and Ni varied due to differences in parent material properties. In serpentine soils, Cr is primarily derived from weathering-resistant Cr-spinels, while Ni is predominantly found in easily weathered silicate minerals. However, the degree of Cr-spinels weathering may vary depending on cation substitution and leaching intensity. Thus, this study aims to analyze the sources of Cr and Ni in serpentine soils from eastern Taiwan and their characteristics during pedogenesis. Nine soil profiles comprising 46 pedogenic horizons were collected from four ophiolite complexes in eastern Taiwan. The morphological, micromorphological, elemental, physicochemical, and mineralogical properties of the studied soils were analyzed. Magnetic separation, electron microprobe analysis, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and 0.1 N HCl extraction were conducted. Additionally, rare earth elements (REEs) distribution were obtained via microwave-assisted acid digestion. Partial least squared regression (PLSR) was applied to quantify the relationship between pedogenic processes and Cr and Ni. The studied soils were classified into Lithic Udorthents, Lithic Dystrudepts, Typic Humudepts, Mollic Hapludalfs exhibiting brunification and/or clay translocation, and intensely weathered, Typic Hapludults, characterized by clay illuviation and ferralitization. The findings indicated that Cr and Ni primarily originate from strongly magnetic minerals such as magnetite and Cr-spinels. While Fe and Cr remained stable within strongly magnetic minerals, Ni and Mg were more susceptible to leaching during pedogenesis. However, evidences of Fe and Cr oxidation may accelerate the weathering of these minerals. In the studied soils, the magnetic susceptibility was initially dominated by primary ferrimagnetic minerals. As pedogenesis progressed, the breakdown of diamagnetic primary silicate minerals and the formation of secondary ferrimagnetic minerals enhanced soil magnetism. However, after intense weathering, strongly magnetic primary minerals dissolved significantly, and the dominance of secondary diamagnetic silicates and antiferromagnetic iron oxides reduced the magnetic susceptibility. REEs, which originate from various sources, were enriched in Cr-bearing iron oxide minerals. The above-mentioned iron oxides and clay minerals adsorbed Cr, Ni, and REEs released from primary minerals. In conclusion, this study demonstrated that soil magnetic susceptibility is an effective integrative indicator that links mineral composition, pedogenesis, and the distribution of Cr and Ni in serpentine soils at different weathering stages. These findings have significant implications for environmental risk assessment and management, providing a scientific basis for the classification and risk control of soils with high Cr and Ni background levels. However, this study is limited to nine serpentine soil profiles from eastern Taiwan. Future studies should incorporate samples from diverse climatic regions to validate these results comprehensively.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-07T16:09:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-05-07T16:09:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iv
目次 vi
圖次 ix
表次 xi
第一章、前言 1
第二章、文獻回顧 5
2.1 蛇紋岩土壤中鉻和鎳與其來源礦物 5
2.1.1 鉻與鎳的來源 6
2.1.2 母質與地形對鉻與鎳的影響 8
2.1.3 風化特性與分佈 9
2.2 以磁性方式探討鉻與鎳來源礦物特性 10
2.3 土壤磁性及母質特性與土壤性質之關係 12
2.4 量化土壤磁性與化育作用及鉻、鎳礦物特性之關係 15
2.5 稀土元素及母質特性與土壤性質之關係 18
第三章、材料與方法 22
3.1 研究區域的選擇 23
3.2 研究區域環境概述 26
3.2.1 富里無毛山 27
3.2.2 池上關山地區 28
3.2.3 卑南石頭山 30
3.3 剖面描述與土壤採集 32
3.4 土壤微形態樣品採集、薄切片製作和觀察 32
3.5 X光繞射礦物鑑定 33
3.6 土壤理化特性 33
3.7 土壤分類 35
3.8 總體土壤主要元素及微量元素全量分析 36
3.9 電子微探分析 37
3.10 土樣磁分離 38
3.10.1 濕式磁分離 38
3.10.2乾式磁分離 41
3.11 磁分離樣本礦物特性 42
3.11.1 磁分離樣本礦物組成 42
3.11.2 磁分離樣本磁滯曲線 42
3.11.3 磁分離樣本元素全量 42
3.11.4 磁分離樣本XPS表面分析 44
3.11.5 磁分離樣本X光同步輻射技術:XANES/EXAFS分析 44
3.11.6 磁分離樣本0.1N HCl可萃取鉻與鎳 (Baker and Amacher, 1983) 45
3.12 總體土壤磁化率 45
3.13 以近端感測建立磁化率與土壤性質及元素之間的關係 46
3.14 稀土元素 48
3.15 以PLSR模型建立鉻與鎳礦物特性與化育作用之關係 50
第四章、結果與討論 51
4.1 土壤剖面之形態及微形態特徵 51
4.1.1 富里無毛山土壤樣體 51
4.1.2 銅安山土壤樣體 56
4.1.3 電光土壤樣體 58
4.1.4 石頭山土壤樣體 63
4.2 土壤母質礦物組成 66
4.3 黏土礦物組成 68
4.4 主要及微量元素組成 79
4.5 理化性質 82
4.6 土壤化育過程及分類 92
4.7 全世界的蛇紋岩土壤化育分類 99
4.8 蛇紋岩土壤磁分離結果 102
4.8.1濕式磁分離樣本礦物、磁學及化學特性 102
4.8.2濕式磁分離樣本風化特徵 109
4.8.3濕式磁分離樣本中0.1N HCl可萃取性鉻和鎳 115
4.8.4乾式磁分離樣本重量分佈 119
4.8.5 乾式磁分離樣本元素組成 122
4.9 土壤磁化率 130
4.10 稀土元素 138
4.10.1 稀土元素含量及分佈 138
4.10.2稀土元素分化指標 144
4.10.3稀土元素與土壤性質和鉻與鎳之關係 147
4.11 以量化模型解釋土壤性質、土壤磁性及稀土元素之關聯 156
第五章、結論 160
第六章、參考文獻 161
附錄 175
-
dc.language.isozh_TW-
dc.title蛇紋岩土壤化育作用與鉻、鎳礦物特性的關係zh_TW
dc.titleThe relationship between pedogenic processes and characteristics of chromium- and nickel-bearing minerals in serpentine soilsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳尊賢;王尚禮;簡士濠;江博能;李家興zh_TW
dc.contributor.oralexamcommitteeZueng-Sang Chen;Shan-Li Wang;Shih-Hao Jien;Po-Neng Chiang;Chia-Hsing Leeen
dc.subject.keyword土壤分類,磁性分離,鉻尖晶石,可萃取性鉻與鎳,土壤磁化率,稀土元素,多元回歸模型,zh_TW
dc.subject.keywordsoil classification,magnetic separation,Cr-spinels,extractable-Cr and Ni,soil magnetic susceptibility,rare earth elements,multilinear regression model,en
dc.relation.page182-
dc.identifier.doi10.6342/NTU202500890-
dc.rights.note未授權-
dc.date.accepted2025-04-30-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
dc.date.embargo-liftN/A-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  目前未授權公開取用
44.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved