Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97347
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡植慶zh_TW
dc.contributor.advisorJyr-Ching Huen
dc.contributor.author王來政zh_TW
dc.contributor.authorLai-Cheng Wangen
dc.date.accessioned2025-05-07T16:07:38Z-
dc.date.available2025-05-08-
dc.date.copyright2025-05-07-
dc.date.issued2025-
dc.date.submitted2025-04-18-
dc.identifier.citation中央地質調查所 (1999) 。台灣地區地下水觀測網第一期計畫濁水溪沖積扇水文地質調查研究研究總報告。經濟部水資源局。
台灣高速鐵路股份有限公司 (2022) 。2020~2023年度地層下陷監測與分析評估2021年水準測量評估報告。
台灣高速鐵路股份有限公司 (未發表) 。雲林地層下陷區大地水平位移對高鐵結構與軌道線型影響調查工作。
江崇榮、林燕初、陳建良 (2011) 。地下水位與地表高程互動模式之研究。經濟部中央地質調查所彙刊,24,1-35。
李心惟、葉振峰、李振誥、林宏奕、龔文瑞 (2019) 。結合HEC-RAS與MODFLOW模式評估濁水溪沖積扇地下水位及地層下陷。台灣水利,67(1),91-102。https://doi.org/10.6937/TWC.201903_67(1).0008
李聿修 (2024) 。運用合成孔徑雷達干涉技術分析臺灣西部沿海年代際地層下陷及未來海岸淹沒情境。國立臺灣大學地理環境資源學系碩士論文。http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93285
李睿綺 (2019) 。Sentinel-1 Radar Interferometry Decomposes Land Subsidence in Taiwan。國立中央大學地球科學學系碩士論文。
阮蔡榮長 (2021) 。應用SBAS-DInSAR技術分析濁水溪沖積扇沈陷型態與地下水及降雨變化之關聯性。國立中央大學應用地質研究所碩士論文。
柯勝嘉 (2013) 。利用時序監測資料分析地表沈陷分佈特性之研究 - 以濁水溪沖積扇為例。國立成功大學地球科學研究所碩士論文。
洪秋香 (2011) 。利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢。國立中央大學應用地質研究所碩士論文。
洪偉嘉 (2009) 。應用多重感應器監測雲林地區三維變形。國立交通大學土木工程學系博士論文。
洪偉嘉、黃大任、黃金維、張磊 (2015) 。時域相關點雷達干涉技術應用於雲林嚴重地層下陷區監測。航測及遙測學刊,19(3),225-237。https://doi.org/10.6574/jprs.2015.19(3).5
張光仁 (2000) 。台西麥寮地區多井抽水引致區域性地層下陷之分層分析。國立臺灣大學土木工程學系碩士論文。
張育瑋 (2021) 。利用雷達干涉測定雲林地區地層下陷和儲水係數。國立陽明交通大學土木工程學系碩士論文。
張竝瑜、嚴精明、林鼎竣、曾俊儒、尤納坦、林格瑞、韓怡娜、陳穎龍、蔡瑞彬、張良正、余化龍 (2022) 。運用資料融合方法建立濁水溪沖積扇雲林地層下陷區域地層電阻率模型。台灣水利,70(4),1-8。 https://doi.org/10.6937/twc.202212_70(4).0001
黃大任 (2013) 。以時域相關點雷達干涉量測研究彰化、雲林與嘉義地區之地層下陷。國立交通大學土木工程學系碩士論文。
楊佳祥、蔡展榮、蘇柏宗 (2015) 。改良型PS-InSAR測量法求定臺灣中部地區的地層下陷量。航測及遙測學刊,19(3),171-187。 https://doi.org/10.6574/jprs.2015.19(3).2
楊詠涵 (2023) 。以水-力耦合模式探討不同複雜度地質模型對地層下陷模擬之影響—以雲林地區為例。國立中央大學應用地質研究所碩士論文。
經濟部水利署 (2020a) 。109年度彰化與雲林地區地層下陷監測及分析。
經濟部水利署 (2020b) 。109年度地層下陷防治專案服務計畫。
經濟部水利署 (2021) 。110年度彰化與雲林地區地層下陷監測及分析。
經濟部水利署 (2022) 。111年度彰化與雲林地區地層下陷監測及分析。
經濟部水利署水利規劃試驗所 (2021) 。雲林地區深層壓縮參數調查與資料分析。
盧玉芳 (2007) 。以雷達干涉技術監測雲林地層下陷。國立交通大學土木工程學系碩士論文。
Bawden, G. W., Thatcher, W., Stein, R. S., Hudnut, K. W., & Peltzer, G. (2001). Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature, 412(6849), 812-815. https://doi.org/10.1038/35090558
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383. https://doi.org/10.1109/TGRS.2002.803792
Biot, M. A. (1941). General Theory of Three‐Dimensional Consolidation. Journal of Applied Physics, 12(2), 155-164. https://doi.org/10.1063/1.1712886
Chang, C.-C., & Wang, T.-N. (2006). GPS Monitoring Ground Subsidence Associated with Seasonal Underground Water Level Decline: Case Analysis for a Section of Taiwan High Speed Rail. Surveying and Land Information Science, 66, 45-54.
Chang, M., Upomo, T. C., Huang, R.-C., Wu, P.-K., & Su, P.-C. (2020). Evaluation on the behavior and contributing factors of subsidence in the intersection area of Expwy 78 and Taiwan High Speed Rail based on in situ monitoring and numerical simulations. Bulletin of Engineering Geology and the Environment, 79(6), 2971-2995. https://doi.org/10.1007/s10064-020-01757-3
Chen, X.-x., Luo, Z.-j., & Zhou, S.-l. (2014). Influences of soil hydraulic and mechanical parameters on land subsidence and ground fissures caused by groundwater exploitation. Journal of Hydrodynamics, Ser. B, 26(1), 155-164. https://doi.org/https://doi.org/10.1016/S1001-6058(14)60018-4
Chen, Y.-A., Chang, C.-P., Hung, W.-C., Yen, J.-Y., Lu, C.-H., & Hwang, C. (2021). Space-Time Evolutions of Land Subsidence in the Choushui River Alluvial Fan (Taiwan) from Multiple-Sensor Observations. Remote Sensing, 13(12), 2281. https://www.mdpi.com/2072-4292/13/12/2281
Chu, H.-J., Tatas, Cheng-Wei, L., & Burbey, T. (2023). Rapid spatio-temporal pumping volume estimation from electricity consumption big data. Journal of Environmental Science and Engineering Technology, 11, 61-68. https://doi.org/10.12974/2311-8741.2023.11.06
Chu, H.-J., Tatas, Patra, S. R., & Burbey, T. J. (2024). Spatiotemporal subsidence feature decomposition and hotspot identification. Environmental Earth Sciences, 83(4), 124. https://doi.org/10.1007/s12665-024-11427-2
De Zan, F., & Guarnieri, A. M. (2006). TOPSAR: Terrain Observation by Progressive Scans. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2352-2360. https://doi.org/10.1109/TGRS.2006.873853
Fattahi, H., & Amelung, F. (2013). DEM Error Correction in InSAR Time Series. IEEE Transactions on Geoscience and Remote Sensing, 51(7), 4249-4259. https://doi.org/10.1109/TGRS.2012.2227761
Fattahi, H., & Amelung, F. (2015). InSAR bias and uncertainty due to the systematic and stochastic tropospheric delay. Journal of Geophysical Research: Solid Earth, 120(12), 8758-8773. https://doi.org/https://doi.org/10.1002/2015JB012419
Fuhrmann, T., & Garthwaite, M. C. (2019). Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion. Remote Sensing, 11(3), 241. https://www.mdpi.com/2072-4292/11/3/241
Galloway, D. L., & Burbey, T. J. (2011). Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459-1486. https://doi.org/10.1007/s10040-011-0775-5
Guzy, A., & Malinowska, A. A. (2020). State of the Art and Recent Advancements in the Modelling of Land Subsidence Induced by Groundwater Withdrawal. Water, 12(7), 2051. https://doi.org/10.3390/w12072051
Hanssen, R. F., (2001). Radar Interferometry: Data Interpretation and Error Analysis. Springer, Dordrecht. https://doi.org/10.1007/0-306-47633-9_2
HO TONG MINH, D., Hanssen, R., & Rocca, F. (2020). Radar Interferometry: 20 Years of Development in Time Series Techniques and Future Perspectives. Remote Sensing, 12(9), 1364. https://www.mdpi.com/2072-4292/12/9/1364
Hsu, W.-C., Chang, H.-C., Chang, K.-T., Lin, E.-K., Liu, J.-K., & Liou, Y.-A. (2015). Observing Land Subsidence and Revealing the Factors That Influence It Using a Multi-Sensor Approach in Yunlin County, Taiwan. Remote Sensing, 7(6), 8202-8223. https://www.mdpi.com/2072-4292/7/6/8202
Huang, M.-H., Bürgmann, R., & Hu, J.-C. (2016). Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics, 692, 252-264. https://doi.org/https://doi.org/10.1016/j.tecto.2016.02.021
Hung, W.-C., Hwang, C., Chang, C.-P., Yen, J.-Y., Liu, C.-H., & Yang, W.-H. (2010). Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environmental Earth Sciences, 59(7), 1535-1548. https://doi.org/10.1007/s12665-009-0139-9
Hung, W.-C., Hwang, C., Chen, Y.-A., Chang, C.-P., Yen, J.-Y., Hooper, A., & Yang, C.-Y. (2011). Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sensing of Environment, 115(4), 957-967. https://doi.org/https://doi.org/10.1016/j.rse.2010.11.007
Hung, W.-C., Hwang, C., Liou, J.-C., Lin, Y.-S., & Yang, H.-L. (2012). Modeling aquifer-system compaction and predicting land subsidence in central Taiwan. Engineering Geology, 147-148, 78-90. https://doi.org/https://doi.org/10.1016/j.enggeo.2012.07.018
Hung, W. C., Chen, Y. A., & Hwang, C. (2020). IoT technology and big data processing for monitoring and analysing land subsidence in Central Taiwan. Proc. IAHS, 382, 103-109. https://doi.org/10.5194/piahs-382-103-2020
Hung, W.-C., Hwang, C., Sneed, M., Chen, Y.-A., Chu, C.-H., & Lin, S.-H. (2021). Measuring and Interpreting Multilayer Aquifer-System Compactions for a Sustainable Groundwater-System Development. Water Resources Research, 57(4), e2020WR028194. https://doi.org/https://doi.org/10.1029/2020WR028194
Hung, W.-C., Hwang, C., Lin, S.-H., Wang, C.-S., Chen, Y.-A., Tsai, P.-C., & Lin, K.-C. (2024). Exploring groundwater depletion and land subsidence dynamics in Taiwan’s Choushui river alluvial fan: insights from integrated GNSS and hydrogeological data analysis [Original Research]. Frontiers in Earth Science, 12. https://doi.org/10.3389/feart.2024.1370626
Hwang, C., Hung, W.-C., & Liu, C.-H. (2008). Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation. Natural Hazards, 47(1), 1-16. https://doi.org/10.1007/s11069-007-9211-5
Liang, C., Agram, P., Simons, M., & Fielding, E. J. (2019). Ionospheric Correction of InSAR Time Series Analysis of C-band Sentinel-1 TOPS Data. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6755-6773. https://doi.org/10.1109/TGRS.2019.2908494
Liu, C.-H., Pan, Y.-W., Liao, J.-J., Huang, C.-T., & Ouyang, S. (2004a). Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environmental Geology, 45(8), 1154-1166. https://doi.org/10.1007/s00254-004-0983-6
Liu, C.-H., Pan, Y.-W., Liao, J.-J., & Hung, W.-C. (2004b). Estimating coefficients of volume compressibility from compression of strata and piezometric changes in a multiaquifer system in west Taiwan. Engineering Geology, 75(1), 33-47. https://doi.org/https://doi.org/10.1016/j.enggeo.2004.04.007
Lu, C.-H., Ni, C.-F., Chang, C.-P., Chen, Y.-A., & Yen, J.-Y. (2016). Geostatistical Data Fusion of Multiple Type Observations to Improve Land Subsidence Monitoring Resolution in the Choushui River Fluvial Plain, Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 27(4), 505-520. https://doi.org/10.3319/TAO.2016.01.29.02(ISRS)
Lu, C.-Y., Hu, J.-C., Chan, Y.-C., Su, Y.-F., & Chang, C.-H. (2020). The Relationship between Surface Displacement and Groundwater Level Change and Its Hydrogeological Implications in an Alluvial Fan: Case Study of the Choshui River, Taiwan. Remote Sensing, 12(20), 3315. https://www.mdpi.com/2072-4292/12/20/3315
Ouchi, K. (2013). Recent Trend and Advance of Synthetic Aperture Radar with Selected Topics. Remote Sensing, 5(2), 716-807. https://www.mdpi.com/2072-4292/5/2/716
Pepe, A., & Lanari, R. (2006). On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2374-2383. https://doi.org/10.1109/TGRS.2006.873207
Tung, H., & Hu, J.-C. (2012). Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics, 578, 126-135. https://doi.org/https://doi.org/10.1016/j.tecto.2012.08.009
Vermeer, P. A., & Verruijt, A. (1981). An accuracy condition for consolidation by finite elements. International Journal for Numerical and Analytical Methods in Geomechanics, 5(1), 1-14. https://doi.org/https://doi.org/10.1002/nag.1610050103
Xue, F., Lv, X., Dou, F., & Yun, Y. (2020). A Review of Time-Series Interferometric SAR Techniques: A Tutorial for Surface Deformation Analysis. IEEE Geoscience and Remote Sensing Magazine, 8(1), 22-42. https://doi.org/10.1109/MGRS.2019.2956165
Yang, Y.-J., Hwang, C., Hung, W.-C., Fuhrmann, T., Chen, Y.-A., & Wei, S.-H. (2019). Surface Deformation from Sentinel-1A InSAR: Relation to Seasonal Groundwater Extraction and Rainfall in Central Taiwan. Remote Sensing, 11(23), 2817. https://www.mdpi.com/2072-4292/11/23/2817
Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1), 41-59. https://doi.org/https://doi.org/10.1016/S0040-1951(96)00297-1
Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers & Geosciences, 133, 104331. https://doi.org/https://doi.org/10.1016/j.cageo.2019.104331
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97347-
dc.description.abstract合成孔徑雷達干涉技術 (Interferometric Synthetic Aperture Radar, InSAR) 為監測地層下陷之重要技術,具有面狀監測之優勢,可有效掌握地層下陷之時空變化。儘管地層下陷以垂直變形為主,地層下陷引起之水平變形可能使橋梁墩柱傾斜,甚至造成地表破裂,與垂直變形同樣具有嚴重之災害性。本研究以雲林地區為例,分析地層下陷引起之水平變形。雲林位處濁水溪沖積扇南側,長期因超抽地下水而發生地層下陷,1992年至今累積下陷量已超過190 cm,下陷中心位於土庫、元長一帶。此外,台灣高鐵恰好通過雲林地區下陷中心,因此需關注地層下陷可能對高鐵軌道造成之損害。雖然雲林地區已有許多InSAR監測成果,並發現地層下陷存在乾濕季變化,然而,由於InSAR沿視衛星 (Line of Sight, LOS) 方向進行測量,過去研究多假設水平變形可忽略,或將GNSS水平速度在LOS方向之貢獻扣除,以將LOS方向變形投影到垂直向,故缺乏InSAR對雲林地區下陷相關水平變形之研究。因此,本研究擬提供InSAR對雲林地區水平變形之觀測結果,並分析其季節性變化,討論雲林地區水平變形與地層下陷之關聯。為評估地層下陷引起水平變形之機制,本研究進一步以位於雲林地區下陷中心之秀潭國小地層資料建立數值模型,模擬地下水位變化於秀潭國小周圍造成之垂直及水平地表變形。本研究使用2018年5月至2021年5月Sentinel-1衛星之升、降軌影像,以短基線子集法 (Small Baseline Subset, SBAS) 及2D反演解算InSAR垂直向及東西向長期速度場,並將變形場依據乾濕季分為6期討論。分析通過下陷中心之剖面顯示,長期InSAR速度場於下陷中心存在數個具有較高下陷速度之下陷錐,最大下陷速度達78.5 mm/yr。同時,下陷錐位置存在約10 mm/yr之水平變形梯度。乾濕季變形場顯示,僅有濕季於剖面沿線出現較顯著之下陷錐,並發生高達10-15 mm之水平變形梯度,乾季則以區域性下陷為主,未有明顯下陷錐,且不存在明顯水平變形梯度。數值模型方面,本研究模擬三種地下水位情境造成之地表變形,在不同情境下水平變形皆較垂直變形快達到最大變形。另外,本研究分析不同數值模型參數對於地表變形之參數敏感度。其中,楊氏模數及蒲松比參數敏感度較高,大幅影響最終變形量,且水平變形對此兩項參數之敏感度較高,水力傳導係數之參數敏感度則相對較低,但影響變形速度。分析雲林地區於秀潭國小一帶出現下陷錐及高水平變形梯度之成因,數值模型成果顯示抽水可造成地表出現下陷錐及高水平變形梯度,且三種抽水情境之最大水平變形及垂直變形比約為0.20-0.27,InSAR於濕季量測之最大水平變形及垂直變形比則約為0.13-0.15,與數值模型成果相近,推測InSAR偵測到之下陷錐及高水平變形梯度由濕季過量抽水造成。高鐵沿線InSAR地表變形成果顯示,高鐵通過秀潭國小東側下陷錐,並於下陷錐處出現10 mm/yr之水平速度梯度。乾濕季地表變形成果亦顯示,高鐵沿線於下陷錐處出現高水平變形梯度,濕季水平變形梯度達約15 mm,乾季則約為10 mm,顯示高鐵沿線地表因過量抽水,出現較大水平變形梯度,並在濕季較為嚴重。本研究結合InSAR水平變形觀測結果,並由數值模型驗證地層下陷引起水平變形之機制,未來可做為地層下陷管理與防災之參考。zh_TW
dc.description.abstractInterferometric Synthetic Aperture Radar (InSAR) is a crucial technology for monitoring land subsidence, offering the advantage of areal monitoring and effectively capturing the spatiotemporal variations of subsidence. Although land subsidence is primarily characterized by vertical deformation, the horizontal deformation induced by subsidence can lead to tilting of bridge piers or even ground fissures, posing hazards as severe as those caused by vertical deformation. This study focuses on horizontal deformation resulting from land subsidence in the Yun-Lin area as a case study. Located on the southern side of Chuoshui River alluvial fan, Yun-Lin area has experienced long-term land subsidence due to excessive groundwater extraction. Since 1992, the accumulated subsidence has exceeded 190 cm, with the subsidence center located around Tu-Ku and Yuan-Chang areas. Moreover, Taiwan High-Speed Rail (THSR) passes directly through the subsidence center in Yun-Lin area, raising concerns about potential damage to the railway tracks caused by subsidence. Numerous InSAR monitoring results on land subsidence are available for Yun-Lin area, which have also revealed seasonal variations in subsidence between wet and dry periods. However, due to InSAR measuring along the satellite’s line of sight (LOS) direction, past studies often assumed that horizontal deformation could be ignored, or subtracted the contribution of horizontal velocities in the LOS direction by GNSS data, to project LOS deformation to the vertical direction. Consequently, research on horizontal deformation associated with subsidence in Yun-Lin area by InSAR remains lacking. Therefore, this study aims to provide InSAR observations of horizontal deformation in Yun-Lin and analyze its seasonal variation to explore the relationship between horizontal deformation and land subsidence. To evaluate the mechanism behind horizontal deformation caused by subsidence, the study further develops a numerical model using stratigraphic data from Siu-Tan Elementary School (STES), located at the subsidence center in Yun-Lin area, to simulate vertical and horizontal surface deformation due to changes in groundwater levels around the area. This study utilizes ascending and descending orbit images from Sentinel-1 satellites between May 2018 and May 2021. By applying the Small Baseline Subset (SBAS) technique and 2D inversion, the long-term vertical and east-west velocity fields are derived. Cross-sectional analysis through the subsidence center reveals several subsidence cones with high subsidence rates, with the maximum rate reaching 78.5 mm/year. Around these subsidence cones, it shows horizontal deformation gradient of approximately 10 mm/year. The deformation field is further divided into six periods based on wet and dry seasons. It shows that significant subsidence cones and horizontal deformation gradients of up to 10–15 mm only appear along the cross-section during wet seasons. In contrast, dry seasons are characterized by regional subsidence without subsidence cones or horizontal deformation gradients. In the numerical modeling section, three groundwater level scenarios are simulated to evaluate surface deformation. In all scenarios, horizontal deformation reaches its maximum earlier than vertical deformation. Analysis on parameter sensitivity indicates that Young’s modulus and Poisson’s ratio significantly influence the final deformation magnitude, with horizontal deformation being more sensitive to these parameters. In contrast, hydraulic conductivity shows relatively low sensitivity but affects the deformation rate. The formation of subsidence cones and high horizontal deformation gradients near STES in Yun-Lin area is analyzed, and numerical modeling results show that groundwater extraction can cause both phenomena. The maximum horizontal-to-vertical deformation ratio across the three extraction scenarios ranges from 0.20 to 0.27, which is comparable to the InSAR-measured ratio of approximately 0.13 to 0.15 during the wet season, suggesting that the subsidence cones and high horizontal deformation gradients detected by InSAR are caused by excessive groundwater pumping during the wet season. InSAR surface deformation results along THSR reveal that the railway crosses a subsidence cone east of STES, where a horizontal velocity gradient of about 10 mm/year is observed. Seasonal surface deformation results also show a significant horizontal deformation gradient at the subsidence cone along the railway, approximately 15 mm in the wet seasons and 10 mm in the dry seasons, indicating that excessive groundwater extraction causes a larger horizontal deformation gradient along THSR, which is more pronounced during the wet season. This study combines InSAR-derived horizontal deformation observations with numerical modeling to validate the mechanism of horizontal deformation caused by land subsidence. The results can serve as a valuable reference for land subsidence management and disaster prevention in the future.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-07T16:07:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-05-07T16:07:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝辭 ii
摘要 iii
Abstract v
目次 vii
圖次 x
表次 xiii
第1章 緒論 1
1.1 研究動機 1
1.2 研究目的 4
第2章 文獻回顧 5
2.1 地層下陷研究 5
2.2 濁水溪沖積扇地層下陷 6
2.3 雲林地區InSAR研究 7
2.4 雲林地區地層下陷數值模擬 10
第3章 研究區域 12
3.1 雲林地區地質背景 12
3.2 雲林地區地層下陷歷史 14
第4章 研究方法 16
4.1 InSAR地表變形測量原理 16
4.1.1 SAR原理 16
4.1.2 InSAR地表變形測量 18
4.2 InSAR時序分析 21
4.2.1 InSAR時序分析概述 21
4.2.2 SBAS原理 22
4.2.3 GNSS校正與2D投影 25
4.3 InSAR處理流程及資料 26
4.3.1 處理流程 26
4.3.2 地表變形監測資料 27
4.4 三維壓密理論及數值分析方法 29
第5章 研究成果 31
5.1 InSAR成果與驗證 31
5.1.1 GNSS速度估算 31
5.1.2 LOS方向速度場 32
5.1.3 2D速度場 37
5.1.4 乾濕季變形場 41
5.2 數值模擬成果 47
5.2.1 數值模型設置 47
5.2.2 水位變化情境分析 51
5.2.3 參數敏感度分析 57
5.2.4 數值模型及現地資料對比 62
第6章 討論 64
6.1 下陷錐與水平變形梯度之成因 64
6.2 高鐵沿線變形分析 65
6.3 InSAR之研究限制 70
6.4 數值模型之研究限制 71
第7章 結論與建議 73
7.1 結論 73
7.2 建議 74
參考文獻 75
附錄 80
附錄1 GNSS速度成果 80
附錄2 InSAR干涉圖成果 83
附錄3 InSAR初始相位時間序列成果 95
-
dc.language.isozh_TW-
dc.subject有限元素法zh_TW
dc.subject濁水溪沖積扇zh_TW
dc.subjectSBASzh_TW
dc.subjectInSARzh_TW
dc.subject地層下陷zh_TW
dc.subjectChoushui River Alluvial Fanen
dc.subjectLand Subsidenceen
dc.subjectInSARen
dc.subjectSBASen
dc.subjectFEMen
dc.title利用合成孔徑雷達干涉技術及數值模擬方法分析雲林地區乾濕季地層下陷引起之水平變形zh_TW
dc.titleAnalysis of Horizontal Displacement Induced by Seasonal Land Subsidence in Yun-Lin Area Using InSAR and Numerical Modelingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪偉嘉;邱永嘉;謝嘉聲;顧承宇zh_TW
dc.contributor.oralexamcommitteeWei-Chia Hung;Yung-Chia Chiu;Chia-Sheng Hsieh;Cheng-Yu Kuen
dc.subject.keyword地層下陷,InSAR,SBAS,有限元素法,濁水溪沖積扇,zh_TW
dc.subject.keywordLand Subsidence,InSAR,SBAS,FEM,Choushui River Alluvial Fan,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202500833-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-04-21-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
dc.date.embargo-lift2027-05-01-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2027-05-01
48.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved