請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97342完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立仁 | zh_TW |
| dc.contributor.advisor | Li-Jen Chen | en |
| dc.contributor.author | 黃柏諺 | zh_TW |
| dc.contributor.author | Bo-Yan Huang | en |
| dc.date.accessioned | 2025-05-07T16:06:14Z | - |
| dc.date.available | 2025-05-08 | - |
| dc.date.copyright | 2025-05-07 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-04-25 | - |
| dc.identifier.citation | References
1. Lo, C.-C.; Chen, L.-J. Comparative Wetting Behavior of Condensed and Sessile Drops on Single Micro-Scale Textured Hydrophobic Surfaces: Physical Insights for Condenser Design. Surfaces and interfaces 2024, 104271–104271. 2. Oh, J.; Zhang, R.; Shetty, P. P.; Krogstad, J. A.; Braun, P. V.; Miljkovic, N. Thin Film Condensation on Nanostructured Surfaces. Advanced Functional Materials 2018, 28 (16). 3. Lo, C.-C.; Chen, L.-J. Dropwise Condensation on Single-Micro-Scale Roughness Hydrophobic Surfaces. Surfaces and Interfaces 2022, 33, 102281. 4. Parker, A. R.; Lawrence, C. R. Water Capture by a Desert Beetle. Nature 2001, 414 (6859), 33–34. 5. Zhu, H.; Huang, Y.; Lou, X.; Xia, F. Beetle-Inspired Wettable Materials: From Fabrications to Applications. Materials Today Nano 2019, 6, 100034. 6. Pontes, P.; Cautela, R.; Teodori, E.; Moita, A.; Liu, Y.; Moreira, A. L. N.; Nikulin, A.; del Barrio, E. P. Effect of Pattern Geometry on Bubble Dynamics and Heat Transfer on Biphilic Surfaces. Experimental Thermal and Fluid Science 2020, 115, 110088. 7. Luo, D.; Zhang, J.; Zeng, X.; Zhang, M.; Zeng, X.; Zhou, C. Fabrication and Target Applications of Hydrophilic-Hydrophobic Composite Wettability Surfaces Based on Surface Wettability Gradient and Laplace Pressure Gradient Regulation. Applied Materials Today 2023, 35, 101957. 8. Zhang, L.; Wu, J.; Hedhili, M. N.; Yang, X.; Wang, P. Inkjet Printing for Direct Micropatterning of a Superhydrophobic Surface: Toward Biomimetic Fog Harvesting Surfaces. Journal of Materials Chemistry A 2015, 3 (6), 2844–2852. 9. Zhu, Y.; Ho, T. C.; Lee, H. H.; Kwok, M.; Tso, C. Y. Droplet Jumping Physics on Biphilic Surfaces with Different Nanostructures and Surface Orientations under Various Air Pressure Conditions. Cell Reports Physical Science 2022, 3 (4), 100849–100849. 10. Kim, H. W.; McCloskey, B. D.; Choi, T. H.; Lee, C.; Kim, M.-J.; Freeman, B. D.; Park, H. B. Oxygen Concentration Control of Dopamine-Induced High Uniformity Surface Coating Chemistry. ACS Applied Materials & Interfaces 2013, 5 (2), 233–238. 11. Liu, Y.; Ai, K.; Lu, L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews 2014, 114 (9), 5057–5115. 12. Yan, X.; Zhu, X.; Ruan, Y.; Xing, T.; Chen, G.; Zhou, C. Biomimetic, Dopamine-Modified Superhydrophobic Cotton Fabric for Oil–Water Separation. Cellulose 2020, 27 (13), 7873–7885. 13. Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Transactions of the Faraday Society 1944, 40 (1944), 546. 14. Good, R. J. Contact Angle, Wetting, and Adhesion: A Critical Review. Journal of Adhesion Science and Technology 1992, 6 (12), 1269–1302. 15. Young, T. III. An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London 1805, 95, 65–87. 16. Beysens, D. The Physics of Dew, Breath Figures and Dropwise Condensation; Springer Nature, 2022. 17. Wenzel, R. N. RESISTANCE of SOLID SURFACES to WETTING by WATER. Industrial & Engineering Chemistry 1936, 28 (8), 988–994. 18. Rodríguez-Valverde, M. A.; Ruiz-Cabello, F. J. M.; Cabrerizo-Vilchez, M. A. Wetting on Axially-Patterned Heterogeneous Surfaces. Advances in Colloid and Interface Science 2007, 138 (2), 84–100. 19. Marmur, A. Thermodynamic Aspects of Contact Angle Hysteresis. Advances in Colloid and Interface Science 1994, 50, 121–141. 20. Kumar, G.; Prabhu, K. N. Review of Non-Reactive and Reactive Wetting of Liquids on Surfaces. Advances in Colloid and Interface Science 2007, 133 (2), 61–89. 21. Lam, C. N. C.; Wu, R.; Li, D.; Hair, M. L.; Neumann, A. W. Study of the Advancing and Receding Contact Angles: Liquid Sorption as a Cause of Contact Angle Hysteresis. Advances in Colloid and Interface Science 2002, 96 (1-3), 169–191. 22. Tadmor, R. Line Energy and the Relation between Advancing, Receding, and Young Contact Angles. Langmuir 2004, 20 (18), 7659–7664. 23. de Gennes, P. G. Wetting: Statics and Dynamics. Reviews of Modern Physics 1985, 57 (3), 827–863. 24. Butt, H.-J.; Liu, J.; Koynov, K.; Straub, B.; Hinduja, C.; Roismann, I.; Berger, R.; Li, X.; Vollmer, D.; Steffen, W.; Kappl, M. Contact Angle Hysteresis. Current Opinion in Colloid & Interface Science 2022, 59, 101574. 25. Drelich, J.; Boinovich, L. B.; Chibowski, E.; C. Della Volpe; Lucyna Hołysz; Marmur, A.; S. Siboni. Contact Angles: History of over 200 Years of Open Questions. Surface Innovations 2020, 8 (1-2), 3–27. 26. Yeh, K.-Y.; Cho, K.-H.; Yeh, Y.-H.; Promraksa, A.; Huang, C.-H.; Hsu, C.-C.; Chen, L.-J. Observation of the Rose Petal Effect over Single- and Dual-Scale Roughness Surfaces. Nanotechnology 2014, 25 (34), 345303. 27. Lin, H.-P.; Chen, L.-J. Direct Observation of Wetting Behavior of Water Drops on Single Micro-Scale Roughness Surfaces of Rose Petal Effect. Journal of Colloid and Interface Science 2021, 603, 539–549. 28. Chen, H.; Li, X.; Li, D. Superhydrophilic–Superhydrophobic Patterned Surfaces: From Simplified Fabrication to Emerging Applications. Nanotechnology and Precision Engineering 2022, 5 (3), 035002. 29. Barthlott, W.; Neinhuis, C. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta 1997, 202 (1), 1–8. 30. Ahmad Reza Motezakker; Abdolali Khalii Sadaghiani; Suleyman Çelik; Larsen, T.; Luis Guillermo Villanueva; Koşar, A. Optimum Ratio of Hydrophobic to Hydrophilic Areas of Biphilic Surfaces in Thermal Fluid Systems Involving Boiling. International Journal of Heat and Mass Transfer/International journal of heat and mass transfer 2019, 135, 164–174. 31. Garimella, M. M.; Sudheer Koppu; Shantanu Shrikant Kadlaskar; Venkata Pillutla; None Abhijeet; Choi, W. Difference in Growth and Coalescing Patterns of Droplets on Bi-Philic Surfaces with Varying Spatial Distribution. Journal of Colloid and Interface Science 2017, 505, 1065–1073. 32. A. Alperen Günay; Kim, M.-K.; Yan, X.; Miljkovic, N.; Soumyadip Sett. Droplet Evaporation Dynamics on Microstructured Biphilic, Hydrophobic, and Smooth Surfaces. Experiments in Fluids 2021, 62 (7). 33. Zhou, W.; Wu, T.; Du, Y.; Zhang, X.; Chen, X.; Li, J.; Xie, H.; Qu, J. Efficient Fabrication of Desert Beetle-Inspired Micro/Nano-Structures on Polypropylene/Graphene Surface with Hybrid Wettability, Chemical Tolerance, and Passive Anti-Icing for Quantitative Fog Harvesting. Chemical Engineering Journal 2023, 453, 139784–139784. 34. Peng, L.; Chen, K.; Chen, D.; Chen, J.; Tang, J.; Xiang, S.; Chen, W.; Liu, P.; Zheng, F.; Shi, J. Study on the Enhancing Water Collection Efficiency of Cactus- and Beetle-like Biomimetic Structure Using UV-Induced Controllable Diffusion Method and 3D Printing Technology. RSC Advances 2021, 11 (24), 14769–14776. 35. Feng, J.; Zhong, L.; Guo, Z. Sprayed Hieratical Biomimetic Superhydrophilic-Superhydrophobic Surface for Efficient Fog Harvesting. Chemical Engineering Journal 2020, 388, 124283. 36. Winter, R. L.; McCarthy, M. Dewetting from Amphiphilic Minichannel Surfaces during Condensation. ACS Applied Materials & Interfaces 2020, 12 (6), 7815–7825. 37. Do, Y.; Ko, M.; Lee, Y. K. Impact of Surface Cooling on the Water Harvesting Efficiency of Nanostructured Window Glass. RSC Advances 2023, 13 (32), 22325–22334. 38. Lee, S.; Lee, J. Improvement of Humid Air Condensate Drainage through Bi-Philic Patterned Surfaces. International Journal of Heat and Mass Transfer 2022, 194, 123097. 39. Peng, Y.; He, Y.; Yang, S.; Ben, S.; Cao, M.; Li, K.; Liu, K.; Jiang, L. Magnetically Induced Fog Harvesting via Flexible Conical Arrays. Advanced Functional Materials 2015, 25 (37), 5967–5971. 40. Tang, X.; Huang, J.; Guo, Z.; Liu, W. A Combined Structural and Wettability Gradient Surface for Directional Droplet Transport and Efficient Fog Collection. Journal of Colloid and Interface Science 2021, 604, 526–536. 41. Dimitrios Nioras; Kosmas Ellinas; Evangelos Gogolides. Atmospheric Water Harvesting on Micro-Nanotextured Biphilic Surfaces. ACS Applied Nano Materials 2022, 5 (8), 11334–11341. 42. Hou, Y.; Shang, Y.; Yu, M.; Feng, C.; Yu, H.; Yao, S. Tunable Water Harvesting Surfaces Consisting of Biphilic Nanoscale Topography. ACS Nano 2018, 12 (11), 11022–11030. 43. Gurumukhi, Y.; Chavan, S.; Sett, S.; Boyina, K.; Ramesh, S.; Sokalski, P.; Fortelka, K.; Lira, M.; Park, D.; Chen, J.-Y.; Hegde, S.; Miljkovic, N. Dynamic Defrosting on Superhydrophobic and Biphilic Surfaces. Matter 2020, 3 (4), 1178–1195. 44. Hou, Y.; Yu, M.; Shang, Y.; Zhou, P.; Song, R.; Xu, X.; Chen, X.; Wang, Z.; Yao, S. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography. Physical Review Letters 2018, 120 (7). 45. Rekuviene, R.; Shaghayegh Saeidiharzand; Liudas Mažeika; Vykintas Samaitis; Jankauskas, A.; Sadaghiani, A. K.; Gharib, G.; Zülal Muganlı; Koşar, A. A Review on Passive and Active Anti-Icing and De-Icing Technologies. Applied Thermal Engineering 2024, 250, 123474–123474. 46. Hoque, M. J.; Yan, X.; Keum, H.; Li, L.; Cha, H.; Park, J. K.; Kim, S.; Miljkovic, N. High-Throughput Stamping of Hybrid Functional Surfaces. Langmuir 2020, 36 (21), 5730–5744. 47. Moazzam, P.; Tavassoli, H.; Razmjou, A.; Warkiani, M. E.; Asadnia, M. Mist Harvesting Using Bioinspired Polydopamine Coating and Microfabrication Technology. Desalination 2018, 429, 111–118. 48. Wang, X.; Zeng, J.; Yu, X.; Liang, C.; Zhang, Y. Water Harvesting Method via a Hybrid Superwettable Coating with Superhydrophobic and Superhydrophilic Nanoparticles. Applied Surface Science 2019, 465, 986–994. 49. Wang, X.; Zeng, J.; Yu, X.; Zhang, Y. Superamphiphobic Coatings with Polymer-Wrapped Particles: Enhancing Water Harvesting. Journal of Materials Chemistry A 2019, 7 (10), 5426–5433. 50. Wang, X.; Xu, B.; Chen, Z.; Davide Del Col; Liu, D.; Zhang, L.; Mou, X.; Liu, Q.; Yang, Y.; Cao, Q. Review of Droplet Dynamics and Dropwise Condensation Enhancement: Theory, Experiments and Applications. Advances in Colloid and Interface Science 2022, 305, 102684–102684. 51. Miljkovic, N.; Enright, R.; Nam, Y.; Lopez, K.; Dou, N.; Sack, J.; Wang, E. N. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces. Nano Letters 2012, 13 (1), 179–187. 52. Chen, X.; Wang, P.; Zhang, D.; Ou, J. Rational Fabrication of Superhydrophobic Surfaces with Coalescence-Induced Droplet Jumping Behavior for Atmospheric Corrosion Protection. Chemical Engineering Journal 2022, 428, 132029. 53. Cunjing Lv; Hao, P.; Zhang, X.; He, F. Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces. ACS Nano 2015, 9 (12), 12311–12319. 54. Chen, C.-H.; Cai, Q.; Tsai, C.; Chen, C.-L.; Xiong, G.; Yu, Y.; Ren, Z. Dropwise Condensation on Superhydrophobic Surfaces with Two-Tier Roughness. Applied Physics Letters 2007, 90 (17), 173108. 55. El Fil, B.; Kini, G.; Garimella, S. A Review of Dropwise Condensation: Theory, Modeling, Experiments, and Applications. International Journal of Heat and Mass Transfer 2020, 160, 120172. 56. Dineli T. S. Ranathunga; Shamir, A.; Dai, X.; Nielsen, S. O. Molecular Dynamics Simulations of Water Condensation on Surfaces with Tunable Wettability. Langmuir 2020, 36 (26), 7383–7391. 57. Ching Wen Lo; Chu, Y.-C.; Yen, M.-H.; Lu, M.-C. Enhancing Condensation Heat Transfer on Three-Dimensional Hybrid Surfaces. Joule 2019, 3 (11), 2806–2823. 58. Wang, Z.-J.; Wang, S.-Y.; Wang, D.-Q.; Yang, Y.-R.; Wang, X.-D.; Lee, D.-J. Water Vapor Condensation on Substrates with Nanoscale Hydrophilic Spots: A Molecular Dynamics Study. International Journal of Heat and Mass Transfer 2023, 205, 123929. 59. Egab, K.; Alwazzan, M.; Peng, B.; Oudah, S. K.; Guo, Z.; Dai, X.; Khan, J.; Li, C. Enhancing Filmwise and Dropwise Condensation Using a Hybrid Wettability Contrast Mechanism: Circular Patterns. International Journal of Heat and Mass Transfer 2020, 154, 119640. 60. Zhu, Y.; Tso, C. Y.; Ho, T. C.; Leung, M. K. H.; Yao, S.; Qiu, H. H. Heat Transfer Enhancement on Tube Surfaces with Biphilic Nanomorphology. Applied Thermal Engineering 2020, 180, 115778. 61. Mirvahid Mohammadpour Chehrghani; Taher Abbasiasl; Abdolali Khalili Sadaghiani; Koşar, A. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation. Langmuir 2021, 37 (46), 13567–13575. 62. Lu, H.; Shi, W.; Guo, Y.; Guan, W.; Lei, C.; Yu, G. Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives. Advanced Materials 2022, 34 (12), 2110079. 63. Zhang, F.; Guo, Z. Bioinspired Materials for Water-Harvesting: Focusing on Microstructure Designs and the Improvement of Sustainability. Materials Advances 2020, 1 (8). https://doi.org/10.1039/d0ma00599a. 64. Tang, X.; Guo, Z. Biomimetic Fog Collection and Its Influencing Factors. New Journal of Chemistry 2020, 44 (47). https://doi.org/10.1039/d0nj04632a. 65. Wang, X.; Zeng, J.; Yu, X.; Liang, C.; Zhang, Y. Beetle-like Droplet-Jumping Superamphiphobic Coatings for Enhancing Fog Collection of Sheet Arrays. RSC Advances 2020, 10 (1), 282–288. 66. Lyu, P.; Zhang, X.; Jiang, X.; Shang, B.; Liu, X.; Deng, Z. One-Step Preparation of Hydrophobic Surfaces Containing Hydrophilic Groups for Efficient Water Harvesting. Langmuir 2021, 37 (31), 9630–9636. 67. Wang, H.; Wang, D. T.; Zhang, X. Y.; Zhang, Z. Z. Modified PDMS with Inserted Hydrophilic Particles for Water Harvesting. Composites Science and Technology 2021, 213, 108954. 68. Jiang, J.; Zhu, L.; Zhu, L.; Zhu, B.; Xu, Y. Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films. Langmuir 2011, 27 (23), 14180–14187. 69. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318 (5849), 426–430. 70. Peng, H.-Y.; Chen, L.-J. Quantitative Definition of Hydrophilicity and Hydrophobicity by Advancing Contact Angle of Water. Master’s thesis, National Taiwan University, Airiti Library, 2019, pp. 1–95. 71. Qin, Z.; Li, D.; Ou, Y.; Du, S.; Jiao, Q.; Peng, J.; Liu, P. Recent Advances in Polydopamine for Surface Modification and Enhancement of Energetic Materials: A Mini-Review. Crystals 2023, 13 (6), 976–976. 72. Milyaeva, O. Yu.; Bykov, A. G.; Campbell, R. A.; Loglio, G.; Miller, R.; Noskov, B. A. Polydopamine Layer Formation at the Liquid – Gas Interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 579, 123637. 73. Lee, H. A.; Ma, Y.; Zhou, F.; Hong, S.; Lee, H. Material-Independent Surface Chemistry beyond Polydopamine Coating. Accounts of Chemical Research 2019, 52 (3), 704–713. 74. Zhu, H.; Duan, R.; Wang, X.; Yang, J.; Wang, J.; Huang, Y.; Xia, F. Prewetting Dichloromethane Induced Aqueous Solution Adhered on Cassie Superhydrophobic Substrates to Fabricate Efficient Fog-Harvesting Materials Inspired by Namib Desert Beetles and Mussels. Nanoscale 2018, 10 (27), 13045–13054. 75. Campo, A. del; Greiner, C. SU-8: A Photoresist for High-Aspect-Ratio and 3D Submicron Lithography. Journal of Micromechanics and Microengineering 2007, 17 (6), R81–R95. 76. Cho, K.-H.; Chen, L.-J. Fabrication of Sticky and Slippery Superhydrophobic Surfaces via Spin-Coating Silica Nanoparticles onto Flat/Patterned Substrates. Nanotechnology 2011, 22 (44), 445706. 77. Yeh, K.-Y.; Cho, K.-H.; Chen, L.-J. Preparation of Superhydrophobic Surfaces of Hierarchical Structure of Hybrid from Nanoparticles and Regular Pillar-like Pattern†Part of the “Langmuir 25th Year: Wetting and Superhydrophobicity” Special Issue.. Langmuir 2009, 25 (24), 14187–14194. 78. Sung, T.-J.; Chen, Y.-P. Study of Droplet Wetting Behavior and Condensation Mechanisms on Hydrophobic Surfaces with Hierarchical Structures. Master’s thesis, National Taiwan University, Airiti Library, 2022, pp. 1–91. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97342 | - |
| dc.description.abstract | 疏水表面(hydrophobic surface)具有低表面能可以有效促進液滴的滑落。然而,疏水表面的低成核密度可能限制其在高效水收集系統中的應用。借鑒於生存在乾燥環境的甲蟲,雙親性表面(biphilic surface)結合了疏水與親水區域的特性,被認為能夠具備增強成核密度與液滴滑移能力,因此在同時提升水收集效率與熱傳效率方面具有潛在優勢。
NOA65平坦雙親性表面與溶膠凝膠法製備的平坦雙親性表面成功被製備透過以NOA65 光固化膠與二氧化矽奈米質地表面作為基材後續再進行疏水改質與多巴胺親水改質而成。然而,相較於NOA65雙親性表面,溶膠凝膠法製備的雙親性表面在增強親水點位的設計優化時有著顯著結構上穩定的優勢。藉由控制多巴胺反應濃度與時間來調控疏水表面上親水點位的密度與觀察其沉積生長的過程來進行一系列表面濕潤現象與凝結機制的探討。 研究結果顯示,在0.25 g/L 多巴胺濃度下,溶膠凝膠法製備的雙親性表面的 Cassie/Wenzel 濕潤現象轉換發生於多巴胺反應時間為22.5分鐘的時候。在凝結過程中,透過統計與量化不同凝結時間下液滴的數量與尺寸來分析表面上液滴數量密度、累積水量與液滴表面覆蓋率。此外,透過光學顯微鏡觀察下,疏水表面進行多巴胺親水改質後發現其成核密度有顯著提升。液滴式/薄膜式凝結模式的轉換界線延遲至多巴胺反應時間為27.5分鐘的時候。水收集效率隨著多巴胺反應時間的增加而提升,但液滴自然滑落直徑的最小值出現在20分鐘多巴胺反應條件下。在熱傳表現分析下,熱傳導係數在Cassie/液滴式凝結模式下皆有增加其中最大增幅41.7% 發生在10分鐘的多巴胺反應條件下。透過整合接觸角測量、收集水量與熱傳表現的結果進一步加深對雙親性表面獨特特性與其應用性。 | zh_TW |
| dc.description.abstract | A hydrophobic surface with low surface energy can improve the droplet removal capability. However, the low nucleation density of a hydrophobic surface can limit its application on high water harvesting efficiency. Inspired by the beetle living in a dehydrated environment, a biphilic surface with hydrophobic and hydrophilic properties is considered to enhance nucleation density and droplet mobility, thus providing significant potential for improving water harvesting efficiency and heat transfer performance.
In this study, NOA65 flat biphilic surface and sol-gel flat biphilic surface are successfully fabricated by using Norland Optical Adhesive 65 (NOA65) and silica nano-textured surface as substrates, followed by hydrophobic modification and dopamine- hydrophilic treatment. In comparison with the NOA65 biphilic surface, the sol-gel biphilic surface offers a significant advantage in structural stability, allowing for the design of optimized hydrophilic sites. By adjusting the dopamine concentration and reaction time, a series of investigations are conducted to examine surface wettability and condensation mechanism, with the objective of controlling the nucleation density and observing the growth of deposition on the hydrophobic surface. This study demonstrates that, at a fixed dopamine concentration of 0.25 g/L, the Cassie/Wenzel transition boundary of the sol-gel biphilic surface occurred at 22.5 minutes of dopamine reaction time. During the condensation process, the droplet number density, accumulative water volume, and surface coverage were analyzed by statistically quantifying the number and size of droplets at different condensation times. The nucleation density on dopamine-treated substrates shows a notable enhancement under microscopy observation. The dropwise/filmwise condensation transition boundary is extended to 27.5 minutes of dopamine reaction time. The water harvesting efficiency exhibits a positive correlation with dopamine reaction time, but the lowest natural departure diameter is recorded at 20 minutes of dopamine reaction time. The heat transfer analysis reveals that the heat transfer coefficient (HTC) increased under Cassie /dropwise condensation mode, with the maximum enhancement of 41.7% at 10-minute of dopamine reaction time. The integration of contact angle measurements, water harvesting efficiency, and heat transfer performance can provide a deeper understanding of unique characteristics and further applications of biphilic surface. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-07T16:06:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-05-07T16:06:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
論文口試委員審定書 i 謝辭 ii 摘要 iii Abstract iv Contents vi List of Figures viii List of Tables xvi Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Wetting phenomenon and contact angle 4 2.1.1 Ideal solid surface 4 2.1.2 Non-ideal solid surfaces 6 2.1.3 Advancing/receding contact angles and contact angle hysteresis 8 2.2 Introduction of biphilic surfaces 9 2.2.1 Layer-by-layer assembly method 12 2.2.2 Electrospinning method 14 2.2.3 Etching method 14 2.2.4 Selective modifications of surface substance 15 2.3 Atmospheric water condensation on hybrid surface 17 2.3.1 Heat transfer efficiency 17 2.3.2 Water collection performance 20 2.4 Hydrophilicity modification with polydopamine deposition 22 Chapter 3 Experimental Method 25 3.1 Materials 25 3.2 Scientific instruments 27 3.3 Experiment procedure 28 3.3.1 Biphilic surface from NOA65 surface with superhydrophobic coating 28 3.3.2 Biphilic surfaces from sol-gel method with silanization 34 3.3.3 Contact angle measurement 37 3.3.4 Sliding angle measurement 38 3.3.5 Condensation process 38 Chapter 4 Results and Discussion 41 4.1 Biphilic surface from NOA65 surface with superhydrophobic coating 41 4.1.1 The contact angle measurement and wetting states 41 4.1.2 Condensation analysis 51 4.2 Biphilic surface using sol-gel method with silanization 72 4.2.1 Effects of surface treatments with various conditions 72 4.2.2 The contact angle measurement and wetting states 85 4.2.3 Horizontal condensation analysis 90 4.2.4 Vertical condensation analysis for dopamine concentration 98 4.2.5 Heat transfer analysis for dopamine concentration 108 4.3 Comprehensive discussion 112 Chapter 5 Conclusion 120 References 123 | - |
| dc.language.iso | en | - |
| dc.subject | 多巴胺 | zh_TW |
| dc.subject | 熱傳 | zh_TW |
| dc.subject | 收集水效率 | zh_TW |
| dc.subject | 凝結過程 | zh_TW |
| dc.subject | 濕潤現象 | zh_TW |
| dc.subject | 雙親性表面 | zh_TW |
| dc.subject | condensation | en |
| dc.subject | surface wettability | en |
| dc.subject | dopamine | en |
| dc.subject | biphilic surface | en |
| dc.subject | heat transfer | en |
| dc.subject | water harvesting efficiency | en |
| dc.title | 表面濕潤性與凝結行為之研究:雙親性表面的設計與最佳化 | zh_TW |
| dc.title | Study of Surface Wettability and Condensation Behavior: Design and Optimization of Biphilic Surfaces | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林析右;蔡瑞瑩;葉冠瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Shi-Yow Lin;Ruey-Yug Tsay;Kuan-Yu Yeh | en |
| dc.subject.keyword | 雙親性表面,多巴胺,濕潤現象,凝結過程,收集水效率,熱傳, | zh_TW |
| dc.subject.keyword | biphilic surface,dopamine,surface wettability,condensation,water harvesting efficiency,heat transfer, | en |
| dc.relation.page | 132 | - |
| dc.identifier.doi | 10.6342/NTU202500866 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-04-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2029-04-24 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 10.59 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
