Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97340
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林翰佑zh_TW
dc.contributor.advisorHan-You Linen
dc.contributor.author陳盈芳zh_TW
dc.contributor.authorYing-Fang Chenen
dc.date.accessioned2025-05-07T16:05:42Z-
dc.date.available2025-05-08-
dc.date.copyright2025-05-07-
dc.date.issued2025-
dc.date.submitted2025-04-22-
dc.identifier.citationReference

Abcam. (2023). abcam Dot blot protocol. Retrieved Dec. 18th from https://www.abcam.com/en-us/technical-resources/protocols/dot-blot?srsltid=AfmBOorca1OcMVu07v_koIuXf0G-J9oinvrlrYUKC4Axw9uDwMPX-tjR
Adachi, K., Klocke, K., Roy, P., Rodricks, D., Chapman, M., & Nakai, H. (2015). 37. Capacity of Viral Genome Packaging and Internal Volumes of AAV Viral Particles. Molecular Therapy, 23, S17. https://doi.org/10.1016/S1525-0016(16)33642-5
Adams, A. (2019). Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol, 90, 210-214. https://doi.org/10.1016/j.fsi.2019.04.066
Alonso Villela, S. M., Kraïem, H., Bouhaouala-Zahar, B., Bideaux, C., Aceves Lara, C. A., & Fillaudeau, L. (2020). A protocol for recombinant protein quantification by densitometry. Microbiologyopen, 9(6), 1175-1182. https://doi.org/10.1002/mbo3.1027
Angulo, C., Tello-Olea, M., Reyes-Becerril, M., Monreal-Escalante, E., Hernández-Adame, L., Angulo, M., & Mazon-Suastegui, J. M. (2021). Developing oral nanovaccines for fish: a modern trend to fight infectious diseases. Reviews in Aquaculture, 13(3), 1172-1192. https://doi.org/https://doi.org/10.1111/raq.12518
Ariff, N., Abdullah, A., Azmai, M. N. A., Musa, N., & Zainathan, S. C. (2019). Risk factors associated with viral nervous necrosis in hybrid groupers in Malaysia and the high similarity of its causative agent nervous necrosis virus to reassortant red-spotted grouper nervous necrosis virus/striped jack nervous necrosis virus strains. Vet World, 12(8), 1273-1284. https://doi.org/10.14202/vetworld.2019.1273-1284
Bandín, I., & Souto, S. (2020). Betanodavirus and VER Disease: A 30-year Research Review. Pathogens, 9(2), 106. https://www.mdpi.com/2076-0817/9/2/106
Beren, C. E. (2017). Effect of secondary structure on the size, configurational statistics, and packaging of long-RNA by viral capsid protein University of California, Los Angeles]. https://escholarship.org/uc/item/69z1x0kt
Bhaskar, S., & Lim, S. (2017). Engineering protein nanocages as carriers for biomedical applications. NPG Asia materials, 9(4), e371-e371. https://www.nature.com/articles/am2016128
Bond, K., Tsvetkova, I. B., Wang, J. C. Y., Jarrold, M. F., & Dragnea, B. (2020). Virus assembly pathways: straying away but not too far. Small, 16(51), 2004475. https://pubmed.ncbi.nlm.nih.gov/33241653/
Brahmakshatriya, V., Kuang, Y., Devarajan, P., Xia, J., Zhang, W., Vong, A. M., & Swain, S. L. (2017). IL-6 Production by TLR-Activated APC Broadly Enhances Aged Cognate CD4 Helper and B Cell Antibody Responses In Vivo. The Journal of Immunology, 198(7), 2819-2833. https://doi.org/10.4049/jimmunol.1601119
Burnette, W. N. (1981). “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry, 112(2), 195-203. https://doi.org/https://doi.org/10.1016/0003-2697(81)90281-5
Caspar, D. L., & Klug, A. (1962). Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol, 27, 1-24. https://doi.org/10.1101/sqb.1962.027.001.005
Chang, H.-C. (2022). Protein-Proien Interactions between Interleukin-6, Interleukin-6 Receptor and Glycoprotein 130 as well we Cloning of IL-6R Isoform of Epinephelus coioides National Taiwan University].
Chang, J. S., & Chi, S. C. (2015). GHSC70 is involved in the cellular entry of nervous necrosis virus. J Virol, 89(1), 61-70. https://doi.org/10.1128/jvi.02523-14
Chen, C.-H. (2015). Evaluated the immune stimulated responses in recombinant interleukin-6 National Taiwan University].
Chen, H.-H. (2011). Interleukin-6 gene cloning, protein expression and functional analysis of orange-spotted grouper (Epinphelus coioides) National Cheng Kung University].
Chen, H.-H. H.-T. L. Y.-F. F. a. J. H.-Y. L. (2012). The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production. Dev Comp Immunol, 38(2), 285-294. https://doi.org/10.1016/j.dci.2012.06.013
Chen, H.-Y. L. a. Y.-F. (2024). Innovating Aquaculture With a Low-Cost Bath Vaccine Against Nodavirus Merk Young Scientist Award in 2024, Taipei, Taiwan.
Chen, K. F., Tan, W. S., Ong, L. K., Zainal Abidin, S. A., Othman, I., Tey, B. T., & Lee, R. F. S. (2021). The Macrobrachium rosenbergii nodavirus: A detailed review of structure, infectivity, host immunity, diagnosis and prevention. Reviews in Aquaculture, 13(4), 2117-2141. https://doi.org/doi.org/10.1111/raq.12562
Chen, N.-C., Yoshimura, M., Guan, H.-H., Wang, T.-Y., Misumi, Y., Lin, C.-C., Chuankhayan, P., Nakagawa, A., Chan, S. I., Tsukihara, T., Chen, T.-Y., & Chen, C.-J. (2015). Crystal Structures of a Piscine Betanodavirus: Mechanisms of Capsid Assembly and Viral Infection. PLoS pathogens, 11(10), e1005203. Retrieved 2015/10//, from http://europepmc.org/abstract/MED/26491970
Chen, N.-C., Yoshimura, M., Miyazaki, N., Guan, H.-H., Chuankhayan, P., Lin, C.-C., Chen, S.-K., Lin, P.-J., Huang, Y.-C., Iwasaki, K., Nakagawa, A., Chan, S. I., & Chen, C.-J. (2019). The atomic structures of shrimp nodaviruses reveal new dimeric spike structures and particle polymorphism. Communications Biology, 2(1), 72. https://doi.org/10.1038/s42003-019-0311-z
Cheng, S., & Brooks, C. (2013). Viral Capsid Proteins Are Segregated in Structural Fold Space. PLoS Computational Biology, 9, e1002905. https://doi.org/10.1371/journal.pcbi.1002905
Comas-Garcia, M. (2024). How structural biology has changed our understanding of icosahedral viruses. Journal of virology, 98(10), e01111-01123. https://doi.org/10.1128/jvi.01111-23
Comellas-Aragonès, M., Engelkamp, H., Claessen, V. I., Sommerdijk, N. A. J. M., Rowan, A. E., Christianen, P. C. M., Maan, J. C., Verduin, B. J. M., Cornelissen, J. J. L. M., & Nolte, R. J. M. (2007). A virus-based single-enzyme nanoreactor. Nature nanotechnology, 2(10), 635-639. https://doi.org/10.1038/nnano.2007.299
Conti, B., Tabarean, I., Andrei, C., & Bartfai, T. (2004). Cytokines and fever. Front Biosci, 9(12), 1433-1449. https://doi.org/10.2741/1341
Coulibaly, F., Chevalier, C., Gutsche, I., Pous, J., Navaza, J., Bressanelli, S., Delmas, B., & Rey, F. A. (2005). The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell, 120(6), 761-772. https://pubmed.ncbi.nlm.nih.gov/15797378/
Eberle, K. E., Wennmann, J. T., Kleespies, R. G., & Jehle, J. A. (2012). Chapter II - Basic techniques in insect virology. In L. A. Lacey (Ed.), Manual of Techniques in Invertebrate Pathology (Second Edition) (pp. 15-74). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-386899-2.00002-6
Eddahri, F., Denanglaire, S., Bureau, F., Spolski, R., Leonard, W. J., Leo, O., & Andris, F. (2009). Interleukin-6/STAT3 signaling regulates the ability of naive T cells to acquire B-cell help capacities. Blood, 113(11), 2426-2433. https://doi.org/10.1182/blood-2008-04-154682
Edwardson, T. G. W., Levasseur, M. D., Tetter, S., Steinauer, A., Hori, M., & Hilvert, D. (2022). Protein Cages: From Fundamentals to Advanced Applications. Chemical Reviews, 122(9), 9145-9197. https://doi.org/10.1021/acs.chemrev.1c00877
Fatehi, F., & Twarock, R. (2023). An interaction network approach predicts protein cage architectures in bionanotechnology. Proceedings of the National Academy of Sciences, 120(50), e2303580120. https://doi.org/doi:10.1073/pnas.2303580120
Gassmann, M., Grenacher, B., Rohde, B., & Vogel, J. (2009). Quantifying Western blots: Pitfalls of densitometry. ELECTROPHORESIS, 30(11), 1845-1855. https://doi.org/https://doi.org/10.1002/elps.200800720
Gelbart, W. M. (2016). Making Viruses and Virus-Like Particles 'From Scratch'. Israel Institute for Advanced Studies. https://www.youtube.com/watch?v=uVrZfHskBGs
Geven, E. J. W., & Klaren, P. H. M. (2017). The teleost head kidney: Integrating thyroid and immune signalling. Dev Comp Immunol, 66, 73-83. https://doi.org/10.1016/j.dci.2016.06.025
Gonçalves, A., Machado, R., Gomes, A. C., & Costa, A. d. (2020). Nanotechnology Solutions for Controlled Cytokine Delivery: An Applied Perspective. Applied Sciences, 10(20), 7098. https://www.mdpi.com/2076-3417/10/20/7098
Grataitong, K., Huault, S., Chotwiwatthanakun, C., Jariyapong, P., Thongsum, O., Chawiwithaya, C., Chakrabandhu, K., Hueber, A.-O., & Weerachatyanukul, W. (2021). Chimeric virus-like particles (VLPs) designed from shrimp nodavirus (MrNV) capsid protein specifically target EGFR-positive human colorectal cancer cells. Scientific Reports, 11(1), 16579. https://doi.org/10.1038/s41598-021-95891-x
Grossmann, L., & McClements, D. J. (2023). Current insights into protein solubility: A review of its importance for alternative proteins. Food Hydrocolloids, 137, 108416. https://doi.org/https://doi.org/10.1016/j.foodhyd.2022.108416
Haddad, J. J. (2002). Cytokines and related receptor-mediated signaling pathways. Biochemical and Biophysical Research Communications, 297(4), 700-713. https://doi.org/https://doi.org/10.1016/S0006-291X(02)02287-8
Hanapi, U. F., Yong, C. Y., Goh, Z. H., Alitheen, N. B., Yeap, S. K., & Tan, W. S. (2017). Tracking the virus-like particles of Macrobrachium rosenbergii nodavirus in insect cells. PeerJ, 5, e2947. https://doi.org/10.7717/peerj.2947
Hansen, M. B. (2020). Interleukin‐6 signaling requires only few IL‐6 molecules: Relation to physiological concentrations of extracellular IL‐6. Immunity, inflammation and disease, 8(2), 170-180. https://doi.org/doi.org/10.1002/iid3.292
He, J., Yu, L., Lin, X., Liu, X., Zhang, Y., Yang, F., & Deng, W. (2022). Virus-like Particles as Nanocarriers for Intracellular Delivery of Biomolecules and Compounds. Viruses, 14(9), 1905. https://www.mdpi.com/1999-4915/14/9/1905
Ho, K. L., Gabrielsen, M., Beh, P. L., Kueh, C. L., Thong, Q. X., Streetley, J., Tan, W. S., & Bhella, D. (2018). Structure of the Macrobrachium rosenbergii nodavirus: A new genus within the Nodaviridae? Plos Biology, 16(10), e3000038. https://doi.org/10.1371/journal.pbio.3000038
Ho, K. L., Kueh, C. L., Beh, P. L., Tan, W. S., & Bhella, D. (2017). Cryo-Electron Microscopy Structure of the Macrobrachium rosenbergii Nodavirus Capsid at 7 Angstroms Resolution. Scientific Reports, 7(1), 2083. https://doi.org/10.1038/s41598-017-02292-0
Hopo, M. G., Mabrok, M., Abu-Elala, N., & Yu, Y. (2024). Navigating Fish Immunity: Focus on Mucosal Immunity and the Evolving Landscape of Mucosal Vaccines. Biology, 13(12), 980. https://www.mdpi.com/2079-7737/13/12/980
Huang, R., Zhu, G., Zhang, J., Lai, Y., Xu, Y., He, J., & Xie, J. (2017). Betanodavirus-like particles enter host cells via clathrin-mediated endocytosis in a cholesterol-, pH- and cytoskeleton-dependent manner. Veterinary Research, 48(1), 8. https://doi.org/10.1186/s13567-017-0412-y
Huang, Y., Guo, X., Wu, Y., Chen, X., Feng, L., Xie, N., & Shen, G. (2024). Nanotechnology’s frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduction and Targeted Therapy, 9(1), 34. https://doi.org/10.1038/s41392-024-01745-z
ICTV. (2021). International Committee on Taxonomy of Viruses. (2021). Tombusviridae. Retrieved Jan. 26 from https://ictv.global/report_9th/RNApos/Tombusviridae
ICTV. (2022). International Committee on Taxonomy of Viruses. Caliciviridae. Retrieved Jan. 25 from https://ictv.global/report/positive-sense-rna-viruses/caliciviridae.
ICTV. (2025). International Committee on Taxonomy of Viruses. Betanodavirus. ICTV. Retrieved Jan., 29 from https://ictv.global/report/chapter/nodaviridae/nodaviridae/betanodavirus
Jariyapong, P. (2015). Nodavirus-based biological container for targeted delivery system. Artificial Cells, Nanomedicine, and Biotechnology, 43(5), 355-360. https://doi.org/10.3109/21691401.2014.889702
Jariyapong, P., Chotwiwatthanakun, C., Direkbusarakom, S., Hirono, I., Wuthisuthimethavee, S., & Weerachatyanukul, W. (2015). Delivery of double stranded RNA by Macrobrachium rosenbergii nodavirus-like particles to protect shrimp from white spot syndrome virus. Aquaculture, 435, 86-91. https://doi.org/https://doi.org/10.1016/j.aquaculture.2014.09.034
Jung, Y., Kim, K.-T., Kim, J., Yang, S.-Y., Lee, B.-G., & Kim, S. (2014). Bioconcentration and distribution of silver nanoparticles in Japanese medaka (Oryzias latipes). Journal of hazardous materials, 267C, 206-213. https://doi.org/10.1016/j.jhazmat.2013.12.061
Kashiwada, S. (2006). Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect, 114(11), 1697-1702. https://doi.org/10.1289/ehp.9209
Kearney, B. M., & Johnson, J. E. (2014). Assembly and Maturation of a T = 4 Quasi-Equivalent Virus Is Guided by Electrostatic and Mechanical Forces. Viruses, 6(8), 3348-3362. https://www.mdpi.com/1999-4915/6/8/3348
Kiatmetha, P., Chotwiwatthanakun, C., Jariyapong, P., Santimanawong, W., Ounjai, P., & Weerachatyanukul, W. (2018). Nanocontainer designed from an infectious hypodermal and hematopoietic necrosis virus (IHHNV) has excellent physical stability and ability to deliver shrimp tissues. PeerJ, 6, e6079. https://doi.org/10.7717/peerj.6079
Kim, H. J., Kwag, H.-L., Kim, D. G., Kang, B. K., Han, S. Y., Moon, H., Hwang, J. Y., Kwon, M.-G., Kang, H. A., & Kim, H.-J. (2016). Assembly of the capsid protein of red-spotted grouper nervous necrosis virus during purification, and role of calcium ions in chromatography. Biotechnology and Bioprocess Engineering, 21(3), 373-380. https://doi.org/10.1007/s12257-016-0256-8
Kohane, D. S., & Langer, R. (2010). Biocompatibility and drug delivery systems. Chemical Science, 1(4), 441-446. https://pubs.rsc.org/en/content/articlelanding/2010/sc/c0sc00203h
Lan, N. T., Kim, H. J., Han, H. J., Lee, D. C., Kang, B. K., Han, S. Y., Moon, H., & Kim, H. J. (2018). Stability of virus-like particles of red-spotted grouper nervous necrosis virus in the aqueous state, and the vaccine potential of lyophilized particles. Biologicals, 51, 25-31. https://doi.org/10.1016/j.biologicals.2017.11.002
Lavelle, E. C., & McEntee, C. P. (2024). Vaccine adjuvants: Tailoring innate recognition to send the right message. Immunity, 57(4), 772-789. https://doi.org/https://doi.org/10.1016/j.immuni.2024.03.015
Lee, K. W., & Tan, W. S. (2008). Recombinant hepatitis B virus core particles: association, dissociation and encapsidation of green fluorescent protein. Journal of virological methods, 151(2), 172-180. https://doi.org/10.1016/j.jviromet.2008.05.025
Li, K., Qiu, H., Yan, J., Shen, X., Wei, X., Duan, M., & Yang, J. (2021). The involvement of TNF-α and TNF-β as proinflammatory cytokines in lymphocyte-mediated adaptive immunity of Nile tilapia by initiating apoptosis. Developmental & Comparative Immunology, 115, 103884. https://doi.org/https://doi.org/10.1016/j.dci.2020.103884
Lin, H.-T., Wang, L.-C., Chiang, Y.-R., Fang, Y.-F., Lu, F.-I., & Lin, J. H.-Y. (2022). Bioactivity of orange-spotted grouper (Epinephelus coioides) interleukin-6 in innate immunity: Inducing inflammation, antimicrobial peptides, and innate immune molecular gene expression as well as activating phagocytosis of leukocytes and increasing survival under Vibrio and NNV infection. Aquaculture Reports, 24, 101143. https://doi.org/https://doi.org/10.1016/j.aqrep.2022.101143
Marsian, J., Hurdiss, D. L., Ranson, N. A., Ritala, A., Paley, R., Cano, I., & Lomonossoff, G. P. (2019). Plant-Made Nervous Necrosis Virus-Like Particles Protect Fish Against Disease [Original Research]. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00880
Matsuura, K. (2018). Synthetic approaches to construct viral capsid-like spherical nanomaterials [10.1039/C8CC03844A]. Chemical Communications, 54(65), 8944-8959. https://doi.org/10.1039/C8CC03844A
McNeale, D., Dashti, N., Cheah, L. C., & Sainsbury, F. (2023). Protein cargo encapsulation by virus-like particles: Strategies and applications. WIREs Nanomedicine and Nanobiotechnology, 15(3), e1869. https://doi.org/https://doi.org/10.1002/wnan.1869
Mokhtar, D. M., Zaccone, G., Alesci, A., Kuciel, M., Hussein, M. T., & Sayed, R. K. A. (2023). Main Components of Fish Immunity: An Overview of the Fish Immune System. Fishes, 8(2), 93. https://www.mdpi.com/2410-3888/8/2/93
Muikham, I., Thongsum, O., Jaranathummakul, S., Wathammawut, A., Chotwiwatthanakun, C., Jariyapong, P., & Weerachatyanukul, W. (2024). Interior modification of Macrobrachium rosenbergii nodavirus-like particle enhances encapsulation of VP37-dsRNA against shrimp white spot syndrome infection. BMC Veterinary Research, 20(1), 91. https://doi.org/10.1186/s12917-024-03936-w
Nakahira, Y., Mizuno, K., Yamashita, H., Tsuchikura, M., Takeuchi, K., Shiina, T., & Kawakami, H. (2021). Mass Production of Virus-Like Particles Using Chloroplast Genetic Engineering for Highly Immunogenic Oral Vaccine Against Fish Disease. Front Plant Sci, 12, 717952. https://doi.org/10.3389/fpls.2021.717952
Nallala, V. S., Makesh, M., Radhika, K., Sathish Kumar, T., Raja, P., Subburaj, R., Kailasam, M., & Vijayan, K. K. (2021). Characterization of red-spotted grouper nervous necrosis virus isolated from ovarian fluids of asymptomatic wild Asian seabass, Lates calcarifer. Aquaculture, 542, 736846. https://doi.org/https://doi.org/10.1016/j.aquaculture.2021.736846
NaveenKumar, S., Shekar, M., Karunasagar, I., & Karunasagar, I. (2013). Genetic analysis of RNA1 and RNA2 of Macrobrachium rosenbergii nodavirus (MrNV) isolated from India. Virus research, 173(2), 377-385. https://doi.org/doi.org/10.1016/j.virusres.2013.01.003
Nooraei, S., Bahrulolum, H., Hoseini, Z. S., Katalani, C., Hajizade, A., Easton, A. J., & Ahmadian, G. (2021). Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. Journal of Nanobiotechnology, 19(1), 59. https://doi.org/10.1186/s12951-021-00806-7
Ortega-Del Campo, S., Díaz-Martínez, L., Moreno, P., García-Rosado, E., Alonso, M. C., Béjar, J., & Grande-Pérez, A. (2023). The genetic variability and evolution of red-spotted grouper nervous necrosis virus quasispecies can be associated with its virulence. Front Microbiol, 14, 1182695. https://doi.org/10.3389/fmicb.2023.1182695
Padilla, J. E., Colovos, C., & Yeates, T. O. (2001). Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proceedings of the National Academy of Sciences of the United States of America, 98(5), 2217-2221. https://doi.org/10.1073/pnas.041614998
Parvez, M. K. (2020). Geometric architecture of viruses. World journal of virology, 9(2), 5-18. https://doi.org/10.5501/wjv.v9.i2.5
Perilla, J. R., Hadden, J. A., Goh, B. C., Mayne, C. G., & Schulten, K. (2016). All-Atom Molecular Dynamics of Virus Capsids as Drug Targets. J Phys Chem Lett, 7(10), 1836-1844. https://doi.org/10.1021/acs.jpclett.6b00517
Polles, G., Indelicato, G., Potestio, R., Cermelli, P., Twarock, R., & Micheletti, C. (2013). Mechanical and Assembly Units of Viral Capsids Identified via Quasi-Rigid Domain Decomposition. PLoS Computational Biology, 9, e1003331. https://doi.org/10.1371/journal.pcbi.1003331
Prakash, D. L., & Gosavi, S. (2022). The diversity of protein-protein interaction interfaces within T=3 icosahedral viral capsids. Front Mol Biosci, 9, 967877. https://doi.org/10.3389/fmolb.2022.967877
Prasad, B. V., & Schmid, M. F. (2012). Principles of virus structural organization. Adv Exp Med Biol, 726, 17-47. https://doi.org/10.1007/978-1-4614-0980-9_3
Rochal, S. B., Konevtsova, O. V., & Lorman, V. L. (2017). Static and dynamic hidden symmetries of icosahedral viral capsids. Nanoscale, 9(34), 12449-12460. https://doi.org/10.1039/C7NR04020B
Schaffner, K. F. (1969). The Watson-Crick Model and Reductionism. The British Journal for the Philosophy of Science, 20(4), 325-348. https://doi.org/10.1093/bjps/20.4.325
Schmidt-Arras, D., & Rose-John, S. (2016). IL-6 pathway in the liver: From physiopathology to therapy. Journal of Hepatology, 64(6), 1403-1415. https://doi.org/10.1016/j.jhep.2016.02.004
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. https://doi.org/10.1038/nmeth.2089
Schwarz, B., & Douglas, T. (2015). Development of virus-like particles for diagnostic and prophylactic biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 7(5), 722-735. https://doi.org/10.1002/wnan.1336
Scieglinska, D., Krawczyk, Z., Sojka, D. R., & Gogler-Pigłowska, A. (2019). Heat shock proteins in the physiology and pathophysiology of epidermal keratinocytes. Cell Stress and Chaperones, 24(6), 1027-1044. https://doi.org/https://doi.org/10.1007/s12192-019-01044-5
Shaikh, P. Z. (2011). Cytokines & their physiologic and pharmacologic functions in inflammation: A review. International Journal of Pharmacy & Life Sciences, 2(11). https://www.semanticscholar.org/paper/Cytokines-%26-their-physiologic-and-pharmacologic-in-Shaikh/bf1af2f031da1e73ae4d0f6143761044fce9bb16
Somrit, M., Watthammawut, A., Chotwiwatthanakun, C., Ounjai, P., Suntimanawong, W., & Weerachatyanukul, W. (2017). C-terminal domain on the outer surface of the Macrobrachium rosenbergii nodavirus capsid is required for Sf9 cell binding and internalization. Virus research, 227. https://doi.org/10.1016/j.virusres.2016.09.017
Štěrbová, P., Wang, C. H., Carillo, K. J. D., Lou, Y. C., Kato, T., Namba, K., Tzou, D. M., & Chang, W. H. (2024). Molecular Mechanism of pH-Induced Protrusion Configuration Switching in Piscine Betanodavirus Implies a Novel Antiviral Strategy. ACS Infect Dis, 10(9), 3304-3319. https://doi.org/10.1021/acsinfecdis.4c00407
Sun, X., Lian, Y., Tian, T., & Cui, Z. (2024). Virus-like particle encapsulation of functional proteins: advances and applications [Review]. Theranostics, 14(19), 7604-7622. https://doi.org/10.7150/thno.103127
Tammas, I., Bitchava, K., & Gelasakis, A. I. (2024). Transforming aquaculture through vaccination: A review on recent developments and milestones. Vaccines, 12(7), 732.
Tanaka, T., Narazaki, M., & Kishimoto, T. (2014). IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol, 6(10), a016295. https://doi.org/10.1101/cshperspect.a016295
Travassos, R., Martins, S. A., Fernandes, A., Correia, J. D. G., & Melo, R. (2024). Tailored Viral-like Particles as Drivers of Medical Breakthroughs. International Journal of Molecular Sciences, 25(12), 6699. https://www.mdpi.com/1422-0067/25/12/6699
Van de Steen, A., Wilkinson, H. C., Dalby, P. A., & Frank, S. (2024). Encapsulation of Transketolase into In Vitro-Assembled Protein Nanocompartments Improves Thermal Stability. ACS Applied Bio Materials, 7(6), 3660-3674. https://doi.org/10.1021/acsabm.3c01153
Vazquez, M. I., Catalan-Dibene, J., & Zlotnik, A. (2015). B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine, 74(2), 318-326.
ViralZone-Expasy. (2024). Virus symmetry and T number. Retrieved Jan., 29 from https://viralzone.expasy.org/8577
Wang, X., Giusti, A., Ny, A., & de Witte, P. A. (2020). Nephrotoxic Effects in Zebrafish after Prolonged Exposure to Aristolochic Acid. Toxins (Basel), 12(4). https://doi.org/10.3390/toxins12040217
Weerachatyanukul, W., Kiatmetha, P., Raksat, P., Boonkua, S., Thongsum, O., Jariyapong, P., Chotwiwatthanakun, C., Ounjai, P., & Metlagel, Z. (2023). Viral Capsid Change upon Encapsulation of Double-Stranded DNA into an Infectious Hypodermal and Hematopoietic Necrosis Virus-like Particle. Viruses, 15(1), 110. https://www.mdpi.com/1999-4915/15/1/110
White, D. A., Buell, A. K., Knowles, T. P. J., Welland, M. E., & Dobson, C. M. (2010). Protein Aggregation in Crowded Environments. Journal of the American Chemical Society, 132(14), 5170-5175. https://doi.org/10.1021/ja909997e
Wingfield, P. T., Stahl, S. J., Williams, R. W., & Steven, A. C. (1995). Hepatitis core antigen produced in Escherichia coli: subunit composition, conformation analysis, and in vitro capsid assembly. Biochemistry, 34(15), 4919-4932. https://doi.org/10.1021/bi00015a003
Wu, Y., Li, Q., & Chen, X.-Z. (2007). Detecting protein–protein interactions by far western blotting. Nature Protocols, 2(12), 3278-3284. https://doi.org/10.1038/nprot.2007.459
Wu, Y.-M., Hsu, C.-H., Wang, C.-H., Liu, W., Chang, W.-H., & Lin, C.-S. (2008). Role of the DxxDxD motif in the assembly and stability of betanodavirus particles. Archives of virology, 153, 1633-1642. https://doi.org/10.1007/s00705-008-0150-6
Xu, H., & Liu, F. (2024). Advances in chemokines of teleost fish species. Aquaculture and Fisheries, 9(2), 115-125. https://doi.org/https://doi.org/10.1016/j.aaf.2023.01.008
Yan, D., Wei, Y.-Q., Guo, H.-C., & Sun, S.-Q. (2015). The application of virus-like particles as vaccines and biological vehicles. Applied Microbiology and Biotechnology, 99(24), 10415-10432. https://doi.org/10.1007/s00253-015-7000-8
Yang, J. I., Bessaid, M., & Kim, K. H. (2020). Production of virus-like particles of nervous necrosis virus displaying partial VHSV's glycoprotein at surface and encapsulating DNA vaccine plasmids. Journal of fish pathology, 33(2), 103-109. https://doi.org/doi.org/10.7847/jfp.2020.33.2.103
Yao, L., Zhang, W., Yang, X., Yi, M., & Jia, K. (2024). Myosin light chain 3 serves as a receptor for nervous necrosis virus entry into host cells via the macropinocytosis pathway. https://doi.org/10.7554/elife.104772.1
Ybañez Jr, C., & Gonzales, R. (2023). Challenges and Progress of Grouper Aquaculture in Asia: A Review. Davao Research Journal, 14. https://doi.org/10.59120/drj.v14i2.109
Zandi, R., Reguera, D., Bruinsma, R. F., Gelbart, W. M., & Rudnick, J. (2004). Origin of icosahedral symmetry in viruses. Proceedings of the National Academy of Sciences, 101(44), 15556-15560. https://doi.org/doi:10.1073/pnas.0405844101
Zhang, C., Guo, S., Chen, G., Zhao, Z., Wang, G.-X., & Zhu, B. (2022). Mucosal delivery of mannose functionalized biomimetic nanoparticles via the branchial route induces robust mucosal and systemic immune responses against fish viral disease. Aquaculture, 546, 737329. https://doi.org/https://doi.org/10.1016/j.aquaculture.2021.737329
Zhang, W., Jia, K., Jia, P., Xiang, Y., Lu, X., Liu, W., & Yi, M. (2020). Marine medaka heat shock protein 90ab1 is a receptor for red-spotted grouper nervous necrosis virus and promotes virus internalization through clathrin-mediated endocytosis. PLoS Pathog, 16(7), e1008668. https://doi.org/10.1371/journal.ppat.1008668
Zhang, Z., Xing, J., Tang, X., Sheng, X., Chi, H., & Zhan, W. (2024). Nectin1 is a pivotal host factor involved in attachment and entry of red-spotted grouper nervous necrosis virus in the early stages of the viral life cycle. J Virol, 98(9), e0090124. https://doi.org/10.1128/jvi.00901-24
Zhao, T., Cai, Y., Jiang, Y., He, X., Wei, Y., Yu, Y., & Tian, X. (2023). Vaccine adjuvants: mechanisms and platforms. Signal Transduction and Targeted Therapy, 8(1), 283. https://doi.org/10.1038/s41392-023-01557-7
Zlotnick, A., Aldrich, R., Johnson, J., Ceres, P., & Young, M. (2000). Mechanism of Capsid Assembly for an Icosahedral Plant Virus. Virology, 277, 450-456. https://doi.org/10.1006/viro.2000.0619
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97340-
dc.description.abstract神經壞死病毒(Nervous Necrosis Virus, NNV)是一種高致病性的病毒,會導致病毒性神經壞死症(Viral Nervous Necrosis, VNN),對水產養殖業,特別是魚類幼苗造成嚴重的經濟損失。NNV的殼體為T=3二十面體結構,由RNA2所編碼的180個次單位殼蛋白組成,在病毒的穩定性與感染力中扮演關鍵角色。利用其自我組裝成T=3二十面體結構之特性,我們開發了NNV病毒樣顆粒(Virus-Like Particles, VLPs)作為攜帶重組石斑魚介白素-6(Recombinant Grouper Interleukine-6; rgIL-6)的奈米載體,rgIL-6對於對石斑魚幼苗免疫調節來說,是一個相當重要的細胞激素。奈米包覆的目的,希望能夠降低細胞激素傳遞時受到環境的影響,以及組織障壁的阻隔。首先必須將rgIL-6成功報復在NNV殼蛋白之中。我們先使用EGTA解聚緩衝液將NNV殼體蛋白解離為單體,接著再利用含二價金屬離子(如鈣離子)的重組緩衝液,在rgIL-6的存在下重新組裝回二十面體結構。這一個策略成功地實現了rgIL-6的包覆,並可以計算出重組蛋白的被包覆率。在適當的條件下,rgIL-6的被包覆效率可達55.67%(w/w),對應於約5:4的分子質量比例(NNV殼蛋白對rgIL-6)。此外,包覆於具蛋白酶耐受性的NNV VLPs內,rgIL-6可能免受酶解,進一步提升其穩定性與免疫刺激功能。與目前廣泛應用於人類醫學但成本高昂的脂質奈米粒子(Lipid Nanoparticles, LNPs)相比,NNV VLP是一種可規模化生產且具生物相容性的替代方案。先前的研究已證實,NNV VLPs可作為DNA疫苗質體的遞送載體,其具有進一步的應用的潛力。我們的研究結果顯示,與其他常見的二十面體結構VLPs相較,NNV VLPs作為細胞激素奈米載體展現出不錯的包覆效率。本研究針對NNV殼蛋白的單體解離與重組條件進行了優化,確保成功封裝rgIL-6,這個結果有望應用於石斑魚苗水產養殖產業,為功能性重組蛋白,特別是免疫促進劑的投遞策略提供一項新選擇。zh_TW
dc.description.abstractNervous Necrosis Virus (NNV) is a highly pathogenic virus responsible for viral nervous necrosis (VNN), causing significant economic losses in aquaculture, particularly among fish larvae. The NNV capsid, an icosahedral T=3 structure composed of 180 capsid protein subunits encoded by RNA2, plays a crucial role in viral stability and infectivity. Leveraging its self-assembling properties, we developed NNV Virus-Like Particles (VLPs) as nanocarriers for recombinant grouper interleukin-6 (rgIL-6), a cytokine critical for immune modulation in grouper larvae. To optimize encapsulation, we employed an EGTA-based disassembly buffer to break down the capsid into monomers, followed by a calcium-rich assembly buffer to restore its icosahedral structure in the presence of rgIL-6. This strategy successfully encapsulated rgIL-6 with an efficiency of 55.67% by mass, corresponding to a molecular ratio of approximately 5:4 (capsid protein to rgIL-6). Encapsulation within protease-resistant NNV VLPs protects rgIL-6 from enzymatic degradation, potentially enhancing its stability and immunostimulatory function.
Unlike lipid nanoparticles (LNPs), which are widely used in human medicine but cost-prohibitive for aquaculture applications, NNV VLPs offer a scalable and biocompatible alternative. Previous studies with NNV VLPs have demonstrated the efficacy of VLPs in delivering DNA vaccine plasmid for cellular delivery, further reinforcing the versatility of this approach. Our findings highlight the potential of NNV VLPs as a cytokine-based nanocarrier platform, addressing key challenges in antigen stability and immune stimulation in aquaculture. Nervous Necrosis Virus (NNV), a highly pathogenic virus causing viral nervous necrosis (VNN), poses significant economic threats to aquaculture due to its devastating impact on fish species, particularly larvae. The capsid of NNV has been reported to adopt a T=3 icosahedral architecture, consisting of 180 capsid protein subunits encoded by RNA2, which contributes to viral stability and infectivity. Building upon this structural framework, we engineered virus-like particles (VLPs) from NNV capsid proteins as nanocarriers for recombinant grouper interleukin-6 (rgIL-6), a cytokine essential for immune modulation in grouper larvae. The study addressed key challenges in capsid protein disassembly and reassembly, employing EGTA-based disassembly buffers to break down the capsid into monomers and calcium-rich assembly buffers to restore its icosahedral architecture. Optimization of conditions ensured successful reassembly and encapsulation of rgIL-6. The encapsulation efficiency was optimized by determining the ideal ratio of capsid proteins to rgIL-6, resulting in VLPs that encapsulated rgIL-6 with an efficiency of 55.67% by mass, corresponding to a molecular ratio of approximately 5:4 (capsid protein to rgIL-6). Encapsulation within protease-resistant NNV VLPs may theoretically protect rgIL-6 from enzymatic degradation and enhance its delivery potential in clinical use. Leveraging this approach could pave the way for developing cytokine-based nanocarrier delivery methods for grouper aquaculture.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-07T16:05:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-05-07T16:05:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
口試委員會審定書 II
Acknowledgement III
中文摘要 Chinese Abstract IV
English Abstract V
Table of Contents VI
List of Tables IX
List of Figures X
Chapter 1: Introduction 1
1.1 Overview of Nervous Necrosis Virus (NNV) 1
1.2 VLP Assembly and NNV Capsids: Nature's Blueprint for Nanocarrier Design 1
1.3 Structure of NNV and Its Capsid Proteins 3
1.4 Principles of Icosahedral Symmetry and Packaging Efficiency in Viral Capsids 4
1.5 Application of NNV VLPs: Mechanisms and Biocompatibility 5
1.6 VLPs of Nodaviruses as Nanocarriers in Aquaculture 6
1.7 Rationale for Encapsulating Recombinant Grouper Interleukin-6 in NNV VLPs 7
1.8 Research Hypothesis 9
Chapter 2: Materials and Methods 10
2.1 Research Methodology Overview 10
2.2 Expression and Inclusion Body Purification of Nodavirus Capsid Proteins 10
2.3 SDS-PAGE and Western Blotting 11
2.4 Transmission Electron Microscopy (TEM) 12
2.5 Expression and Purification of Recombinant Grouper IL-6 (rgIL-6) 12
2.6 SDS-PAGE and Western Blotting for Confirmation of Recombinant Grouper IL-6 12
2.7 Expression and Purification of Recombinant Grouper IL-6 Receptor (rgIL-6R) 13
2.8 The Encapsulation of Recombinant Grouper IL-6 in NNV VLPs 13
2.9 Purification of rgIL-6-Encapsulated NNV VLPs 14
2.10 Densitometry Analysis of SDS-PAGE Bands with Standard for Encapsulation Ratios 14
  2.10.1 BSA Standard Preparation and Dilution 14
  2.10.2 Protein Sample Preparation and SDS-PAGE Electrophoresis 14
  2.10.3 Gel Imaging and ImageJ Analysis 15
  2.10.4 Quantification of rgIL-6 Using BSA Standard Curve and Densitometric Analysis 15
2.11 Optimization of the Encapsulation Efficiency and Statistical Analysis 15
2.12 Investigating the Protein Interaction Between NNV Capsid and rgIL-6 17
2.13 Detection of Protein Interaction Using Dot Blotting 18
Chapter 3: Results 19
3.1 Expression and Purification of NNV Capsid Proteins 19
3.2 Refolding and Self-Assembly Conditions of NNV Capsid Proteins 19
3.3 Transmission Electron Microscopy (TEM) 19
3.4 Expression and Purification of Recombinant Grouper IL-6 (rgIL-6) 20
3.5 Expression and Purification of Recombinant Grouper IL-6 Receptor (rgIL-6R) 20
3.6 Encapsulation of rgIL-6 in Nodavirus Capsid Proteins 20
3.7 Densitometry Analysis of SDS-PAGE Bands with Standard for Encapsulation Ratios 20
3.8 Encapsulation Efficiency of rgIL-6 in NNV VLPs at Different Ratios 21
3.9 Time-Dependent Optimization of Encapsulation Duration 22
3.10 Results of Dot Blot Experiment 22
Chapter 4: Discussion 23
4.1 Optimization of VLP Refolding and Assembly Process 23
4.2 Formulation and Composition of NNV VLPs Encapsulating rgIL-6 24
4.3 The Statistical Encapsulation and Comparison with Other Statistical VLP Encapsulation 24
4.4 Theoretical Benefits and Limitations of the Nodavirus VLP Delivery System 26
4.5 Implications of the Nodavirus VLP Encapsulation System Based on Proof of Concept 27
Reference 28

Table 1. Recombinant Grouper IL-6 (rgIL-6) Concentrations Derived from BSA Densitometric Standard Curve 36
Table 2. Comparison of Encapsulation Efficiency and Protein Interaction Between Cargo and Virus Capsids in Different VLP Types 37

Figure 1. DXXDXD Motif of the NNV Capsid Protein 38
Figure 2. Schematic of the Self-Assembly and Encapsulation of NNV-VLPs with rgIL-6 39
Figure 3. Expression and Purification of NNV Capsid Protein 40
Figure 4. TEM Image of NNV VLPs 41
Figure 5. Expression and Purification of rgIL-6 42
Figure 6. Expression and Purification of Recombinant Grouper IL-6 Receptor (rgIL-6R) Protein 43
Figure 7. SDS-PAGE and Western Blotting Analysis of Nodavirus Capsids and rgIL-6 VLPs 44
Figure 8. SDS-PAGE Quantification of rgIL-6 Protein Concentration Using a BSA Standard Curve 45
Figure 9. SDS-PAGE Analysis of rgIL-6 Encapsulation Efficiency in NNV VLPs 46
Figure 10. Statistical Encapsulation Ratio for rgIL-6 Loading in NNV VLPs 47
Figure 11. SDS-PAGE Analysis of Protein Encapsulation Efficiency at Different Time Durations 48
Figure 12. Optimized Statistical Encapsulation Duration for rgIL-6 in NNV VLPs 49
Figure 13. Dot Blot Analysis of rgIL-6 Interaction with rgIL-6R, NNV Capsid Proteins, and BSA 50
-
dc.language.isoen-
dc.subject病毒性神經壞死症(VNN)zh_TW
dc.subject鈣離子結合基序zh_TW
dc.subject殼蛋白包埋zh_TW
dc.subject奈米載體zh_TW
dc.subject蛋白質包覆效率zh_TW
dc.subject病毒樣顆粒(VLPs)zh_TW
dc.subject石斑魚介白素-6(rgIL-6)zh_TW
dc.subject神經壞死病毒(NNV)zh_TW
dc.subjectCapsid Proteinen
dc.subjectNanocarrieren
dc.subjectInterleukin-6 (IL-6)en
dc.subjectVirus-Like Particles (VLPs)en
dc.subjectViral Nervous Necrosis (VNN)en
dc.subjectNervous Necrosis Virus (NNV)en
dc.subjectEncapsulationen
dc.subjectCalcium-Binding Motifen
dc.title以神經壞死病毒類病毒顆粒作為石斑魚IL-6重組蛋白之奈米載體zh_TW
dc.titleNervous Necrosis Virus Virus-Like Particles (NNV VLPs) as Nanocarriers for Recombinant Grouper Interleukin-6 (IL-6)en
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林翰佐;蘇豐傑zh_TW
dc.contributor.oralexamcommitteeHan-Tso Lin;Feng-Jie Suen
dc.subject.keyword神經壞死病毒(NNV),病毒性神經壞死症(VNN),石斑魚介白素-6(rgIL-6),病毒樣顆粒(VLPs),蛋白質包覆效率,奈米載體,殼蛋白包埋,鈣離子結合基序,zh_TW
dc.subject.keywordNervous Necrosis Virus (NNV),Viral Nervous Necrosis (VNN),Virus-Like Particles (VLPs),Interleukin-6 (IL-6),Nanocarrier,Capsid Protein,Calcium-Binding Motif,Encapsulation,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202500831-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-04-22-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
dc.date.embargo-lift2030-04-16-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-04-16
20.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved