Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97337
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信樹zh_TW
dc.contributor.advisorHsin-Shu Chenen
dc.contributor.author王嘉陞zh_TW
dc.contributor.authorChia-Sheng Wangen
dc.date.accessioned2025-05-07T16:04:38Z-
dc.date.available2025-05-08-
dc.date.copyright2025-05-07-
dc.date.issued2025-
dc.date.submitted2025-04-29-
dc.identifier.citation[1] B. Gönen, F. Sebastiano, R. Quan, et al., "A Dynamic Zoom ADC With 109-dB DR for Audio Applications". IEEE Journal of Solid-State Circuits. vol. 52, no. 6, pp. 1542-1550, 2017.
[2] B. Gönen, S. Karmakar, R. v. Veldhoven, et al., "A Continuous-Time Zoom ADC for Low-Power Audio Applications". IEEE Journal of Solid-State Circuits. vol. 55, no. 4, pp. 1023-1031, 2020.
[3] C. D. Berti, P. Malcovati, L. Crespi, et al., "A 106 dB A-Weighted DR Low-Power Continuous-Time $\Sigma \Delta $ Modulator for MEMS Microphones". IEEE Journal of Solid-State Circuits. vol. 51, no. 7, pp. 1607-1618, 2016.
[4] H. Zhang, H. Li, S. Zhang, et al., "A High-Sensitivity Large-Dynamic-Range Current-Domain Continuous-Time Zoom ADC for Current-Sensing Front-End". IEEE Sensors Journal. vol. 23, no. 1, pp. 401-413, 2023.
[5] Y. Jung, S. J. Kweon, H. Jeon, et al., "A Wide-Dynamic-Range Neural-Recording IC With Automatic-Gain-Controlled AFE and CT Dynamic-Zoom ΔΣ ADC for Saturation-Free Closed-Loop Neural Interfaces". IEEE Journal of Solid-State Circuits. vol. 57, no. 10, pp. 3071-3082, 2022.
[6] B. Gönen, F. Sebastiano, R. v. Veldhoven, et al., "A 1.65mW 0.16mm2 dynamic zoom-ADC with 107.5dB DR in 20kHz BW". 2016 IEEE International Solid-State Circuits Conference (ISSCC), pp. 282-283, 2016.
[7] S. Mehrotra, E. Eland, S. Karmakar, et al., "A 590 µW, 106.6 dB SNDR, 24 kHz BW Continuous-Time Zoom ADC with a Noise-Shaping 4-bit SAR ADC". ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC), pp. 253-256, 2022.
[8] E. Eland, S. Karmakar, B. Gönen, et al., "A 440-μW, 109.8-dB DR, 106.5-dB SNDR Discrete-Time Zoom ADC With a 20-kHz BW". IEEE Journal of Solid-State Circuits. vol. 56, no. 4, pp. 1207-1215, 2021.
[9] S. Karmakar, B. Gönen, F. Sebastiano, et al., "A 280 $\mu$ W Dynamic Zoom ADC With 120 dB DR and 118 dB SNDR in 1 kHz BW". IEEE Journal of Solid-State Circuits. vol. 53, no. 12, pp. 3497-3507, 2018.
[10] J. Yoon, M. Jang, C. Lee, et al., "A 243μW 97.4dB-DR 50kHz-BW Multi-Rate CT Zoom ADC with Inherent DAC Mismatch Tolerance". 2023 IEEE Custom Integrated Circuits Conference (CICC), pp. 1-2, 2023.
[11] H. C. Tsai, C. L. Lo, C. Y. Ho, et al., "A 64-fJ/Conv.-Step Continuous-Time $\Sigma \Delta$ Modulator in 40-nm CMOS Using Asynchronous SAR Quantizer and Digital $\Delta \Sigma$ Truncator". IEEE Journal of Solid-State Circuits. vol. 48, no. 11, pp. 2637-2648, 2013.
[12] K. Jeong, G. Yun, S. Ha, et al., "A 600mVPP-Input-Range 94.5dB-SNDR NS-SAR-Nested DSM with 4th-Order Truncation-Error Shaping and Input-Impedance Boosting for Biosignal Acquisition". 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), pp. 52-53, 2022.
[13] T. C. Carusone, D. A. Johns and K. W. Martin. Analog integrated circuit design, John Wiley & Sons, 2011.
[14] S. Pavan, R. Schreier and G. C. Temes. Understanding delta-sigma data converters, John Wiley & Sons, 2017.
[15] R. Theertham and S. Pavan, "Challenges in Precision Continuous-Time Delta-Sigma Data Converter Design [Feature]". IEEE Circuits and Systems Magazine. vol. 23, no. 3, pp. 54-67, 2023.
[16] D. H. Lee, K. E. Lozada, Y. D. Kim, et al., "A 25-kHz-BW 97.4-dB-SNDR SAR-Assisted Continuous-Time 1–0 MASH Delta-Sigma Modulator With Digital Noise Coupling". IEEE Journal of Solid-State Circuits. vol. 59, no. 10, pp. 3232-3241, 2024.
[17] I. H. Jang, M. J. Seo, S. H. Cho, et al., "A 4.2-mW 10-MHz BW 74.4-dB SNDR Continuous-Time Delta-Sigma Modulator With SAR-Assisted Digital-Domain Noise Coupling". IEEE Journal of Solid-State Circuits. vol. 53, no. 4, pp. 1139-1148, 2018.
[18] S. Billa, S. Dixit and S. Pavan, "Analysis and Design of an Audio Continuous-Time 1-X FIR-MASH Delta–Sigma Modulator". IEEE Journal of Solid-State Circuits. vol. 55, no. 10, pp. 2649-2659, 2020.
[19] B. Gönen, "A Zoom ADC for Dynamic Signals"., 2014.
[20] B. Gonen, "The Zoom ADC: An Energy Efficient ADC for High Resolution"., 2021.
[21] R. Zanbaghi, S. Saxena, G. C. Temes, et al., "A 75-dB SNDR, 5-MHz Bandwidth Stage-Shared 2–2 MASH $\Delta \Sigma$ Modulator Dissipating 16 mW Power". IEEE Transactions on Circuits and Systems I: Regular Papers. vol. 59, no. 8, pp. 1614-1625, 2012.
[22] Y. Chae, K. Souri and K. A. A. Makinwa, "A 6.3 µW 20 bit Incremental Zoom-ADC with 6 ppm INL and 1 µV Offset". IEEE Journal of Solid-State Circuits. vol. 48, no. 12, pp. 3019-3027, 2013.
[23] C. C. Liu, S. J. Chang, G. Y. Huang, et al., "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure". IEEE Journal of Solid-State Circuits. vol. 45, no. 4, pp. 731-740, 2010.
[24] M. v. Elzakker, E. v. Tuijl, P. Geraedts, et al., "A 10-bit Charge-Redistribution ADC Consuming 1.9 $\mu$W at 1 MS/s". IEEE Journal of Solid-State Circuits. vol. 45, no. 5, pp. 1007-1015, 2010.
[25] P. M. Figueiredo and J. C. Vital, "Low kickback noise techniques for CMOS latched comparators". 2004 IEEE International Symposium on Circuits and Systems (ISCAS), pp. I-537, 2004.
[26] B. P. Ginsburg and A. P. Chandrakasan, "An energy-efficient charge recycling approach for a SAR converter with capacitive DAC". 2005 IEEE International Symposium on Circuits and Systems, pp. 184-187 Vol. 181, 2005.
[27] Y. Wu, X. Cheng and X. Zeng, "A split-capacitor vcm-based capacitor-switching scheme for low-power SAR ADCs". 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2014-2017, 2013.
[28] W. Y. Pang, C. S. Wang, Y. K. Chang, et al., "A 10-bit 500-KS/s low power SAR ADC with splitting comparator for bio-medical applications". 2009 IEEE Asian Solid-State Circuits Conference, pp. 149-152, 2009.
[29] Y. Liang, J. Ren, L. Chen, et al., "A Reconfigurable 12-to-18-Bit Dynamic Zoom ADC With Pole-Optimized Technique". IEEE Transactions on Circuits and Systems I: Regular Papers. vol. 70, no. 5, pp. 1940-1948, 2023.
[30] J. S. Mincey, C. Briseno-Vidrios, J. Silva-Martinez, et al., "Low-Power ${G}_{{m}}{-}C$ Filter Employing Current-Reuse Differential Difference Amplifiers". IEEE Transactions on Circuits and Systems II: Express Briefs. vol. 64, no. 6, pp. 635-639, 2017.
[31] B. Yan, W. Zhu, L. Liu, et al., "Equivalent Input Magnetic Noise Analysis for the Induction Magnetometer of 0.1 mHz to 1 Hz". IEEE Sensors Journal. vol. 14, no. 12, pp. 4442-4449, 2014.
[32] H. Jiang, B. Gönen, K. A. A. Makinwa, et al., "Chopping in continuous-time sigma-delta modulators". 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-4, 2017.
[33] S. Pavan, "Analysis of Chopped Integrators, and Its Application to Continuous-Time Delta-Sigma Modulator Design". IEEE Transactions on Circuits and Systems I: Regular Papers. vol. 64, no. 8, pp. 1953-1965, 2017.
[34] B. K. Thandri and J. Silva-Martinez, "A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no Miller capacitors". IEEE Journal of Solid-State Circuits. vol. 38, no. 2, pp. 237-243, 2003.
[35] S. I. Singh, "Design of low-voltage CMOS two-stage operational transconductance amplifier". 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), pp. 248-252, 2017.
[36] Z. Wang, L. Jie, Z. Kong, et al., "10.6 A 150kHz-BW 15-ENOB Incremental Zoom ADC with Skipped Sampling and Single Buffer Embedded Noise-Shaping SAR Quantizer". 2023 IEEE International Solid-State Circuits Conference (ISSCC), pp. 9-11, 2023.
[37] Y. Shen, S. Liu, K. Wen, et al., "A 182.9-dB FoM 108.2-dB SFDR Power/Bandwidth Configurable Fully Dynamic Switched-Capacitor Zoom ADC With Interstage Leakage Shaping". IEEE Transactions on Circuits and Systems I: Regular Papers. vol. 71, no. 9, pp. 3951-3960, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97337-
dc.description.abstract本論文提出了一個三階連續時間的縮放式類比數位轉換器,並採用了一階數位誤差回授截斷器。縮放式類比數位轉換器的架構結合逐次逼近類比數位轉換器作為第一級的類比數位轉換器,三角積分調變轉換器作為第二級的類比數位轉換器。透過逐次逼近類比數位轉換器提供的參考電壓縮小輸入訊號範圍,使三角積分調變轉換器只需要處理小振幅訊號。因此,數位誤差回授截斷器可以在不降低類比數位轉換器的最大穩定振幅下,整合到縮放式類比數位轉換器中,並且相對於類比噪聲耦合架構具有一定的競爭力,因數位信號較不易受製程變異影響。此外,數位誤差回授截斷器提供額外的噪聲整形階數,類似於噪聲耦合架構提供的效果,並有助於提升所提出的類比數位轉換器的頻寬。
第一級積分器中的運算轉導放大器需具備低功耗、低噪聲與寬頻寬。為達到設計需求,電流再利用技術可將運算轉導放大器的輸入級功耗減少一半、而斬波技術則可抑制96%的頻帶內噪聲。此外,前饋技術可稍微提升放大器的單位增益頻率。
當相應的數位回授碼實現於數位誤差回授截斷器中時,多位元回授可成功整合進所提出的縮放式類比數位轉換器,而不會產生嚴重的諧波失真。此外,多位元回授可透過抑制量化噪聲並降低回授濾波器的輸出擺幅,來提升類比數位轉換器的最大穩定振幅及線性度
此次晶片使用台積電180奈米CMOS製程實現了兩顆晶片,操作頻率在一千萬赫茲,訊號頻寬為二十千赫茲。當三角積分調變轉換器使用一位元回授時,類比數位轉換器達到99.72 dB的訊號對雜訊失真比,104.6 dB的動態範圍,以及1.629 毫瓦的功率,對應的Scherier動態範圍品質因數為175.49 dB。而當三角積分調變轉換器使用二位元回授時,類比數位轉換器達到101.25 dB的訊號對雜訊失真比,108.0 dB的動態範圍,以及1.562 毫瓦的功率,對應的Scherier動態範圍品質因數為179.07 dB。
zh_TW
dc.description.abstractThis work presents a 3rd-order continuous-time zoom analog-to-digital converter (ADC) with a 1st-order digital error feedback truncator. The zoom ADC combines a successive approximation register (SAR) ADC as the first stage and a delta-sigma modulator (DSM) ADC as the second stage. By performing a zoom-in on the input signal with the reference voltage provided by the SAR ADC, the DSM ADC processes only small signal amplitudes. Thus, the digital error feedback truncator can be integrated into the zoom ADC without degrading the maximum stable amplitude (MSA) of the ADC, making it a competitive alternative to the analog noise-coupled architecture since digital signals are less affected by process variations. Furthermore, the digital error feedback truncator provides an additional noise-shaping order, similar to the effect provided by the noise-coupled architecture, and helps extend the proposed ADC bandwidth.
The OTA in the first-stage integrator requires low power consumption, low noise, and wide bandwidth. To meet these demands, the current-reuse technique reduces the power consumption of the input stage of the OTA by half, while the chopper technique suppresses in-band noise contribution by 96%. Furthermore, the feedforward technique slightly extends the unity-gain frequency of the OTA.
With a corresponding digital feedback code implemented in the digital error feedback truncator, multi-bit feedback can be successfully incorporated into the proposed ADC without inducing severe harmonic tones. Additionally, multi-bit feedback increases the MSA and the linearity of the ADC by suppressing quantization noise and reducing the output swing of the loop filter.
Two prototype chips were fabricated in the TSMC 180 nm CMOS process, operating at a 10 MHz sampling frequency and a 20 kHz signal bandwidth. This work achieves 99.72 dB SNDR, 104.6 dB DR, and 1.629 mW power consumption with 1-bit feedback from the DSM loop, with a FoMS,DR of 175.49 dB. With 2-bit feedback, the ADC reaches 101.25 dB SNDR, 108.0 dB DR, and 1.562 mW power consumption, with a FoMS,DR of 179.07 dB.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-07T16:04:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-05-07T16:04:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
致謝 III
摘要 V
Abstract VII
Contents IX
List of Figures XV
List of Tables XXIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Thesis Organization 5
Chapter 2 Fundamentals of Delta-Sigma Modulators and Zoom ADC 6
2.1 Introduction to Oversampling ADCs 6
2.1.1 Sampling and Quantization 6
2.1.2 Noise Shaping Technique 11
2.1.3 ADC Performance Metrics 14
2.1.3.1 Signal-to-Noise Ratio (SNR) 14
2.1.3.2 Signal-to-Noise and Distortion Ratio (SNDR) 15
2.1.3.3 Spurious-Free Dynamic Range (SFDR) 15
2.1.3.4 Total Harmonic Distortion (THD) 16
2.1.3.5 Dynamic Range (DR) 16
2.1.3.6 Effective Number of Bits (ENOB) 17
2.1.3.7 Figure-of-Merit (FoM) 17
2.2 Delta-Sigma Modulator 18
2.2.1 Discrete-time Delta-Sigma ADCs 18
2.2.2 Continuous-time Delta-Sigma ADCs 19
2.2.2.1 Non-idealities of the OTA 20
2.2.2.2 RC Time-Constant Variation 22
2.2.2.3 DAC Non-linearity 24
2.2.2.4 Clock Jitter 25
2.2.2.5 Excess Loop Delay 26
2.3 High-order Delta Sigma ADCs 27
2.3.1 Design Consideration on Stability 27
2.3.2 Noise-Coupled Architecture 28
2.3.3 Digital Error Feedback Truncator 29
2.3.4 Multi-Stage Delta-Sigma ADC 30
2.4 SAR ADC 31
2.5 Fundamentals of Zoom ADC 32
2.5.1 System Overview of Zoom ADC 32
2.5.2 Design Parameters and Limitations of Zoom ADC 35
2.5.2.1 Fundamentals of Over-Ranging Factor 35
2.5.2.2 Maximum Input Frequency Limitation 36
2.5.3 Noise Leakage and Compensation 37
2.5.3.1 Fuzz Noise 37
2.5.3.2 Analog Domain Compensation 38
2.5.3.3 Digital Domain Compensation 39
2.5.3.4 Bandwidth Compensation 40
2.5.4 Single-bit and Multi-bit Feedback in Zoom ADC 40
2.6 Summary 41
Chapter 3 System Level Design and Analysis of the Proposed 3rd-order Continuous Time Zoom ADC using 1st-order Digital Error Feedback Truncator 43
3.1 Systematic Design 43
3.1.1 Design Goal 43
3.1.2 Design of Over-Ranging Factor 44
3.1.3 OSR, Coarse ADC Resolution, and Noise-Shaping Order Consideration 44
3.2 Single-Stage DSM Loop Behavioral Design 46
3.2.1 NTF Design 46
3.2.2 Loop Filter Realization 48
3.2.3 1-bit DSM Loop with Ideal Noise-Coupled Architecture 50
3.2.4 Over-Ranging Factor Effect on DSM Loop SQNR 51
3.3 Zoom ADC Behavioral Design 53
3.3.1 ADC Performance with Ideal Noise-Coupled Architecture 53
3.3.2 Off-Chip Noise Cancellation Filter 55
3.3.3 Realization of Digital Error Feedback Truncator 57
3.3.4 The Proposed Architecture of the 3rd-order CT Zoom ADC 61
3.4 Non-Idealities of the Proposed Zoom ADC 63
3.4.1 ADC Thermal Noise 63
3.4.2 Mismatches in Quantizers 65
3.4.2.1 Mismatches in Coarse 5-bit Quantizer 65
3.4.2.2 Mismatches in DSM Loop 7-bit Quantizer 67
3.4.2.3 Sampling Time Mismatch between Two Quantizers 69
3.4.3 OTA Non-Ideality 70
3.4.4 RC Time Constant Variation 72
3.4.5 DAC Mismatch 75
3.4.6 Clock Jitter 77
3.4.7 Excess Loop Delay 79
3.5 Summary 80
Chapter 4 Circuit Implementation of the Proposed 3rd-order Continuous Time Zoom ADC using 1st-order Digital Error Feedback Truncator 82
4.1 Block Diagram of the Proposed Zoom ADC 82
4.2 SAR ADCs 83
4.2.1 Comparison of the Bottom-plate Sampling Method and the Top-plate Sampling Method 83
4.2.2 Comparators 86
4.2.3 Coarse 5-bit SAR ADC 87
4.2.4 DSM Loop 7-bit SAR ADC 90
4.3 Loop Filter 93
4.3.1 Proposed OTA in First Integrator 93
4.3.1.1 Current-Reuse Technique 93
4.3.1.2 Chopper Technique 94
4.3.1.3 Feedforward Hybrid Miller Compensation OTA 95
4.3.1.4 Schematic of the Proposed OTA 97
4.3.2 Proposed OTA in 2nd-Integrator 104
4.3.3 RC Tuning in Loop Filter 105
4.4 Digital Circuits 107
4.4.1 Digital Error Feedback Truncator 107
4.4.2 Digital Summation 109
4.4.3 Rotational DWA 110
4.4.4 Clock Generator 111
4.5 Feedback DAC 114
4.6 Simulation Results 117
Chapter 5 Experimental Results of the Proposed 3rd-order Continuous Time Zoom ADC using 1st-order Digital Error Feedback Truncator 122
5.1 Measurement Environment Setup 122
5.2 Measurement Results 125
5.2.1 Chip 1 of the Proposed CT Zoom ADC 126
5.2.1.1 Chip 1 Measurement Results 127
5.2.1.2 Issues in Chip 1 130
5.2.2 Chip 2 of the Proposed CT Zoom ADC 133
5.2.2.1 Case 1 of Chip 2 Measurement Results: 1-bit Feedback with Enabled EF Path in Truncator 135
5.2.2.2 Case 2 of Chip 2 Measurement Results: 2-bit Feedback with Enabled EF Path in Truncator 139
5.2.2.3 Case 3 of Chip 2 Measurement Results: 1-bit Feedback with Disabled EF Path in Truncator 143
5.2.2.4 Case 4 of Chip 2 Measurement Results: 2-bit Feedback with Disabled EF Path in Truncator 145
5.2.2.5 Issues in Chip 2 147
5.3 Performance Summary and Comparison 152
Chapter 6 Conclusions and Future Work 156
6.1 Conclusions 156
6.2 Future Work 157
Bibliography 159
-
dc.language.isoen-
dc.subject連續時間縮放式類比數位轉換器zh_TW
dc.subject多位元回授zh_TW
dc.subject數位誤差回授截斷器zh_TW
dc.subject電流再利用技術zh_TW
dc.subject斬波技術zh_TW
dc.subject前饋技術zh_TW
dc.subject類比數位轉換器zh_TW
dc.subjectfeedforward techniqueen
dc.subjectanalog-to-digital converteren
dc.subjectcontinuous-time zoom ADCen
dc.subjectmulti-bit feedbacken
dc.subjectdigital error feedback truncatoren
dc.subjectcurrent-reuse techniqueen
dc.subjectchopperen
dc.title一個使用一階數位誤差回授截斷器之三階連續時間縮放式類比數位轉換器zh_TW
dc.titleA 3rd-order Continuous Time Zoom ADC Using a 1st-order Digital Error Feedback Truncatoren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林宗賢;陳佳宏;許雲翔zh_TW
dc.contributor.oralexamcommitteeTsung-Hsien Lin;Chia-Hung Chen;Yun-Shiang Shuen
dc.subject.keyword類比數位轉換器,連續時間縮放式類比數位轉換器,多位元回授,數位誤差回授截斷器,電流再利用技術,斬波技術,前饋技術,zh_TW
dc.subject.keywordanalog-to-digital converter,continuous-time zoom ADC,multi-bit feedback,digital error feedback truncator,current-reuse technique,chopper,feedforward technique,en
dc.relation.page162-
dc.identifier.doi10.6342/NTU202500888-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-04-29-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2029-06-25-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
14.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved