請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97319完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許正一 | zh_TW |
| dc.contributor.advisor | Zeng-Yei Hseu Ph.D. | en |
| dc.contributor.author | Marvin D. Cascante | zh_TW |
| dc.contributor.author | Marvin D. Cascante | en |
| dc.date.accessioned | 2025-04-24T16:07:36Z | - |
| dc.date.available | 2025-04-25 | - |
| dc.date.copyright | 2025-04-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-04-21 | - |
| dc.identifier.citation | Adeel, M., Lee, J. Y., Zain, M., Rizwan, M., Nawab, A., Ahmad, M., Shafiq, M., Yi, H., Jilani, G., Javed, R., Horton, R., Rui, Y., Tsang, D. C., & Xing, B. (2019). Cryptic footprints of rare earth elements on natural resources and living organisms. Environment International, 127, 785–800. https://doi.org/10.1016/j.envint.2019.03.022
Aide, M. T., & Aide, C. (2012). Rare Earth Elements: Their importance in understanding soil genesis. ISRN Soil Science, 2012, 1–11. https://doi.org/10.5402/2012/783876 Alcamo, J., Kok, K., Busch, G., Priess, J. A., Eickhout, B., Rounsevell, M., Rothman, D. S., & Heistermann, M. (2006). Searching for the Future of Land: Scenarios from the Local to Global Scale. In Springer eBooks (pp. 137–155). https://doi.org/10.1007/3-540-32202-7_6 Alexander, E. (1988). Morphology, fertility and classification of productive soils on serpentinized peridotite in California (U.S.A.). Geoderma, 41(3–4), 337–351. https://doi.org/10.1016/0016-7061(88)90069-9 Alexander, E. B. (2009). Serpentine geoecology of the eastern and southeastern margins of North America. Northeastern Naturalist, 16(sp5), 223–252. https://doi.org/10.1656/045.016.0518 Alexander, E. B., Adamson, C., Zinke, P. J., & Graham, R. C. (1989). SOILS AND CONIFER FOREST PRODUCTIVITY ON SERPENTINIZED PERIDOTITE OF THE TRINITY OPHIOLITE, CALIFORNIA. Soil Science, 148(6), 412–423. https://doi.org/10.1097/00010694-198912000-00003 Allen, D. E., & Seyfried, W. (2005). REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure. Geochimica Et Cosmochimica Acta, 69(3), 675–683. https://doi.org/10.1016/j.gca.2004.07.016 Alveteg, M., Sverdrup, H., & Warfvinge, P. (1995). Developing a kinetic alternative in modeling soil aluminium. Water Air & Soil Pollution, 79(1–4), 377–389. https://doi.org/10.1007/bf01100448 Andrade, G. R. P., Cuadros, J., Barbosa, J. M. P., & Vidal-Torrado, P. (2021). Clay minerals control rare earth elements (REE) fractionation in Brazilian mangrove soils. CATENA, 209, 105855. https://doi.org/10.1016/j.catena.2021.105855 Angelone, M., Vaselli, O., Bini, C., & Coradossi, N. (1993). Pedogeochemical evolution and trace elements availability to plants in ophiolitic soils. The Science of the Total Environment, 129(3), 291–309. https://doi.org/10.1016/0048-9697(93)90324-y Antić-Mladenović, S., Frohne, T., Kresović, M., Stärk, H., Tomić, Z., Ličina, V., & Rinklebe, J. (2016). Biogeochemistry of Ni and Pb in a periodically flooded arable soil: Fractionation and redox-induced (im)mobilization. Journal of Environmental Management, 186, 141–150. https://doi.org/10.1016/j.jenvman.2016.06.005 Baillie, I., Evangelista, P., & Inciong, N. (2000). Differentiation of upland soils on the Palawan ophiolitic complex, Philippines. CATENA, 39(4), 283–299. https://doi.org/10.1016/s0341-8162(00)00078-3 Baralkiewicz, D., & Siepak, J. (1999). Chromium, nickel and cobalt in environmental samples and existing legal norms. Polish Journal of Environmental Studies, 08(4). http://6csnfn.pjoes.com/pdf/8.4/201-208.pdf Bau, M., Möller, P., & Dulski, P. (1997). Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56(1–2), 123–131. https://doi.org/10.1016/s0304-4203(96)00091-6 Baumann, F., He, J., Schmidt, K., Kühn, P., & Scholten, T. (2009). Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biology, 15(12), 3001–3017. https://doi.org/10.1111/j.1365-2486.2009.01953.x Bédard, É., Hébert, R., Guilmette, C., & Dostal, J. (2008). The supra-ophiolitic sedimentary cover of the Asbestos ophiolite, Québec, Canada: First geochemical evidence of transition from oceanic to continental sediment flux. Lithos, 105(3–4), 239–252. https://doi.org/10.1016/j.lithos.2008.04.005 Ben-Dor, E. (2002). Quantitative remote sensing of soil properties. In Advances in agronomy (pp. 173–243). https://doi.org/10.1016/s0065-2113(02)75005-0 Bishop, M. E., Dong, H., Glasser, P., Briggs, B. R., Pentrak, M., Stucki, J. W., Boyanov, M. I., Kemner, K. M., & Kovarik, L. (2019). Reactivity of redox cycled Fe-bearing subsurface sediments towards hexavalent chromium reduction. Geochimica Et Cosmochimica Acta, 252, 88–106. https://doi.org/10.1016/j.gca.2019.02.039 Blake, G. R., & Hartge, K. H. (2013). Bulk density. In Soil Science Society of America book series (pp. 363–375). https://doi.org/10.2136/sssabookser5.1.2ed.c13 Bolaños-Benítez, V., Van Hullebusch, E. D., Birck, J., Garnier, J., Lens, P. N., Tharaud, M., Quantin, C., & Sivry, Y. (2020). Chromium mobility in ultramafic areas affected by mining activities in Barro Alto massif, Brazil: An isotopic study. Chemical Geology, 561, 120000. https://doi.org/10.1016/j.chemgeo.2020.120000 Brandt, M. J., Johnson, K. M., Elphinston, A. J., & Ratnayaka, D. D. (2016). Chemistry, Microbiology and Biology of water. In Elsevier eBooks (pp. 235–321). https://doi.org/10.1016/b978-0-08-100025-0.00007-7 Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691 Brimhall, G. H., & Dietrich, W. E. (1987). Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochimica Et Cosmochimica Acta, 51(3), 567–587. https://doi.org/10.1016/0016-7037(87)90070-6 Brimhall, G. H., Chadwick, O. A., Lewis, C. J., Compston, W., Williams, I. S., Danti, K. J., Dietrich, W. E., Power, M. E., Hendricks, D., & Bratt, J. (1992). Deformational mass transport and invasive processes in soil evolution. Science, 255(5045), 695–702. https://doi.org/10.1126/science.255.5045.695 Caillaud, J., Proust, D., Philippe, S., Fontaine, C., & Fialin, M. (2009). Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma, 149(3–4), 199–208. https://doi.org/10.1016/j.geoderma.2008.11.031 Chadwick, O. A., Brimhall, G. H., & Hendricks, D. M. (1990). From a black to a gray box — a mass balance interpretation of pedogenesis. Geomorphology, 3(3–4), 369–390. https://doi.org/10.1016/0169-555x(90)90012-f Chen, S., & Torres, R. (2012). Effects of geomorphology on the distribution of metal abundance in salt marsh sediment. Estuaries and Coasts, 35(4), 1018–1027. https://doi.org/10.1007/s12237-012-9494-y Cheng, C., Jien, S., Tsai, H., Chang, Y., Chen, Y., & Hseu, Z. (2009). Geochemical element differentiation in serpentine soils from the Ophiolite Complexes, eastern Taiwan. Soil Science, 174(5), 283–291. https://doi.org/10.1097/ss.0b013e3181a4bf68 Cheng, H., Hao, R., Zhou, Y., & Frost, R. L. (2017). Visible and near-infrared spectroscopic comparison of five phyllosilicate mineral samples. Spectrochimica Acta Part a Molecular and Biomolecular Spectroscopy, 180, 19–22. https://doi.org/10.1016/j.saa.2017.02.043 Cheng, J., Cheng, Z., Hu, R., Cui, Y., Cai, J., Li, N., Gui, S., Sang, X., Sun, Q., Wang, L., & Hong, F. (2011). Immune dysfunction and liver damage of mice following exposure to lanthanoids. Environmental Toxicology, 29(1), 64–73. https://doi.org/10.1002/tox.20773 Cherniak, D. J. (2010). Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime. Reviews in Mineralogy and Geochemistry, 72(1), 827–869. https://doi.org/10.2138/rmg.2010.72.18 Chung, J., & Eum, J. (2001). Effects of organic matter and pH on chromium oxidation potential of soil. Korean Journal of Environmental Agriculture, 20(5), 346–351. http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=HGNHB8_2001_v20n5_346 Cloutis, E. A., Sunshine, J. M., & Morris, R. V. (2004). Spectral reflectance‐compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry. Meteoritics and Planetary Science, 39(4), 545–565. https://doi.org/10.1111/j.1945-5100.2004.tb00918.x Coleman, R. G., & Keith, T. E. (1971). A Chemical Study of Serpentinization--Burro Mountain, California. Journal of Petrology, 12(2), 311–328. https://doi.org/10.1093/petrology/12.2.311 Compton, J. S., White, R. A., & Smith, M. (2003). Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chemical Geology, 201(3–4), 239–255. https://doi.org/10.1016/s0009-2541(03)00239-0 Coppin, F., Berger, G., Bauer, A., Castet, S., & Loubet, M. (2002). Sorption of lanthanides on smectite and kaolinite. Chemical Geology, 182(1), 57–68. https://doi.org/10.1016/s0009-2541(01)00283-2 Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, occurrences and uses (2nd ed.). Wiley‐VCH Verlag GmbH & Co. KGaA. http://dx.doi.org/10.1002/3527602097 Coskun, A., Horasan, B. Y., & Ozturk, A. (2021). Heavy metal distribution in stream sediments and potential ecological risk assessment in Konya Northeast region. Environmental Earth Sciences, 80(5). https://doi.org/10.1007/s12665-021-09495-9 D’Amico, M. E., & Previtali, F. (2011). Edaphic influences of ophiolitic substrates on vegetation in the Western Italian Alps. Plant and Soil, 351(1–2), 73–95. https://doi.org/10.1007/s11104-011-0932-6 Da Silva, P. A., De Lima, B. H., La Scala, N., Peruzzi, N. J., Chavarette, F. R., & Panosso, A. R. (2020). Spatial variation of soil carbon stability in sugarcane crops, central-south of Brazil. Soil and Tillage Research, 202, 104667. https://doi.org/10.1016/j.still.2020.104667 Da Silva, Y. J. a. B., Nascimento, C. W. a. D., Da Silva, Y. J. a. B., Biondi, C. M., & Silva, C. M. C. a. C. (2016). Rare earth element concentrations in Brazilian benchmark soils. Revista Brasileira De Ciência Do Solo, 40(0). https://doi.org/10.1590/18069657rbcs20150413 Dandar, O., Okamoto, A., Uno, M., & Tsuchiya, N. (2023). Mantle hydration initiated by Ca metasomatism in a subduction zone: An example from the Chandman meta-peridotite, western Mongolia. Lithos, 452–453, 107212. https://doi.org/10.1016/j.lithos.2023.107212 Davranche, M., Grybos, M., Gruau, G., Pédrot, M., Dia, A., & Marsac, R. (2011). Rare earth element patterns: A tool for identifying trace metal sources during wetland soil reduction. Chemical Geology, 284(1–2), 127–137. https://doi.org/10.1016/j.chemgeo.2011.02.014 Deer, W. A., Howie, R. A., & Zussman, J. (2013). An introduction to the rock-forming minerals (3rd ed.). Berforts Information Press. https://doi.org/10.1180/dhz Deschamps, F., Godard, M., Guillot, S., & Hattori, K. (2013b). Geochemistry of subduction zone serpentinites: A review. Lithos, 178, 96–127. https://doi.org/10.1016/j.lithos.2013.05.019 Dilek, Y. D., & Robinson, P. T. (2003). Ophiolites in earth history: introduction. Geological Society London Special Publications, 218(1), 1–8. https://doi.org/10.1144/gsl.sp.2003.218.01.01 Dilek, Y., & Furnes, H. (2014). Ophiolites and their origins. Elements, 10(2), 93–100. https://doi.org/10.2113/gselements.10.2.93 DiPietro, J. A. (2013). Keys to the interpretation of Geological History. In Elsevier eBooks (pp. 327–344). https://doi.org/10.1016/b978-0-12-397799-1.00020-8 Dixon, J. B. (2013). Kaolin and Serpentine Group Minerals. In Soil Science Society of America book series (pp. 467–525). https://doi.org/10.2136/sssabookser1.2ed.c10 Ertani, A., Mietto, A., Borin, M., & Nardi, S. (2017). Chromium in Agricultural Soils and Crops: A review. Water Air & Soil Pollution, 228(5). https://doi.org/10.1007/s11270-017-3356-y Fang, Q., Hong, H., Zhao, L., Kukolich, S., Yin, K., & Wang, C. (2018). Visible and Near-Infrared Reflectance Spectroscopy for Investigating Soil Mineralogy: A review. Journal of Spectroscopy, 2018, 1–14. https://doi.org/10.1155/2018/3168974 Feitosa, M. M., Da Silva, Y. J. a. B., Biondi, C. M., Alcantara, V. C., & Nascimento, C. W. a. D. (2020). Rare Earth elements in rocks and soil profiles of a tropical volcanic archipelago in the Southern Atlantic. CATENA, 194, 104674. https://doi.org/10.1016/j.catena.2020.104674 Fendorf, S. E. (1995). Surface reactions of chromium in soils and waters. Geoderma, 67(1–2), 55–71. https://doi.org/10.1016/0016-7061(94)00062-f Fu, W., Feng, Y., Luo, P., Zhang, Y., Huang, X., Zeng, X., Cai, Q., & Zhou, Y. (2019b). Weathering of ophiolite remnant and formation of ni laterite in a strong uplifted tectonic region (Yuanjiang, southwest China). Minerals, 9(1), 51. https://doi.org/10.3390/min9010051 Garver, J. I., Royce, P. R., & Smick, T. A. (1996). Chromium and Nickel in Shale of the Taconic Foreland: A Case Study for the Provenance of Fine-Grained Sediments with an Ultramafic Source. Journal of Sedimentary Research, Vol. 66. https://doi.org/10.1306/d42682c5-2b26-11d7-8648000102c1865d Gawlick, H., & Missoni, S. (2019). Middle-Late Jurassic sedimentary mélange formation related to ophiolite obduction in the Alpine-Carpathian-Dinaridic Mountain Range. Gondwana Research, 74, 144–172. https://doi.org/10.1016/j.gr.2019.03.003 Gee, G. W., & Bauder, J. W. (2013). Particle-size analysis. In Soil Science Society of America book series (pp. 383–411). https://doi.org/10.2136/sssabookser5.1.2ed.c15 Ghose, N. C., Chatterjee, N., & Fareeduddin, N. (2014). A Petrographic Atlas of Ophiolite. In Springer eBooks. https://doi.org/10.1007/978-81-322-1569-1 Gibaga, C. R. L., Samaniego, J. O., Tanciongco, A. M., Quierrez, R. N. M., Montano, M. O., Gervasio, J. H. C., Reyes, R. C. G., & Peralta, M. J. V. (2022). The rare earth element (REE) potential of the Philippines. Journal of Geochemical Exploration, 242, 107082. https://doi.org/10.1016/j.gexplo.2022.107082 Goldberg, K., & Humayun, M. (2010b). The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeography Palaeoclimatology Palaeoecology, 293(1–2), 175–183. https://doi.org/10.1016/j.palaeo.2010.05.015 Gonnelli, C., & Renella, G. (2012). Chromium and nickel. In Environmental pollution (pp. 313–333). https://doi.org/10.1007/978-94-007-4470-7_11 Grieco, G., Ferrario, A., & Mathez, E. A. (2003). The effect of metasomatism on the Cr-PGE mineralization in the Finero Complex, Ivrea Zone, Southern Alps. Ore Geology Reviews, 24(3–4), 299–314. https://doi.org/10.1016/j.oregeorev.2003.05.004 Guertin, J. (2004). Toxicity and health effects of chromium (All oxidation states). In CRC Press eBooks (pp. 215–234). https://doi.org/10.1201/9780203487969.ch6 Gunn. G. (2014). Critical Metals Handbook. John Wiley & Sons: Hoboken, NJ, USA, 1–439. https://doi.org/10.1002/9781118755341 Haldar, S. (2020). Basic petrology. In Elsevier eBooks (pp. 145–158). https://doi.org/10.1016/b978-0-12-820585-3.00004-1 Han, R., & Xu, Z. (2021). Geochemical Behaviors of Rare Earth Elements (REEs) in Karst Soils under Different Land-Use Types: A Case in Yinjiang Karst Catchment, Southwest China. International Journal of Environmental Research and Public Health, 18(2), 502. https://doi.org/10.3390/ijerph18020502 Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55(3–4), 319–322. https://doi.org/10.1016/0037-0738(88)90137-6 Harnois, L., Trottier, J., & Morency, M. (1990). Rare earth element geochemistry of Thetford Mines ophiolite complex, Northern Appalachians, Canada. Contributions to Mineralogy and Petrology, 105(4), 433–445. https://doi.org/10.1007/bf00286830 Hauzenberger, C. A., Konzett, J., Joachim-Mrosko, B., & Nguyen, H. (2024). Pliocene to Pleistocene REE-P metasomatism in the subcontinental lithosphere beneath southeast Asia – evidence from a monazite- and REE-rich apatite-bearing peridotite xenolith from central Vietnam. Journal of Petrology, 65(3). https://doi.org/10.1093/petrology/egae015 He, Y. T., & Traina, S. J. (2005). Cr (VI) Reduction and Immobilization by Magnetite under Alkaline pH Conditions: The Role of Passivation. Environmental Science & Technology, 39(12), 4499–4504. https://doi.org/10.1021/es0483692 Ho, C. (1988). An introduction to the geology of Taiwan: explanatory text of the geologic map of Taiwan. http://ci.nii.ac.jp/ncid/BA17266618 Horf, M., Gebbers, R., Olfs, H., & Vogel, S. (2023). Determining nutrients, dry matter, and pH of liquid organic manures using visual and near-infrared spectrometry. The Science of the Total Environment, 908, 168045. https://doi.org/10.1016/j.scitotenv.2023.168045 Hoshino, M., Sanematsu, K., & Watanabe, Y. (2016). REE Mineralogy and Resources. In Deleted Journal (pp. 129–291). https://doi.org/10.1016/bs.hpcre.2016.03.006 Hseu, Z. Y., Tsai, H., Hsi, H. C., & Chen, Y. C. (2007). Weathering sequences of clay minerals in soils along a serpentinitic toposequence. Clays and Clay Minerals, 55(4), 389–401. https://doi.org/10.1346/ccmn.2007.0550407 Hseu, Z., Su, Y., Zehetner, F., & Hsi, H. (2017). Leaching potential of geogenic nickel in serpentine soils from Taiwan and Austria. Journal of Environmental Management, 186, 151–157. https://doi.org/10.1016/j.jenvman.2016.02.034 Hseu, Z., Zehetner, F., Fujii, K., Watanabe, T., & Nakao, A. (2018). Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient. Geoderma, 327, 97–106. https://doi.org/10.1016/j.geoderma.2018.04.030 Hseu, Z., Zehetner, F., Ottner, F., & Iizuka, Y. (2015). Clay-Mineral transformations and Heavy-Metal release in paddy soils formed on serpentinites in eastern Taiwan. Clays and Clay Minerals, 63(2), 119–131. https://doi.org/10.1346/ccmn.2015.0630204 Hseu, Z.Y. (2018). Parent Minerals of Serpentine Soils. In: Biogeochemistry of Serpentine Soils. Nova Science Publisher, Inc., New York. ISBN 978 1 53613 171 0, pp 7-22 Hum, H. Z., Huang, W., & Hseu, Z. (2024). Pedogenic characterization of rare earth elements in humid subtropical soils on volcanic plateaus. CATENA, 244, 108256. https://doi.org/10.1016/j.catena.2024.108256 Infante, E. F., Dulfo, C. P., Dicen, G. P., Hseu, Z., & Navarrete, I. A. (2021). Bioaccumulation and human health risk assessment of chromium and nickel in paddy rice grown in serpentine soils. Environmental Science and Pollution Research, 28(14), 17146–17157. https://doi.org/10.1007/s11356-020-12176-y International Soil Reference and Information Center (ISRIC). 2002. Procedures for soil analysis (L.P. Van Reuwijk, Editor). Wageningen, the Netherlands. pp. 106 Iyaka, N. Y. A. (2011). Nickel in soils: A review of its distribution and impacts. Scientific Research and Essays, 6(33). https://doi.org/10.5897/srex11.035 Jacobs, J., & Testa, S. (2006). Overview of Chromium(VI) in the environment: Background and history. https://api.semanticscholar.org/CorpusID:132347395 Jiménez‐Ballesta, R., Bravo, S., García‐Pradas, J., Pérez‐de‐los‐Reyes, C., Amorós, J. A., & García‐Navarro, F. J. (2022). Characteristics of vineyard soils derived from Plio‐Quaternary landforms (raña or rañizo) in southern Europe. European Journal of Soil Science, 73(4). https://doi.org/10.1111/ejss.13291 Jiménez-Ballesta, R., Bravo, S., Pérez-De-Los-Reyes, C., Amorós, J. A., Villena, J., & García-Navarro, F. J. (2023). Pedological formations on old mountain geomorphological surfaces of central Spain. Heliyon, 10(1), e23852. https://doi.org/10.1016/j.heliyon.2023.e23852 Kabata-Pendias, A. (2010). Trace elements in soils and plants. In CRC Press eBooks. https://doi.org/10.1201/b10158 Kabata-Pendias, A. and Pendias, H. (2001) Trace Elements in Soils and Plants. 3rd Edition, CRC Press, Boca Raton, 403 p. Kicińska, A., Pomykała, R., & Izquierdo‐Diaz, M. (2021). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73(1). https://doi.org/10.1111/ejss.13203 Kierczak, J., Neel, C., Bril, H., & Puziewicz, J. (2007). Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma, 142(1–2), 165–177. https://doi.org/10.1016/j.geoderma.2007.08.009 Kierczak, J., Pędziwiatr, A., Waroszewski, J., & Modelska, M. (2016). Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate. Geoderma, 268, 78–91. https://doi.org/10.1016/j.geoderma.2016.01.025 Kierczak, J., Pietranik, A., & Pędziwiatr, A. (2021). Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. The Science of the Total Environment, 755, 142620. https://doi.org/10.1016/j.scitotenv.2020.142620 Knaus, R. M., & Van Gent, D. L. (1989). Accretion and canal impacts in a rapidly subsiding Wetland. III. A new soil Horizon marker method for measuring recent accretion. Estuaries, 12(4), 269. https://doi.org/10.2307/1351906 Koralegedara, N. H., & Maynard, J. B. (2017). Chemical, mineralogical and textural properties of the Kope Formation mudstones: How they affect its durability. Engineering Geology, 228, 312–322. https://doi.org/10.1016/j.enggeo.2017.08.025 Külah, T., Kadir, S., Gürel, A., Eren, M., & Önalgil, N. (2014). Mineralogy, geochemistry, and genesis of mudstones in the Upper Miocene Mustafapaşa member of the Ürgüp Formation in the Cappadocia region, central Anatolia, Turkey. Clays and Clay Minerals, 62(4), 267–285. https://doi.org/10.1346/ccmn.2014.0620403 Landon, J. (2014). Booker Tropical Soil Manual. In Routledge eBooks. https://doi.org/10.4324/9781315846842 Laveuf, C., & Cornu, S. (2009). A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma, 154(1–2), 1–12. https://doi.org/10.1016/j.geoderma.2009.10.002 Lazar, O. R., Bohacs, K. M., Macquaker, J. H. S., Schieber, J., & Demko, T. M. (2015). Capturing key attributes of Fine-Grained Sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and Description guidelines. Journal of Sedimentary Research, 85(3), 230–246. https://doi.org/10.2110/jsr.2015.11 Lee, D., Yang, Y., & Lin, H. (2007). Assessing slope protection methods for weak rock slopes in Southwestern Taiwan. Engineering Geology, 91(2–4), 100–116. https://doi.org/10.1016/j.enggeo.2006.12.005 Lewis, J.F., Draper, G., Proenza, J.A., Espaillat, J., Jiménez, J. (2006). Ophiolite-related ultramafic rocks (Serpentinites) in the Caribbean region: a review of their occurrence, composition, origin, emplacement and Ni-Laterite soil formation. Geol. Acta 4, 237–263. Leybourne, M. I., & Johannesson, K. H. (2008). Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: Fractionation, speciation, and controls over REE+Y patterns in the surface environment. Geochimica Et Cosmochimica Acta, 72(24), 5962–5983. https://doi.org/10.1016/j.gca.2008.09.022 Liu, H., Xiong, Z., Jiang, X., Liu, G., & Liu, W. (2016). Heavy metal concentrations in riparian soils along the Han River, China: The importance of soil properties, topography and upland land use. Ecological Engineering, 97, 545–552. https://doi.org/10.1016/j.ecoleng.2016.10.060 Liu, W., Li, Y., Wang, X., Cui, L., Zhao, Z., Liu, C., & Xu, Z. (2022). Weathering stage and topographic control on rare earth element (REE) behavior: New constraints from a deeply weathered granite hill. Chemical Geology, 610, 121066. https://doi.org/10.1016/j.chemgeo.2022.121066 Ma, Y. and P.S. Hooda. (2010). Chromium, nickel and cobalt, In: Trace Elements in soils, 1st ed. (P.S. Hooda, ed.), John Wiley & Sons, United Kingdom, 461-479, http://doi.org/10.1002/9781444319477.ch19 Macquaker, J. H. S., Curtis, C. D., & Coleman, M. L. (1997). The Role of Iron in Mudstone Diagenesis: Comparison of Kimmeridge Clay Formation Mudstones from Onshore and Offshore (UKCS) Localities. Journal of Sedimentary Research, Vol. 67. https://doi.org/10.1306/d426865d-2b26-11d7-8648000102c1865d MacRae, N., Nesbitt, H., & Kronberg, B. (1992). Development of a positive Eu anomaly during diagenesis. Earth and Planetary Science Letters, 109(3–4), 585–591. https://doi.org/10.1016/0012-821x(92)90116-d Marescotti, P., Comodi, P., Crispini, L., Gigli, L., Zucchini, A., & Fornasaro, S. (2019b). Potentially Toxic Elements in Ultramafic Soils: A Study from Metamorphic Ophiolites of the Voltri Massif (Western Alps, Italy). Minerals, 9(8), 502. https://doi.org/10.3390/min9080502 Martín-Sanz, J. P., De Santiago-Martín, A., Valverde-Asenjo, I., Quintana-Nieto, J. R., González-Huecas, C., & López-Lafuente, A. L. (2022). Comparison of soil quality indexes calculated by network and principal component analysis for carbonated soils under different uses. Ecological Indicators, 143, 109374. https://doi.org/10.1016/j.ecolind.2022.109374 Matisoff, G., Ketterer, M. E., Wilson, C. G., Layman, R., & Whiting, P. J. (2001). Transport of rare Earth Element-Tagged soil particles in response to thunderstorm runoff. Environmental Science & Technology, 35(16), 3356–3362. https://doi.org/10.1021/es001693m Mazhari, S., & Attar, R. S. (2015). Rare earth elements in surface soils of the Davarzan area, NE of Iran. Geoderma Regional, 5, 25–33. https://doi.org/10.1016/j.geodrs.2015.03.001 McGahan, D. G., Southard, R. J., & Claassen, V. P. (2009). Plant‐Available calcium varies widely in soils on serpentinite landscapes. Soil Science Society of America Journal, 73(6), 2087–2095. https://doi.org/10.2136/sssaj2008.0087 Mehra, O., & Jackson, M. (2013). IRON OXIDE REMOVAL FROM SOILS AND CLAYS BY a DITHIONITE–CITRATE SYSTEM BUFFERED WITH SODIUM BICARBONATE. In Clays and Clay Minerals (pp. 317–327). https://doi.org/10.1016/b978-0-08-009235-5.50026-7 Merrot, P., Juillot, F., Pape, P. L., Lefebvre, P., Brest, J., Kieffer, I., Menguy, N., Viollier, E., Fernandez, J., Moreton, B., Radakovitch, O., & Morin, G. (2021). Comparative Cr and Mn speciation across a shore-to-reef gradient in lagoon sediments downstream of Cr-rich Ferralsols upon ultramafic rocks in New Caledonia. Journal of Geochemical Exploration, 229, 106845. https://doi.org/10.1016/j.gexplo.2021.106845 Mihajlovic, J., & Rinklebe, J. (2018). Rare earth elements in German soils - A review. Chemosphere, 205, 514–523. https://doi.org/10.1016/j.chemosphere.2018.04.059 Mihajlovic, J., Bauriegel, A., Stärk, H., Roßkopf, N., Zeitz, J., Milbert, G., & Rinklebe, J. (2019). Rare earth elements in soil profiles of various ecosystems across Germany. Applied Geochemistry, 102, 197–217. https://doi.org/10.1016/j.apgeochem.2019.02.002 Mihajlovic, J., Stärk, H., & Rinklebe, J. (2014). Geochemical fractions of rare earth elements in two floodplain soil profiles at the Wupper River, Germany. Geoderma, 228–229, 160–172. https://doi.org/10.1016/j.geoderma.2013.12.009 Miyashiro, A., Shido, F., & Ewing, M. (1969). Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24º and 30º North Latitude. Contributions to Mineralogy and Petrology, 23(2), 117–127. https://doi.org/10.1007/bf00375173 Monira, M. S., & M.G. Mostafa. (2023). Heavy Metals in Agricultural Soil and Their Impacts on Rice Production and Human Health: A Review. Asian Journal of Applied Science and Technology, 7(2), 204-216. DOI: https://doi.org/10.38177/ajast.2023.7222 Moores, E. M. (1982). origin and emplacement of ophiolites. Reviews of Geophysics, 20(4), 735–760. https://doi.org/10.1029/rg020i004p00735 Morrison, J. M., Goldhaber, M. B., Mills, C. T., Breit, G. N., Hooper, R. L., Holloway, J. M., Diehl, S. F., & Ranville, J. F. (2015). Weathering and transport of chromium and nickel from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California, USA. Applied Geochemistry, 61, 72–86. https://doi.org/10.1016/j.apgeochem.2015.05.018 Muñoz, M., Ulrich, M., Cathelineau, M., & Mathon, O. (2019). Weathering processes and crystal chemistry of Ni-bearing minerals in saprock horizons of New Caledonia ophiolite. Journal of Geochemical Exploration, 198, 82–99. https://doi.org/10.1016/j.gexplo.2018.12.007 Naldrett, A. J., & Lehmann, J. (1988). Spinel non-stoichiometry as the explanation for NI-, CU- and PGE-enriched sulphides in chromitites. In Springer eBooks (pp. 93–109). https://doi.org/10.1007/978-94-009-1353-0_10 Navarrete, I. A., Gabiana, C. C., Dumo, J. R. E., Salmo, S. G., Guzman, M. a. L. G., Valera, N. S., & Espiritu, E. Q. (2017). Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines. Environmental Monitoring and Assessment, 189(4). https://doi.org/10.1007/s10661-017-5849-y Nelson, D. W., & Sommers, L. E. (2013). Total carbon, organic carbon, and organic matter. In Soil Science Society of America book series (pp. 961–1010). https://doi.org/10.2136/sssabookser5.3.c34 Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717. https://doi.org/10.1038/299715a0 Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169), 134–139. https://doi.org/10.1038/333134a0 Ozawa, K., & Shimizu, N. (1995). Open‐system melting in the upper mantle: Constraints from the Hayachine‐Miyamori ophiolite, northeastern Japan. Journal of Geophysical Research Atmospheres, 100(B11), 22315–22335. https://doi.org/10.1029/95jb01967 Oze, C. (2004). Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science, 304(1), 67–101. https://doi.org/10.2475/ajs.304.1.67 Oze, C., Skinner, C., Schroth, A. W., & Coleman, R. G. (2008). Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the Central Coast Range of California. Applied Geochemistry, 23(12), 3391–3403. https://doi.org/10.1016/j.apgeochem.2008.07.014 Peccerillo, A., & Taylor, S. (1976). Rare earth elements in East Carpathian volcanic rocks. Earth and Planetary Science Letters, 32(2), 121–126. https://doi.org/10.1016/0012-821x(76)90050-9 Perri, F., Milli, S., Campilongo, G., Tentori, D., & Critelli, S. (2021). The mudstone composition as reflected in the sedimentary evolution of a turbidite basin: The example of the Agnone Flysch (Molise, Italy). Marine and Petroleum Geology, 132, 105241. https://doi.org/10.1016/j.marpetgeo.2021.105241 Piccini, C., Metzger, K., Debaene, G., Stenberg, B., Götzinger, S., Borůvka, L., Sandén, T., Bragazza, L., & Liebisch, F. (2024). In‐field soil spectroscopy in Vis–NIR range for fast and reliable soil analysis: A review. European Journal of Soil Science, 75(2). https://doi.org/10.1111/ejss.13481 Pinheiro-Junior, C. R., Tavares, T. R., Pereira, M. G., Furquim, S. a. C., Da Silva Terra, F., Anjos, L. H. C. D., Demattê, J. a. M., De Azevedo, A. C., & De Oliveira, F. S. (2023). Pedogenesis on Jurassic formations in the Araripe Basin, northeastern Brazil: Weathering and parent material. CATENA, 223, 106952. https://doi.org/10.1016/j.catena.2023.106952 Pourret, O., Davranche, M., Gruau, G., & Dia, A. (2008). New insights into cerium anomalies in organic-rich alkaline waters. Chemical Geology, 251(1–4), 120–127. https://doi.org/10.1016/j.chemgeo.2008.03.002 Price, J. R., & Velbel, M. A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202(3–4), 397–416. https://doi.org/10.1016/j.chemgeo.2002.11.001 Qi, C., Wu, M., Li, K., Hu, T., Armaghani, D. J., Chen, Q., & Yilmaz, E. (2024). Identifying mining-induced chromium contamination in soil through visible-near infrared spectroscopy and machine learning. Deleted Journal, 1(2), 132–139. https://doi.org/10.1016/j.gsme.2024.05.001 R Core Team. 2023. _R: A language and environment for statistical computing_. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/ Rasmussen, C., Dahlgren, R. A., & Southard, R. J. (2009). Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA. Geoderma, 154(3–4), 473–485. https://doi.org/10.1016/j.geoderma.2009.05.019 Raychaudhuri, S. S., Pramanick, P., Talukder, P., & Basak, A. (2021). Polyamines, metallothioneins, and phytochelatins—Natural defense of plants to mitigate heavy metals. In Studies in natural products chemistry (pp. 227–261). https://doi.org/10.1016/b978-0-12-819487-4.00006-9 Rhoades, J. (1982). Cation exchange capacity. Agronomy Monograph/Agronomy, 149–157. https://doi.org/10.2134/agronmonogr9.2.2ed.c8 Rinklebe, J., & Shaheen, S. M. (2017). Redox chemistry of nickel in soils and sediments: A review. Chemosphere, 179, 265–278. https://doi.org/10.1016/j.chemosphere.2017.02.153 Rinklebe, J., Antić-Mladenović, S., Frohne, T., Stärk, H., Tomić, Z., & Ličina, V. (2015). Nickel in a serpentine-enriched Fluvisol: Redox affected dynamics and binding forms. Geoderma, 263, 203–214. https://doi.org/10.1016/j.geoderma.2015.09.004 Robertson, A. (2004). Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions. Earth-Science Reviews, 66(3–4), 331–387. https://doi.org/10.1016/j.earscirev.2004.01.005 Robertson, A. H., Palak, O., Taslı, K., & Dumitrica, P. (2020). Processes of clastic sedimentation associated with Late Cretaceous ophiolite emplacement in the SW segment of the Antalya Complex (S Turkey). Sedimentary Geology, 408, 105718. https://doi.org/10.1016/j.sedgeo.2020.105718 Rossman, D., Castañada, G., & Bacuta, G. (1989). Geology of the Zambales ophiolite, Luzon, Philippines. Tectonophysics, 168(1–3), 1–22. https://doi.org/10.1016/0040-1951(89)90366-1 Rudnick, R., & Gao, S. (2003). Composition of the continental crust. In Elsevier eBooks (pp. 1–64). https://doi.org/10.1016/b0-08-043751-6/03016-4 Ruxton, B. P. (1968). Measures of the degree of chemical weathering of rocks. The Journal of Geology, 76(5), 518–527. https://doi.org/10.1086/627357 Sabbioni, E., Pietra, R., Gaglione, P., Vocaturo, G., Colombo, F., Zanoni, M., & Rodi, F. (1982). Long-term occupational risk of rare-earth pneumoconiosis A case report as investigated by neutron activation analysis. The Science of the Total Environment, 26(1), 19–32. https://doi.org/10.1016/0048-9697(82)90093-6 Saiano, F., & Scalenghe, R. (2019). Soil REE patterns as tracers of the emplacement of metal-rich anthropogenic materials. A case study in Moa (Cuba). Journal of Soils and Sediments, 19(6), 2777–2784. https://doi.org/10.1007/s11368-019-02283-w Santos, D., Vieira, R., Luzio, A., & Félix, L. (2018). Zebrafish early life stages for toxicological screening: Insights from molecular and biochemical markers. In Advances in molecular toxicology (pp. 151–179). https://doi.org/10.1016/b978-0-444-64199-1.00007-5 Seddik, A. M., Abuamarah, B. A., Azer, M. K., Wilde, S. A., & Darwish, M. H. (2024). Carbonatization and silicification of ophiolitic ultramafic rocks and formation of gold-bearing listvenites in the Arabian-Nubian Shield: a case study from the Al-Barramiya District. Journal of African Earth Sciences, 219, 105388. https://doi.org/10.1016/j.jafrearsci.2024.105388 Semhi, K., Abdalla, O. a. E., Khirbash, S. A., Khan, T., Asaidi, S., & Farooq, S. (2009). Mobility of rare earth elements in the system soils–plants–groundwaters: a case study of an arid area (Oman). Arabian Journal of Geosciences, 2(2), 143–150. https://doi.org/10.1007/s12517-008-0024-y Sharma, V., Chauhan, R., & Kumar, R. (2021). Spectral characteristics of organic soil matter: A comprehensive review. Microchemical Journal, 171, 106836. https://doi.org/10.1016/j.microc.2021.106836 Shi, X., Song, J., Wang, H., Lv, X., Zhu, Y., Zhang, W., Bu, W., & Zeng, L. (2023). Improving soil organic matter estimation accuracy by combining optimal spectral preprocessing and feature selection methods based on pXRF and vis-NIR data fusion. Geoderma, 430, 116301. https://doi.org/10.1016/j.geoderma.2022.116301 Silva, F. M., Silva, S. H. G., Teixeira, A. F. D. S., Inda, A. V., Fruett, T., Weindorf, D. C., Guilherme, L. R. G., & Curi, N. (2021). Using proximal sensors to assess pedogenetic development of Inceptisols and Oxisols in Brazil. Geoderma Regional, 28, e00465. https://doi.org/10.1016/j.geodrs.2021.e00465 Soil Science Division Staff. (2017). Examination and description of soils profiles. In Soil Science Division Staff, Soil Survey Manual (pp. 83-234). Handbook No. 18. USDA-Soil Conservation Service, Washington, D.C., USA. https://www.nrcs.usda.gov/sites/default/files/2022-09/The-Soil-Survey-Manual.pdf Soil Survey Staff. (2022). Keys to Soil Taxonomy, 13th ed., Natural Resources Conversation Services, United States Department of Agriculture, Washington, D.C., 227. https://www.nrcs.usda.gov/sites/default/files/2022-09/Keys-to-Soil-Taxonomy.pdf Stenberg, B., Rossel, R. a. V., Mouazen, A. M., & Wetterlind, J. (2010). Visible and near-infrared spectroscopy in soil science. In Advances in agronomy (pp. 163–215). https://doi.org/10.1016/s0065-2113(10)07005-7 Sultan, K., & Shazili, N. A. (2009). Rare earth elements in tropical surface water, soil and sediments of the Terengganu River Basin, Malaysia. Journal of Rare Earths, 27(6), 1072–1078. https://doi.org/10.1016/s1002-0721(08)60391-9 Tashakor, M., Zuhairi, W., Yaacob, W., Mohamad, H., Ghani, A. A., & Lumpur, K. (2014). Geochemical Characteristics of Serpentinite Soils from Malaysia. Malaysian J. Soil Sci., 18, 35–49. http://www.msss.com.my/mjss/Full%20Text/vol18/3_Mahsa.pdf Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265. https://doi.org/10.1029/95rg00262 Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. EXS, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6 Temga, J. P., Sababa, E., Mamdem, L. E., Bijeck, M. L. N., Azinwi, P. T., Tehna, N., Zame, P. Z., Onana, V. L., Nguetnkam, J. P., Bitom, L. D., & Ndjigui, P. (2021). Rare earth elements in tropical soils, Cameroon soils (Central Africa). Geoderma Regional, 25, e00369. https://doi.org/10.1016/j.geodrs.2021.e00369 Thomas, G. W. (2013). Soil pH and soil acidity. In Soil Science Society of America book series (pp. 475–490). https://doi.org/10.2136/sssabookser5.3.c16 Thorn, A., Thompson, J., & Plisinski, J. (2016). Patterns and predictors of recent forest conversion in New England. Land, 5(3), 30. https://doi.org/10.3390/land5030030 Tonkha, O., Butenko, A., Bykova, O., Kravchenko, Y., Pikovska, O., Kovalenko, V., Evpak, I., Masyk, I., & Zakharchenko, E. (2021). Spatial heterogeneity of soil silicon in Ukrainian phaozems and chernozems. Journal of Ecological Engineering, 22(2), 111–119. https://doi.org/10.12911/22998993/130884 Tunçay, T., Dengiz, O., Bayramin, I., Kilic, S., & Baskan, O. (2019). Chemical weathering indices applied to soils developed on old lake sediments in a semi-arid region of Turkey. EURASIAN JOURNAL OF SOIL SCIENCE (EJSS), 8(1), 60–72. https://doi.org/10.18393/ejss.499122 Turan, V. (2021). Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant. International Journal of Phytoremediation, 24(2), 166–176. https://doi.org/10.1080/15226514.2021.1929826 U.S. Environmental Protection Agency. (1996). Method 3052 – Microwave assisted acid digestion of siliceous and organically based matrices (accessed 11 Aug. 2021), Available online at: https://www.epa.gov/sites/default/files/2015-12/documents/3052.pdf Ullah, R., & Muhammad, S. (2020). Heavy metals contamination in soils and plants along with the mafic–ultramafic complex (Ophiolites), Baluchistan, Pakistan: Evaluation for the risk and phytoremediation potential. Environmental Technology & Innovation, 19, 100931. https://doi.org/10.1016/j.eti.2020.100931 Vaughan, K. L., DeMoss, J., Cullum‐Muyres, T., & Diaz, A. (2020). Serpentine parent materials lead to the formation of atypical hydric soils. Soil Science Society of America Journal, 84(4), 1342–1352. https://doi.org/10.1002/saj2.20090 Vermeire, M., Cornu, S., Fekiacova, Z., Detienne, M., Delvaux, B., & Cornélis, J. (2016). Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chemical Geology, 446, 163–174. https://doi.org/10.1016/j.chemgeo.2016.06.008 Verrecchia, E. P., & Trombino, L. (2021). A visual atlas for soil micromorphologists. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-67806-7 Vithanage, M., Kumarathilaka, P., Oze, C., Karunatilake, S., Seneviratne, M., Hseu, Z., Gunarathne, V., Dassanayake, M., Ok, Y. S., & Rinklebe, J. (2019). Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review. Environment International, 131, 104974. https://doi.org/10.1016/j.envint.2019.104974 Vogt, T. (1927): Sulitjelmafeltets geologi og petrografi. – Norges Geologiske Undersokelse 121: 1–560 (in Norwegian, with English abstract). Wang, Y., Tsou, M., Liao, H., Hseu, Z., Dang, W., Hsi, H., & Chien, L. (2020). Influence of soil properties on the bioaccessibility of Cr and Ni in geologic serpentine and anthropogenically contaminated non-serpentine soils in Taiwan. The Science of the Total Environment, 714, 136761. https://doi.org/10.1016/j.scitotenv.2020.136761 World Health Organization (WHO). (2007). Health Risk of Heavy Metals from Long-range Transboundary Air Pollution. WHO Regional Office for Europe, Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark. ISBN 978 92 890 7179 6. World Health Organization (WHO). (2011). Guidelines for Drinking-water Quality, 4. ed. World Health Organization, Geneva. Wu, C., & Hseu, Z. (2023). Pedochemical behaviors of rare earth elements in soil profiles along a lithosequence in eastern Taiwan. CATENA, 225, 107047. https://doi.org/10.1016/j.catena.2023.107047 Wu, C., Chu, M., Huang, K., & Hseu, Z. (2022). Rare earth elements associated with pedogenic iron oxides in humid and tropical soils from different parent materials. Geoderma, 423, 115966. https://doi.org/10.1016/j.geoderma.2022.115966 Wu, C., Zehetner, F., Chen, Z., Jien, S., & Hseu, Z. (2023). Fractionation of rare earth elements in soil profiles along an elevation gradient in central Taiwan. CATENA, 235, 107659. https://doi.org/10.1016/j.catena.2023.107659 Wu, S., He, M., Yang, M., Zhang, B., Wang, F., & Li, Q. (2021). Near-Infrared spectroscopy study of serpentine minerals and assignment of the OH group. Crystals, 11(9), 1130. https://doi.org/10.3390/cryst11091130 Xu, J., Wang, X., Wang, J., Xu, L., Zheng, X., Zhang, Y., & Hu, C. (2021). Dominant environmental factors influencing soil metal concentrations of Poyang Lake wetland, China: Soil property, topography, plant species and wetland type. CATENA, 207, 105601. https://doi.org/10.1016/j.catena.2021.105601 Xu, T., Nan, F., Jiang, X., Tang, Y., Zeng, Y., Zhang, W., & Shi, B. (2020). Effect of soil pH on the transport, fractionation, and oxidation of chromium(III). Ecotoxicology and Environmental Safety, 195, 110459. https://doi.org/10.1016/j.ecoenv.2020.110459 Yadav, M., Gupta, R., & Sharma, R. K. (2019). Green and sustainable pathways for wastewater purification. In Elsevier eBooks (pp. 355–383). https://doi.org/10.1016/b978-0-12-814790-0.00014-4 Yang, C.Y. 2019. Evaluating chromium and nickel dynamics and availability in serpentine soils along the Eastern Asia island arc during pedogenesis [Master’s thesis, Natianal Taiwan University]. NTU Theses and Dissertations Repository. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51698 Yang, C., Nguyen, D., Ngo, H., Navarrete, I., Nakao, A., Huang, S., & Hseu, Z. (2022). Increases in Ca/Mg ratios caused the increases in the mobile fractions of Cr and Ni in serpentinite-derived soils in humid Asia. CATENA, 216, 106418. https://doi.org/10.1016/j.catena.2022.106418 Yang, X., Liu, Y., Li, C., Song, Y., Zhu, H., & Jin, X. (2007). Rare earth elements of aeolian deposits in Northern China and their implications for determining the provenance of dust storms in Beijing. Geomorphology, 87(4), 365–377. https://doi.org/10.1016/j.geomorph.2006.10.004 Yerima, B., Van Ranst, E., & Verdoodt, A. (2009). Use of correlation relationships to enhance understanding of pedogenic processes and use potential of vertisols and vertic inceptisols of the Bale Mountain area of Ethiopia. Tropicultura, 27(4), 223–232. https://biblio.ugent.be/publication/909199 Yusoff, Z. M., Ngwenya, B. T., & Parsons, I. (2013). Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology, 349–350, 71–86. https://doi.org/10.1016/j.chemgeo.2013.04.016 Zelano, I., Sivry, Y., Quantin, C., Gélabert, A., Tharaud, M., Jouvin, D., Montarges-Pelletier, E., Garnier, J., Pichon, R., Nowak, S., Miska, S., Abollino, O., & Benedetti, M. (2013). Colloids and suspended particulate matters influence on Ni availability in surface waters of impacted ultramafic systems in Brazil. Colloids and Surfaces a Physicochemical and Engineering Aspects, 435, 36–47. https://doi.org/10.1016/j.colsurfa.2013.02.051 Zhang, K., & Shields, G. A. (2022). Sedimentary Ce anomalies: Secular change and implications for paleoenvironmental evolution. Earth-Science Reviews, 229, 104015. https://doi.org/10.1016/j.earscirev.2022.104015 Zhang, K., Zhou, L., Brady, M., Xu, F., Yu, J., & Wang, D. (2016). Fast analysis of high heating value and elemental compositions of sorghum biomass using near-infrared spectroscopy. Energy, 118, 1353–1360. https://doi.org/10.1016/j.energy.2016.11.015 Zhitkovich, A. (2011). Chromium in drinking water: sources, metabolism, and cancer risks. Chemical Research in Toxicology, 24(10), 1617–1629. https://doi.org/10.1021/tx200251t Zhu, M., Tan, S., Dang, H., & Zhang, Q. (2011). Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall. Journal of Environmental Radioactivity, 102(12), 1078–1084. https://doi.org/10.1016/j.jenvrad.2011.07.007 Zhu, M., Tan, S., Liu, W., & Zhang, Q. (2010). A review of REE tracer method used in soil erosion studies. Agricultural Sciences in China, 9(8), 1167–1174. https://doi.org/10.1016/s1671-2927(09)60204-2 Zhu, W., Xu, S., Shao, P., Zhang, H., Wu, D., Yang, W., Feng, J., & Feng, L. (2005). Investigation on liver function among population in high background of rare earth area in south China. Biological Trace Element Research, 104(1), 001–008. https://doi.org/10.1385/bter:104:1:001 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97319 | - |
| dc.description.abstract | None | zh_TW |
| dc.description.abstract | Ophiolitic soils are derived from mafic and ultramafic parent materials and exhibit distinctive geochemical properties commonly characterized by elevated concentrations of trace metals such as Cr, Ni, and Co, as well as REEs. These soils, however, are often nutrient-deficient and present environmental challenges due to the mobility and bioavailability of potentially toxic metals. This study investigates the pedogenesis, geochemistry, and elemental mobility of ophiolitic soils in Taiwan and the Philippines, focusing on major, trace, and REE distributions across different landscape positions. Soil samples were collected from two ophiolite complexes: one in eastern Taiwan (mudstone-derived soils) and another in Zambales, Philippines (serpentine-derived soils). Comprehensive analyses, including XRD, soil micromorphology, total elemental quantification via ICP-OES/MS, and spectroscopic techniques, were employed to assess mineralogical composition, trace metal distribution, and REE fractionation. Statistical approaches, including Pearson’s correlation and PCA, were applied to elucidate geochemical relationships.
The results revealed distinct textural and chemical differences between the two sites. In Taiwan (CP1 to CP4), soils were clay-rich (45.0%–62.5%), with OC levels ranging from 5.0% to 5.4% in surface horizons, decreasing to 1.3%–3.4% in subsurface layers. In contrast, soil in Zambales (ZB1 and ZB2) exhibited low amounts of clay (31%-50%) but comparable OC levels in surface and subsurface horizons. The concentrations of the trace metals in pedons CP1 to CP4 (Cr: 71.2–105 mg kg⁻¹; Ni: 26.6–43.2 mg kg⁻¹; Co: 20.2–27.9 mg kg⁻¹) were ten times lower than in pedons ZB1 and ZB2 (Cr: 2,437– 3,410 mg kg⁻¹; Ni: 2,919– 4,309 mg kg⁻¹; Co: 209– 300 mg kg⁻¹), consistent with their mafic and ultramafic parent material. Results also indicate significant differences in soil properties, with Taiwan soils displaying higher SiO₂, Al₂O₃, and CaO, indicative of sedimentary influence, whereas Zambales soils exhibit enrichment in Fe₂O₃ and MgO, characteristic of ultramafic origins. Weathering indices suggest that soils in Taiwan have undergone moderate weathering (CIA: 70.6-79.5; RR: 3.28-4.32; VRI: 2.92-5.38), resulting in elemental redistribution, whereas soils in Zambales exhibit lower degrees of weathering (RR: 7.22-16.9), reflecting the less clay contents. The Ca and Mg differed significantly, with the Taiwan soils showing higher Ca/Mg (0.31–1.13), while the Zambales soils had lower Ca/Mg levels (0.00–0.03). Results revealed that Cr, Ni, and Co concentrations in pedons CP1 to CP4 were highly correlated with clay content (p < 0.001) and Fe oxides (p < 0.01, p < 0.05), indicating that trace metals were immobilized through co-precipitation and adsorption. REE fractionation patterns showed significant enrichment of LREEs relative to HREEs, with ΣREEs ranging from 95.7 to 229.5 mg kg⁻¹ in Taiwan and 17.7 to 51.7 mg kg⁻¹ in Zambales, indicating the preferential adsorption of LREEs and greater solubility and weaker affinity of HREEs onto secondary minerals. Environmental risk assessments indicated that while Cr and Ni levels in Taiwan soils were below contamination thresholds (Cr: 175 mg kg⁻¹; Ni: 130 mg kg⁻¹), Zambales soils exceeded global averages (Cr: 100 mg kg⁻¹; Ni: 35 mg kg⁻¹), posing potential toxicity risks for vegetation and groundwater. These findings highlight the impact of parent material, topography, and pedogenic processes on elemental mobility and soil development in the ophiolite complex. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-24T16:07:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-04-24T16:07:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
APPROVAL SHEET i ACKNOWLEDGMENT v ABSTRACT vii TABLE OF CONTENTS ix LIST OF TABLES xi LIST OF FIGURES xii LIST OF EQUATIONS xiv LIST OF APPENDIX TABLES xv CHAPTER I. Introduction 1 1.1. Background of ophiolite 1 1.2. Trace elements in soils 2 1.3. Rare earth elements in soils 4 1.4. Conceptual framework of this study 6 1.5. Objectives of the study 7 CHAPTER II. Review of Literature 9 2.1. Genesis of soils derived in ophiolite complex 9 2.2. Primary minerals in soils from ophiolite complex 12 2.3. General characteristics of soils in ophiolite complex 14 2.4. Major elements in the ophiolite complex 16 2.5. Characteristics of trace metals in soils from ophiolite complex 19 2.6. Characteristics of REEs in ophiolite complex 21 2.7. The use of Vis-NIR Spectroscopy in Soil Characterization and Monitoring 25 2.8. The uses of statistical tools, mass balance model, and soil indexes for the determination of the distribution and relationships of soil components 27 CHAPTER III. Materials and Methods 35 3.1. Site description and sampling 35 3.2. Profile description and soil collection 39 3.3. X-ray diffraction mineral identification 40 3.4. Soil micromorphology sample collection, thin section preparation, and observation 40 3.5. Soil physical and chemical analysis 41 3.5.1. Bulk density 41 3.5.2. Particle size analysis 42 6.5.3. Soil pH 43 3.5.3. Soil organic matter 43 3.5.4. Exchangeable bases and base saturation 44 3.5.5. Cation exchange capacity 45 3.5.6. Extractable Fe and Al 46 3.6. Total elemental analysis 46 3.6.1. Major elements 46 3.6.2. Trace metals 47 3.6.3. Rare earth elements 49 3.7. Normalization, fractionation, and anomalies of REEs 51 3.8. Weathering indices of soils 51 3.9. Elemental mass balance calculation 53 3.10. Vis-NIR spectra 54 3.11. Statistical analysis and graphical illustrations 55 CHAPTER IV. Results and Discussion 57 4.1. Soil morphological characteristics 57 4.2. Parent material and micromorphology 61 4.3. Soil physical and chemical characteristics 66 4.4. Soil total content of major oxides and Ca/Mg 73 4.5. Weathering intensity 77 4.6. Total concentrations of trace metals 80 4.7. Concentration of rare earth elements and their normalized pattern 84 4.8. Mobility of soil components 94 4.9. Relationships between soil properties, major elements, trace metals, REEs, and fractionation proxies 101 4.10. Vis-NIR spectra 116 CHAPTER V. Summary and Conclusions 121 CHAPTER X. Literature Cited 125 APPENDICES 141 | - |
| dc.language.iso | en | - |
| dc.subject | 蛇紋石土壤 | zh_TW |
| dc.subject | 土壤分類 | zh_TW |
| dc.subject | 土壤化育 | zh_TW |
| dc.subject | 母質層 | zh_TW |
| dc.subject | 生物地球化學 | zh_TW |
| dc.subject | soil classification | en |
| dc.subject | biogeochemistry | en |
| dc.subject | parent material | en |
| dc.subject | pedogenesis | en |
| dc.subject | serpentine soil | en |
| dc.title | 臺灣與菲律賓蛇綠岩母質土壤中主要、微量與稀土元素的化育特徵 | zh_TW |
| dc.title | Pedogenetic Characteristics of Major, Trace, and Rare Earth Elements in Ophiolitic Soils of Taiwan and the Philippines | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳尊賢;簡士濠;李家興;王尚禮;蔡呈奇 | zh_TW |
| dc.contributor.oralexamcommittee | Zueng-Sang Chen;Shih-Hao Jien;Chia-Hsing Lee;Shan-Li Wang;Chen-Chi Tsai | en |
| dc.subject.keyword | 生物地球化學,母質層,土壤化育,蛇紋石土壤,土壤分類, | zh_TW |
| dc.subject.keyword | biogeochemistry,parent material,pedogenesis,serpentine soil,soil classification, | en |
| dc.relation.page | 152 | - |
| dc.identifier.doi | 10.6342/NTU202500844 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-04-21 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農業化學系 | - |
| dc.date.embargo-lift | 2030-04-18 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
