Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97309
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志潾zh_TW
dc.contributor.advisorChih-Lin Weien
dc.contributor.author邱翎zh_TW
dc.contributor.authorLing Chiuen
dc.date.accessioned2025-04-24T16:04:42Z-
dc.date.available2025-04-25-
dc.date.copyright2025-04-24-
dc.date.issued2025-
dc.date.submitted2025-04-08-
dc.identifier.citationAbele, D., and S. Puntarulo (2004). Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A: Mol Integr Physiol 138(4), 405-415. Doi: 10.1016/j.cbpb.2004.05.013.
Adigun, O. A., M. Nadeem, T. H. Pham, L. E. Jewell, M. Cheema, and R. Thomas (2021). Recent advances in bio‐chemical, molecular and physiological aspects of membrane lipid derivatives in plant pathology. Plant Cell Environ 44(1), 1-16. Doi: 10.1111/pce.13904.
Aguiar-Pulido, V., W. Huang, V. Suarez-Ulloa, T. Cickovski, K. Mathee, and G. Narasimhan (2016). Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: supplementary issue: bioinformatics methods and applications for big metagenomics data. Evol Bioinform 12, EBO-S36436. Doi: 10.4137/EBO.S36436.
Akerman, N. H., D. A. Butterfield and J. A. Huber (2013). Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front Microbiol 4, 185. Doi: 10.3389/fmicb.2013.00185.
Allen, G. J. P., P. L. Kuan, Y. C. Tseng, P. P. Hwang, A. R. Quijada-Rodriguez and D. Weihrauch (2020). Specialized adaptations allow vent-endemic crabs (Xenograpsus testudinatus) to thrive under extreme environmental hypercapnia. Sci Rep-Uk 10(1). Doi: 10.1038/s41598-020-68656-1.
Allen, G. J. P., M.-C. Wang, Y.-C. Tseng and D. Weihrauch (2021). Effects of emersion on acid–base regulation, osmoregulation, and nitrogen physiology in the semi-terrestrial mangrove crab, Helice formosensis. J Comp Physiol B 191(3), 455-468. Doi: 10.1007/s00360-021-01354-0.
Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux and D. A. Stahl (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56(6), 1919-1925. Doi: 10.1128/aem.56.6.1919-1925.1990.
Amend, J. P., T. M. McCollom, M. Hentscher, and W. Bach (2011). Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim Cosmochim Acta 75(19), 5736-5748.Doi: 10.1016/j.gca.2011.07.041.
Amores-Sánchez, M. I., and M. Á. Medina (1999). Glutamine, as a precursor of glutathione, and oxidative stress. Mol Genet Metab 67(2), 100-105.Doi: 10.1006/mgme.1999.2857.
Arakane, Y., and S. Muthukrishnan (2010). Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67, 201-216. Doi: 10.1007/s00018-009-0161-9.
Araki, S., T. Takata, K. Ono, T. Sawa, S. Kasamatsu, H. Ihara, Y. Kumagai, T. Akaike, Y. Watanabe, and Y. Tsuchiya (2023). Cystathionine γ-lyase self-inactivates by polysulfidation during cystine metabolism. Int J Mol Sci 24(12), 9982. Doi: 10.3390/ijms24129982.
Araseki, M., K. Yamamoto, and K. Miyashita (2002). Oxidative stability of polyunsaturated fatty acid in phosphatidylcholine liposomes. Biosci Biotechnol Biochem 66(12), 2573-2577. Doi: 10.1271/bbb.66.2573.
Arcadi, E., E. Buschi, E. Rastelli, M. Tangherlini, P. De Luca, V. Esposito, R. Calogero, F. Andaloro, T. Romeo, and R. Danovaro (2023). Novel insights on the bacterial and archaeal diversity of the Panarea shallow-water hydrothermal vent field. Microorganisms 11(10), 2464. Doi: 10.3390/microorganisms11102464.
Bang, C., T. Dagan, P. Deines, N. Dubilier, W. J. Duschl, S. Fraune, U. Hentschel, H. Hirt, N. Hülter, T. Lachnit, and D. Picazo. (2018). Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127, 1-19. Doi: 10.1016/j.zool.2018.02.004.
Barosa, B., A. Ferrillo, M. Selci, M. Giardina, A. Bastianoni, M. Correggia, L. di Iorio, G. Bernardi, M. Cascone, R. Capuozzo, and M. Intoccia (2023). Mapping the microbial diversity associated with different geochemical regimes in the shallow-water hydrothermal vents of the Aeolian archipelago, Italy. Front Microbiol 14, 1134114. Doi: 10.3389/fmicb.2023.1134114.
Becker, J., and E. A. Craig (1994). Heat‐shock proteins as molecular chaperones. Eur J Biochem 219(1‐2), 11-23. Doi: 10.1111/j.1432-1033.1994.tb19910.x.
Bement, W. M., A. B. Goryachev, A. L. Miller, and G. von Dassow (2024). Patterning of the cell cortex by Rho GTPases. Nat Rev Mol Cell Biol 25, 290–308. Doi: 10.1038/s41580-023-00682-z.
Bender, R. A. (2012). Regulation of the histidine utilization (hut) system in bacteria. Microbiol Mol Biol Rev 76(3), 565-584. Doi: 10.1128/mmbr.00014-12.
Bertucci, F., E. Parmentier, G. Lecellier, A. D. Hawkins and D. Lecchini (2016). Acoustic indices provide information on the status of coral reefs: an example from Moorea Island in the South Pacific. Sci Rep-Uk 6(1), 33326. Doi: 10.1038/srep33326.
Bermúdez, M. A., L. Pereira, C. Fraile, L. Valerio, M. A. Balboa, and J. Balsinde (2022). Roles of palmitoleic acid and its positional isomers, hypogeic and sapienic acids, in inflammation, metabolic diseases and cancer. Cells 11(14), 2146. Doi: 10.3390/cells11142146.
Bettencourt, R., V. Costa, M. Laranjo, D. Rosa, L. Pires, A. Colaço, H. Lopes, and R. Serrão Santos (2011). Out of the deep sea into a land-based aquarium environment: investigating physiological adaptations in the hydrothermal vent mussel Bathymodiolus azoricus. ICES J Mar Sci 68(2), 357-364. Doi: 10.1093/icesjms/fsq119.
Blewett, H. J., C. A. Gerdung, M. R. Ruth, S. D. Proctor, and C. J. Field (2009). Vaccenic acid favourably alters immune function in obese JCR: LA-cp rats. Br J Nutr 102(4), 526-536. Doi: 10.1017/S0007114509231722.
Blow, F., N. Y. Ankrah, N. Clark, I. Koo, E. L. Allman, Q. Liu, M. Anitha, A. D. Patterson, and A. E. Douglas (2020). Impact of facultative bacteria on the metabolic function of an obligate insect-bacterial symbiosis. mBio 11(4), e00402-20. Doi: 10.1128/mBio.00402-20.
Bordenstein, S. R., and K. R. Theis (2015). Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13(8), e1002226. Doi: 10.1371/journal.pbio.1002226.
Breusing, C., M. Genetti, S. L. Russell, R. B. Corbett-Detig, and R. A. Beinart (2022). Horizontal transmission enables flexible associations with locally adapted symbiont strains in deep-sea hydrothermal vent symbioses. Proc Natl Acad Sci USA 119(14), e2115608119. Doi: 10.1073/pnas.2115608119.
Brooks, A. W., K. D. Kohl, R. M. Brucker, E. J. van Opstal, and S. R. Bordenstein (2017). Correction: Phylosymbiosis: Relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol 15(1), e1002587. Doi: 10.1371/journal.pbio.1002587.
Brosnan, M. E., and J. T. Brosnan (2020). Histidine metabolism and function. J Nutr 150, 2570S-2575S. Doi: 10.1093/jn/nxaa079.
Butterfield, D. A., G. J. Massoth, R. E. Mcduff, J. E. Lupton and M. D. Lilley (1990). Geochemistry of hydrothermal fluids from axial seamount hydrothermal emissions study vent field, Juan De Fuca Ridge: subseafloor boiling and subsequent fluid-rock interaction. J Geophys Res-Solid 95(B8), 12895-12921. Doi:10.1029/JB095iB08p12895.
Burgin, A. J., W. H. Yang, S. K. Hamilton, and W. L. Silver. (2011). Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Front Ecol Environ, 9(1), 44-52. Doi: 10.1890/090227.
Cady and J. T. Staley (2004). Subfreezing growth of the sea ice bacterium "Psychromonas ingrahamii". Microb Ecol 47(3), 300-304. Doi: 10.1007/s00248-0031040-9.
Campbell, B. J., A. S. Engel, M. L. Porter and K. Takai (2006). The versatile epsilon- proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4(6), 458- 468. Doi: 10.1038/nrmicro1414.
Canion, A., O. Prakash, S. J. Green, L. Jahnke, M. M. M. Kuypers and J. E. Kostka (2013). Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold Arctic fjord sediments (Svalbard, Norway). Environ Microbiol 15(5), 1606-1618. Doi: 10.1111/1462-2920.12110.
Cao, M. and H. Goodrich-Blair. (2017). Ready or not: microbial adaptive responses in dynamic symbiosis environments. J Bacteriol, 199(15), 10-1128.
Doi: 10.1128/jb.00883-16.
Carballal, S., V. Vitvitsky, R. Kumar, D. A. Hanna, M. Libiad, A. Gupta, J. W. Jones and R. Banerjee (2021). Hydrogen sulfide stimulates lipid biogenesis from glutamine that is dependent on the mitochondrial NAD(P)H pool. J Biol Chem 292, 100950. Doi: 10.1016/j.jbc.2021.100950.
Cardoso, R. B., R. Sierra‐Alvarez, P. Rowlette, E. R. Flores, J. Gomez, and J. A. Field (2006). Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95(6), 1148-1157. Doi: 10.1002/bit.21084.
Carlson, M. and H. Pagès (2024). AnnotationForge: Tools for building SQLite-based annotation data packages. R package version 1.48.0. https://bioconductor.org/packages/AnnotationForge.
Cerqueira, T., D. Pinho, H. Froufe, R. S. Santos, R. Bettencourt and C. Egas (2017). Sediment microbial diversity of three deep-sea hydrothermal vents southwest of the Azores. Microb Ecol 74(2), 332-349. Doi: 10.1007/s00248-017-0943-9.
Chan, B. K. K., T. W. Wang, P. C. Chen, C. W. Lin, T. Y. Chan and L. M. Tsang (2016). Community structure of macrobiota and environmental parameters in shallow water hydrothermal vents off Kueishan Island, Taiwan. Plos One 11(2), e0148675. Doi: 10.1371/journal.pone.0148675.
Chang, N. N., L. H. Lin, T. H. Tu, M. S. Jeng, Y. Chikaraishi and P. L. Wang (2018). Trophic structure and energy flow in a shallow-water hydrothermal vent: Insights from a stable isotope approach. Plos One 13(10), e0204753. Doi: 10.1371/journal.pone.0204753.
Chaston, J., and H. Goodrich-Blair (2010). Common trends in mutualism revealed by model associations between invertebrates and bacteria. FEMS Microbiol Rev 34(1), 41-58. Doi: 10.1111/j.1574-6976.2009.00193.x.
Chen, C., T. Y. Chan and B. K. K. Chan (2018a). Molluscan diversity in shallow water hydrothermal vents off Kueishan Island, Taiwan. Mar Biodivers 48(1), 709-714. Doi: 10.1007/s12526-017-0804-2.
Chen, C., T. H. Lin, H. K. Watanabe, T. Akamatsu and S. Kawagucci (2021). Baseline soundscapes of deep-sea habitats reveal heterogeneity among ecosystems and sensitivity to anthropogenic impacts. Limnol Oceanogr 66(10), 3714-3727. Doi: 10.1002/lno.11911.
Chen, C., G. C. Wu, Y. T. Chung, H. W. Li, P. H. Chou, Y. C. Tseng, C. J. Chen, S. Dufour and C. F. Chang (2023). Duplicated paralog of sulfide: quinone oxidoreductase contributes to the adaptation to hydrogen sulfide-rich environment in the hydrothermal vent crab, Xenograpsus testudinatus. Sci Total Environ 890, 164257. Doi: 10.1016/j.scitotenv.2023.164257.
Chen, J., C. S. Robb, F. Unfried, L. Kappelmann, S. Markert, T. Song, J. Harder, B. Avci, D. Becher, P. Xie, R. I. Amann, J. H. Hehemann, T. Schweder and H. Teeling (2018b). Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol 20(11), 4127-4140. Doi: 10.1111/1462-2920.14414.
Chiu, L., M. C. Wang, K. Y. Tseng, C. L. Wei, H. T. Lin, S. H. Yang, and Y. C. Tseng (2022). Shallow-water hydrothermal vent system as an extreme proxy for discovery of microbiome significance in a crustacean holobiont. Front Mar Sci 9, 976255. Doi: 10.3389/fmars.2022.976255.
Chiu, L., M. C. Wang, C. L. Wei, T. H. Lin, and Y. C. Tseng (2024). A two-year physicochemical and acoustic observation reveals spatiotemporal effects of earthquake-induced shallow-water hydrothermal venting on the surrounding environments. Limnol Oceanogr Lett 9(4), 423-432. Doi: 10.1002/lol2.10412.
Clare, J., M. R. Lindley, and E. Ratcliffe (2024). The Antimicrobial and Antibiofilm Abilities of Fish Oil Derived Polyunsaturated Fatty Acids and Manuka Honey. Microorganisms 12(4), 778. Doi: 10.3390/microorganisms12040778.
Cline, J. D. (1969). Spectrophotometric Determination of Hydrogen Sulfide in Natural Waters. Limnol Oceanogr 14(3), 454. Doi: 10.4319/lo.1969.14.3.0454.
Cruaud, P., C. Decker, K. Olu, S. Arnaud-Haond, C. Papot, J. Le Baut, A. Vigneron, A. Khripounoff, N. Gayet, C. Cathalot, J. C. Caprais, P. Pignet, A. Godfroy and M. A. Cambon-Bonavita (2019). Ecophysiological differences between vesicomyid species and metabolic capabilities of their symbionts influence distribution patterns of the deep-sea clams. Mar Ecol-Evol Persp 40(3). Doi: 10.1111/maec.12541.
Cuellar-Gempeler, C. and M. A. Leibold (2019). Key colonist pools and habitat filters mediate the composition of fiddler crab-associated bacterial communities. Ecology 100(4). Doi: 10.1002/ecy.2628.
Dahms, H.-U., N. V. Schizas, R. A. James, L. Wang and J.-S. Hwang (2018). Marine hydrothermal vents as templates for global change scenarios. Hydrobiologia 818(1), 1-10. Doi: 10.1007/s10750-018-3598-8.
Dahms, H. U., L. C. Tseng and J. S. Hwang (2017). Are vent crab behavioral preferences adaptations for habitat choice? Plos One 12(9). Doi: 10.1371/journal.pone.0182649.
Dana, R., T. L. Leto, H. L. Malech, and R. Levy (1998). Essential requirement of cytosolic phospholipase A2 for activation of the phagocyte NADPH oxidase. J Biol Chem 273(1), 441-445. Doi: 10.1074/jbc.273.1.441.
Dando, P. R., J. A. Hughes, Y. Leahy, L. J. Taylor and S. Zivanovic (1995). Earthquakes increase hydrothermal venting and nutrient inputs into the Aegean. Cont Shelf Res 15(6), 655-662. Doi: Doi 10.1016/0278-4343(94)E0031-G.
Deane, E. E., S. P. Kelly, J. C. Luk, and N. Y. Woo (2002). Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Mar Biotechnol 4, 193-205. Doi: 10.1007/s1012602-0091-5.
Deffontaines, B., K. J. Chang, P. C. Huang, H. H. Hsu, S. K. Hsu, C. S. Liu, C. T. Lee, S. Magalhaes and G. Fortunato (2022). Neotectonics of the volcanic Kuei-Shan Tao island, and geodynamic implications (NE Taiwan-SW Okinawa Trough). Tectonophysics 832. Doi: 10.1016/j.tecto.2022.229362.
Dickson, A. G. and F. J. Millero (1987). A comparison of the equilibrium-constants for the dissociation of carbonic-acid in Sseawater media. Deep-Sea Res I: Oceanogr Res Pap 34(10), 1733-1743. Doi: 10.1016/0198-0149(87)90021-5.
Dick, G. J. (2019). The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol 17(5), 271-283. Doi: 10.1038/s41579-019-0160-2.
Dixon, P. (2003). VEGAN: A package of R functions for community ecology. J Veg Sci 14(6), 927-930. Doi: 10.1658/1100-9233(2003)014[0927:VAPORF]2.0.CO;2.
Doering, T., K. Tandon, S. H. Topa, S. J. Pidot, L. L. Blackall, and M. J. van Oppen. (2023). Genomic exploration of coral-associated bacteria: identifying probiotic candidates to increase coral bleaching resilience in Galaxea fascicularis. Microbiome, 11(1), 185. Doi: 10.1186/s40168-023-01622-x.
Dray, S., and A. B. Dufour (2007). The ade4 package: Implementing the duality diagram for ecologists. J Stat Softw 22, 1-20. Doi: 10.18637/jss.v022.i04.
Duarte, C. M., L. Chapuis, S. P. Collin, D. P. Costa, R. P. Devassy, V. M. Eguiluz, C. Erbe, T. A. C. Gordon, B. S. Halpern, H. R. Harding, M. N. Havlik, M. Meekan, N. D. Merchant, J. L. Miksis-Olds, M. Parsons, M. Predragovic, A. N. Radford, C. A. Radford, S. D. Simpson, H. Slabbekoorn, E. Staaterman, I. C. Van Opzeeland, J. Winderen, X. L. Zhang and F. Juanes (2021). The soundscape of the anthropocene ocean. Science 371(6529), eaba4658. Doi: 0.1126/science.aba4658.
Duperron, S., A. Quiles, K. M. Szafranski, N. Léger and B. Shillito (2016). Estimating symbiont abundances and gill surface areas in specimens of the hydrothermal vent mussel Bathymodiolus puteoserpentis maintained in pressure vessels. Front Mar Sci 3, 16. Doi: 10.3389/fmars.2016.00016.
Dworkin, J. (2018). Detection of fungal and bacterial carbohydrates: Do the similar structures of chitin and peptidoglycan play a role in immune dysfunction?. PLoS Pathog 14(10), e1007271. Doi: 10.1371/journal.ppat.1007271.
Elderfield, H. and A. Schultz (1996). Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Pl Sc 24, 191-224. Doi: 10.1146/annurev.earth.24.1.191.
Erfanian, M., A. J. Mitchell, J. Kang and F. Aletta (2019). The psychophysiological implications of soundscape: a systematic review of empirical literature and a research agenda. Int J Env Res Pub He 16(19), 3533. Doi: 10.3390/ijerph16193533.
Evans, D. H., P. M. Piermarini and K. P. Choe (2005). The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85(1), 97-177. Doi: 10.1152/physrev.00050.2003.
Falkowski, P. G., T. Fenchel, and E. F. Delong (2008). The microbial engines that drive Earth's biogeochemical cycles. Science 320(5879), 1034-1039. Doi: 10.1126/science.1153213
Felbeck, H. and G. N. Somero (1982). Primary production in deep-sea hydrothermal vent organisms: Roles of sulfide-oxidizing bacteria. Trends Biochem Sci 7(6), 201-204. Doi: 10.1016/0968-0004(82)90088-3.
Feder, M. E., and G. E. Hofmann (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61(1), 243-282. Doi: 10.1146/annurev.physiol.61.1.243.
Feder, M. E., T. L. Karr, W. Yang, J. M. Hoekstra, and A. C. James (1999). Interaction of Drosophila and its endosymbiont Wolbachia: natural heat shock and the overcoming of sexual incompatibility. Am Zool 39(2), 363-373. Doi: 10.1093/icb/39.2.363.
Fialamedioni, A., C. Metivier, A. Herry and M. Lepennec (1986). Ultrastructure of the gill of the hydrothermal-Vent mytilid Bathymodiolus Sp. Mar Biol 92(1), 65-72. Doi: 10.1007/Bf00392747.
Fisher, C. R., K. Takai and N. Le Bris (2007). Hydrothermal Vent Ecosystems. Oceanography 20(1), 14-23. Doi: 10.5670/oceanog.2007.75.
Fornari, D. J., T. Shank, K. L. Von Damm, T. K. P. Gregg, M. Lilley, G. Levai, A. Bray, R. M. Haymon, M. R. Perfit and R. Lutz (1998). Time-series temperature measurements at high-temperature hydrothermal vents, East Pacific Rise 9°49′–51′N: evidence for monitoring a crustal cracking event. Earth Planet Sc Lett 160(3-4), 419-431. Doi: 10.1016/S0012-821x(98)00101-0.
Fortunato, C. S., B. Larson, D. A. Butterfield, and J. A. Huber (2018). Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids. Environ Microbiol 20(2), 769- 784. Doi: 10.1111/1462-2920.14011.
François-Étienne, S., L. Nicolas, N. Eric, C. Jaqueline, P. L. Pierre-Luc, B. Sidki, H. Aleicia, B. Danilo, V. A. Luis, and D. Nicolas (2023). Important role of endogenous microbial symbionts of fish gills in the challenging but highly biodiverse Amazonian blackwaters. Nat Commun 14(1), 3903. Doi: 10.1038/s41467-023-39461-x.
Freitas, E. T. F., A. M. S. Moreira, R. S. de Paula, G. R. Andrade, M. D. de Carvalho, P. S. Assis, E. C. Jorge, and A. V. Cardoso (2022). Ultrastructure of the gill ciliary epithelium of Limnoperna fortunei (Dunker 1857), the invasive golden mussel. BMC Zool 7(1), 6. Doi: 10.1186/s40850-022-00107-y.
Fukunaga, Y., M. Kurahashi, K. Tanaka, K. Yanagi, A. Yokota and S. Harayama (2006). Pseudovibrio ascidiaceicola sp. nov., isolated from ascidians (sea squirts). Int J Syst Evol Micr 56(2), 343-347. Doi: 10.1099/00207713-56-4-923.
Fujita, Y., H. Matsuoka, and K. Hirooka (2007). Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66(4), 829-839. Doi: 10.1111/j.1365-2958.2007.05947.x.
Galand, P. E., O. Pereira, C. Hochart, J. C. Auguet, and D. Debroas (2018). A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J 12(10), 2470-2478. Doi: 10.1038/s41396-018-0158-1.
Garg, N. (2021). Metabolomics in functional interrogation of individual holobiont members. mSystems, 6(4), 10-1128. Doi: 10.1128/msystems.00841-21.
Giovannelli, D., G. d'Errico, E. Manini, M. Yakimov and C. Vetriani (2013). Diversity and phylogenetic analyses of bacteria from a shallow-water hydrothermal vent in Milos island (Greece). Front Microbiol 4, 184. Doi: 10.3389/fmicb.2013.00184.
Girija, G. K., L. C. Tseng, P. Muthu, Y. L. Chen, Y. N. Ho, and J. S. Hwang. (2024). Microbiome flexibility enhances the resilience of the potentially invasive coral Tubastraea aurea to abrupt environmental changes: Insights from a shallow water hydrothermal vent transplantation study. Sci Total Environ, 954, 176792. Doi: 10.1016/j.scitotenv.2024.176792.
Glowka, L. (2003). Putting marine scientific research on a sustainable footing at hydrothermal vents. Marine Policy 27(4), 303-312.
Doi: 10.1016/S0308597x(03)00042-3.
Goffredi, S. K. and J. P. Barry (2002). Species-specific variation in sulfide physiology between closely related Vesicomyid clams. Mar Ecol Prog Ser 225, 227-238. Doi: 10.3354/meps225227.
Goffredi, S. K., W. J. Jones, H. Erhlich, A. Springer and R. C. Vrijenhoek (2008). Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsuta. Environ Microbiol 10(10), 2623-2634. Doi: 10.1111/j.1462-2920.2008.01684.x.
Goffredi, S. K. (2010). Indigenous ectosymbiotic bacteria associated with diverse hydrothermal vent invertebrates. Env Microbiol Rep 2(4), 479-488. Doi: 10.1111/j.1758-2229.2010.00136.x.
Gonzalez, F. J., B. Rincon-Tomas, L. Somoza, E. Santofimia, T. Medialdea, P. Madureira, E. Lopez-Pamo, J. R. Hein, E. Marino, C. de Ignacio, J. Reyes, M. Hoppert and J. Reitner (2020). Low-temperature, shallow-water hydrothermal vent mineralization following the recent submarine eruption of Tagoro volcano (El Hierro, Canary Islands). Mar Geol 430. Doi: 10.1016/j.margeo.2020.106333.
Gorjão, R., A. K. Azevedo-Martins, H. G. Rodrigues, F. Abdulkader, M. Arcisio-Miranda, J. Procopio, and R. Curi (2009). Comparative effects of DHA and EPA on cell function. Pharmacol Ther 122(1), 56-64. Doi:10.1016/j.pharmthera.2009.01.004.
Grabovich, M. Y., M. S. Muntyan, V. Y. Lebedeva, V. S. Ustiyan and G. A. Dubinina (1999). Lithoheterotrophic growth and electron transfer chain components of the filamentous gliding bacterium Leucothrix mucor DSM 2157 during oxidation of sulfur compounds. Fems Microbiol Lett 178(1), 155-161. Doi: 10.1111/j.15746968.1999.tb13772.x.
Hahnke, R. L. and J. Harder (2013). Phylogenetic diversity of Flavobacteria isolated from the North Sea on solid media. Syst Appl Microbiol 36(7), 497-504. Doi: 10.1016/j.syapm.2013.06.006.
Halary, S., V. Riou, F. Gaill, T. Boudier and S. Duperron (2008). 3D FISH for the quantification of methane- and sulphur-oxidizing endosymbionts in bacteriocytes of the hydrothermal vent mussel Bathymodiolus azoricus. ISME J 2(3), 284-292. Doi: 10.1038/ismej.2008.3.
Hamer, B., D. P. Hamer, W. E. G. Müller, and R. Batel (2004). Stress-70 proteins in marine mussel Mytilus galloprovincialis as biomarkers of environmental pollution: a field study. Environ Int 30(7), 873-882. Doi: 10.1016/j.envint.2004.02.008.
Han, C. H., Y. Ye, Y. W. Pan, H. W. Qin, G. H. Wu and C. T. A. Chen (2014). Spatial distribution pattern of seafloor hydrothermal vents to the southeastern Kueishan Tao offshore Taiwan Island. Acta Oceanologica Sinica 33(4), 37-44. Doi: 10.1007/s13131014-0405-x.
Han, J. R., M. Q. Ye, C. Wang, and Z. J. Du. (2019). Halioglobus sediminis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol, 69(6), 1601-1605. Doi: 10.1099/ijsem.0.003366.
Hanna, D., R. Kumar and R. Banerjee (2023). A metabolic paradigm for hydrogen sulfide signaling electron transport chain plasticity. Antioxid Redox Sign 38(1-3), 57-67. Doi: 10.1089/ars.2022.0067.
Hansen, A. W., and K. V. Venkatachalam (2023). Sulfur-Element containing metabolic pathways in human health and crosstalk with the microbiome. Biochem Biophys Rep 35, 101529. Doi: 10.1016/j.bbrep.2023.101529.
Havlik, M. N., M. Predragovic and C. M. Duarte (2022). State of play in marine soundscape assessments. Front Mar Sci 9. Doi: 10.3389/fmars.2022.919418.
Hayes, J. D., and L. I. McLellan (1999). Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31(4), 273-300. Doi: 10.1080/10715769900300851.
Heberle, H., G. V. Meirelles, F. R. da Silva, G. P. Telles, and R. Minghim (2015). InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16, 1-7. Doi: 10.1186/s12859-015-0611-3.
Hedderich, R., O. Klimmek, A. Kröger, R. Dirmeier, M. Keller and K. O. Stetter (1998). Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22(5), 353-381. Doi: 10.1111/j.1574-6976.1998.tb00376.x.
Henry, R. P. and M. G. Wheatly (1992). Interaction of respiration, ion regulation, and acid-base balance in the everyday life of aquatic crustaceans. Am Zool 32(3), 407416. Doi: 10.1093/icb/32.3.407.
Hildebrandt, T. M. and M. K. Grieshaber (2008). Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275(13), 3352-3361. Doi: 10.1111/j.1742-4658.2008.06482.x.
Ho, T. W., J. S. Hwang, M. K. Cheung, H. S. Kwan and C. K. Wong (2015). Dietary analysis on the shallow-water hydrothermal vent crab Xenograpsus testudinatus using Illumina sequencing. Mar Biol 162(9), 1787-1798. Doi: 10.1007/s00227-015-2711-z.
Hoek, T. A., K. Axelrod, T. Biancalani, E. A. Yurtsev, J. Liu and J. Gore (2016). Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol 14(8), e1002540. Doi: 10.1371/journal.pbio.1002540.
Howe, B. M., J. Miksis-Olds, E. Rehm, H. Sagen, P. F. Worcester and G. Haralabus (2019). Observing the oceans acoustically. Front Mar Sci 6, 426. Doi: 10.3389/fmars.2019.00426.
Hu, M. Y., Y. J. Guh, Y. T. Shao, P. L. Kuan, G. L. Chen, J. R. Lee, M. S. Jeng and Y. C. Tseng (2016). Strong ion regulatory abilities enable the crab Xenograpsus testudinatus to inhabit highly acidified marine vent systems. Frontiers in Physiology 7. Doi: 10.3389/fphys.2016.00014.
Hu, M. Y. A., W. Hagen, M. S. Jeng and R. Saborowski (2012). Metabolic energy demand and food utilization of the hydrothermal vent crab Xenograpsus testudinatus (Crustacea: Brachyura). Aquat Biol 15(1), 11-25.
Doi: 10.3354/ab00396.
Huang, S., Z. Zheng, Q. Wei, I. Han, and P. R. Jaffé (2019). Performance of sulfur-based autotrophic denitrification and denitrifiers for wastewater treatment under acidic conditions. Bioresour Technol 294, 122176. Doi: 10.1016/j.biortech.2019.122176.
Inagaki, F., K. Takai, K. H. Nealson and K. Horikoshi (2004). Sulfurovum lithotrophicum gen. nov., sp nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Micr 54, 1477-1482. Doi: 10.1099/ijs.0.03042-0.
James, A. K., L. W. Kelly, C. E. Nelson, E. G. Wilbanks, and C. A. Carlson (2019). Elevated pCO2 alters marine heterotrophic bacterial community composition and metabolic potential in response to a pulse of phytoplankton organic matter. Environ Microbiol 21(2), 541-556. Doi: 10.1111/1462-2920.14484.
Jebara, F., C. Weiss, and A. Azem (2017). Hsp60 and Hsp70 chaperones: guardians of mitochondrial proteostasis. eLS 1-9. Doi: 10.1002/9780470015902.a0027152.
Jeng, M. S., N. K. Ng and P. K. L. Ng (2004). Feeding behaviour: Hydrothermal vent crabs feast on sea 'snow'. Nature 432(7020), 969-969. Doi: 10.1038/432969a.
Jiang, Y., W. Wang, Q. Xie, N. A. Liu, L. Liu, D. Wang, X. Zhang, C. Yang, X. Chen, D. Tang, and E. Wang (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356(6343), 1172-1175. Doi: 10.1126/science.aam9970.
Johnson, H. P., M. Hutnak, R. P. Dziak, C. G. Fox, I. Urcuyo, J. P. Cowen, J. Nabelek and C. Fisher (2000). Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge. Nature 407(6801), 174-177. Doi: 10.1038/35025040.
Johnson, P. W., A. Sastry, J. M. Sieburth, C. R. Arnold and M. S. Doty (1971). Leucothrix mucor infestation of benthic crustacea, fish eggs, and tropical algae. Limnol Oceanogr 16(6), 962-969. Doi: 10.4319/lo.1971.16.6.0962.
Jouin, C. and F. Gaill (1990). Gills of hydrothermal vent annelids: structure, ultrastructure and functional implications in 2 alvinellid species. Progress in Oceanography 24(1-4), 59-69. Doi: 10.1016/0079-6611(90)90019-X.
Jurenka, R. A., M. de Renobales, and G. J. Blomquist (1987). De novo biosynthesis of polyunsaturated fatty acids in the cockroach Periplaneta americana. Arch Biochem Biophys 255(1), 184-193. Doi: 10.1016/0003-9861(87)90309-2.
Kadko, D., J. Baross, and J. Alt (1995). The magnitude and global implications of hydrothermal flux. Geophys Monogr Am Geophys Union 91, 446-446.
Kappelmann, L., K. Krüger, J. H. Hehemann, J. Harder, S. Markert, F. Unfried, D. Becher, N. Shapiro, T. Schweder, R. I. Amann and H. Teeling (2019). Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J 13(1), 76-91. Doi: 10.1038/s41396018-0242-6.
Kalanetra, K. M., S. L. Huston, and D. C. Nelson. (2004). Novel, attached, sulfur-oxidizing bacteria at shallow hydrothermal vents possess vacuoles not involved in respiratory nitrate accumulation. Appl Environ Microbiol 70(12), 7487-7496. Doi: 10.1128/AEM.70.12.7487-7496.2004.
Kasaya, T., H. Machiyama, K. Kitada and K. Nakamura (2015). Trial exploration for hydrothermal activity using acoustic measurements at the North Iheya Knoll. Geochem J 49(6), 597-602. Doi: 10.2343/geochemj.2.0389.
Katunuma, N., M. Okada, and Y. Nishii (1966). Regulation of the urea cycle and TCA cycle by ammonia. Adv Enzyme Regul 4, 317-335. Doi: 10.1016/0065-2571(66)90025-2.
Ke, Z., H. Huang, D. Chen, and Y. Tan (2024). Trophic relationship between mussels and scale worms under various seepage intensities in the haima cold seep: Insights from stable isotopes (δ13C and δ15N) and C: N: P stoichiometry. Deep Sea Res Part I: Oceanogr Res Pap 206, 104264. Doi: 10.1016/j.dsr.2024.104264.
Khurana, T., B. Khurana, and A. A. Noegel (2002). LIM proteins: association with the actin cytoskeleton. Protoplasma 219, 1-12. Doi: 10.1007/s007090200000.
Kleiner, M., X. Dong, T. Hinzke, J. Wippler, E. Thorson, B. Mayer, and M. Strous (2018). Metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities. Proc Natl Acad Sci USA 115(24), E5576-E5584. Doi: 10.1073/pnas.1722325115.
Kohl, J. B., A. T. Mellis, and G. Schwarz (2019). Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism. Br J Pharmacol 176(4), 554-570. Doi: 10.1111/bph.14464.
Koito, T., S. Saitou, T. Nagasaki, S. Yamagami, T. Yamanaka, K. Okamura, and K. Inoue (2018). Taurine-related compounds and other free amino acids in deep-sea hydrothermal vent and non-vent invertebrates. Mar Biol 165, 1-6. Doi: 10.1007/s00227-018-3442-8.
Konstantinou, K. I., C. Y. Pan and C. H. Lin (2013). Microearthquake activity around Kueishantao island, offshore northeastern Taiwan: Insights into the volcano-tectonic interactions at the tip of the southern Okinawa Trough. Tectonophysics 593, 20-32. Doi: 10.1016/j.tecto.2013.02.019.
Kröger, A., S. Biel, J. Simon, R. Gross, G. Unden and C. R. D. Lancaster (2002). Fumarate respiration of Wolinella succinogenes: Enzymology, energetics and coupling mechanism. Biochim Biophys Acta 1553(1-2), 23-38. Doi: 10.1016/S00052728(01)00234-1.
Krüger, A., C. Schäfers, C. Schröder, and G. Antranikian (2018). Towards a sustainable biobased industry–highlighting the impact of extremophiles. New Biotechnol 40, 144-153. Doi: 10.1016/j.nbt.2017.05.002.
Krafft, T., R. Gross and A. Kroger (1995). The function of Wolinella succinogenes psr genes in electron transport with polysulfide as the terminal electron acceptor. Eur J Biochem 230(2), 601-606. Doi: 10.1111/j.1432-1033.1995.0601h.x.
Kurniawan, J., K. Suga, and T. L. Kuhl (2017). Interaction forces and membrane charge tunability: Oleic acid containing membranes in different pH conditions. Biochim Biophys Acta Biomembr 1859(2), 211-217. Doi: 10.1016/j.bbamem.2016.11.001.
Lai, K. P., P. Zhu, D. A. T. Boncan, L. Yang, C. C. T. Leung, J. C. H. Ho, X. Lin, T. F. Chan, R. Y. C. Kong, and W. K. F. Tse (2022). Integrated omics approaches revealed the osmotic stress-responsive genes and microbiota in gill of marine medaka. mSystems 7(2), e00047-22. Doi: 10.1128/msystems.00047-22.
Langille, M. G., J. Zaneveld, J. G. Caporaso, D. McDonald, D. Knights, J. A. Reyes, J. C. Clemente, D. E. Burkepile, R. L. Vega Thurber, R. Knight, and R. G. Beiko (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9), 814-821. Doi: 10.1038/nbt.2676.
Lebrato, M., Y. V. Wang, L. C. Tseng, E. P. Achterberg, X. G. Chen, J. C. Molinero, K. Bremer, U. Westernstroer, E. Soding, H. U. Dahms, M. Kuter, V. Heinath, J. Johnck, K. I. Konstantinou, Y. J. Yang, J. S. Hwang and D. Garbe-Schonberg (2019). Earthquake and typhoon trigger unprecedented transient shifts in shallow hydrothermal vents biogeochemistry. Sci Rep-Uk 9. Doi: 10.1038/s41598-019-53314-y.
Lee, J. M., H. Lee, S. Kang, and W. J. Park (2016). Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 8(1), 23. Doi: 10.3390/nu8010023.
Leek, J. T., W. E. Johnson, H. S. Parker, A. E. Jaffe, and J. D. Storey (2012). The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28(6), 882-883.
Doi: 10.1093/bioinformatics/bts034.
Leinberger, J., F. Milke, M. Christodoulou, A. Poehlein, J. Caraveo-Patiño, A. Teske and T. Brinkhoff (2022). Microbial epibiotic community of the deep-sea galatheid squat lobster Munidopsis alvisca. Sci Rep-Uk 12(1), 2675. Doi: 10.1038/s41598-022-06666x.
Levin, L. A., A. R. Baco, D. A. Bowden, A. Colaco, E. E. Cordes, M. R. Cunha, A. W. Demopoulos, J. Gobin, B. M. Grupe, J. Le, and A. Metaxas (2016). Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front Mar Sci 3, 72. Doi: 10.3389/fmars.2016.00072
Liang, W. D., T. Y. Tang, Y. J. Yang, M. T. Ko and W. S. Chuang (2003). Upper-ocean currents around Taiwan. Deep Sea Res Part II Top Stud Oceanogr 50(6-7), 1085-1105. Doi: 10.1016/S0967-0645(03)00011-0.
Libiad, M., P. K. Yadav, V. Vitvitsky, M. Martinov, and R. Banerjee (2014). Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem 289(45), 30901-30910.
Libiad, M., V. Vitvitsky, T. Bostelaar, D. W. Bak, H. J. Lee, N. Sakamoto, E. Fearon, C. A. Lyssiotis, E. Weerapana and R. Banerjee (2019). Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. J Biol Chem 294(32), 12077-12090. Doi: 10.1074/jbc.RA119.009442.
Lilley, M. D., D. A. Butterfield, J. E. Lupton and E. J. Olson (2003). Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934), 878-881. Doi: 10.1038/nature01569.
Lin, T. H., T. Akamatsu, F. Sinniger and S. Harii (2021). Exploring coral reef biodiversity via underwater soundscapes. Biol Conserv 253. Doi: 10.1016/j.biocon.2020.108901.
Lin, T. H., C. Chen, H. K. Watanabe, S. Kawagucci, H. Yamamoto and T. Akamatsu (2019). Using soundscapes to assess deep-sea benthic ecosystems. Trends Ecol Evol 34(12), 1066-1069. Doi: 10.1016/j.tree.2019.09.006.
Little, C. T. and R. C. Vrijenhoek (2003). Are hydrothermal vent animals living fossils? Trends Ecol Evol 18(11), 582-588. Doi: 10.1016/j.tree.2003.08.009.
Liu, X., L. Jiang, Q. Hu, J. Lyu, and Z. Shao (2020). Thiomicrorhabdus indica sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a deep-sea hydrothermal vent environment. Int J Syst Evol Micr 70(1), 234-239.
Doi: 10.1099/ijsem.0.003744.
Lonsdale, P. (1977). Structural geomorphology of a fast-spreading rise crest: the East Pacific Rise near 3° 25′S. Mar Geophys Res 3(3), 251-293. Doi: 10.1007/BF00285656.
Louca, S., L. W. Parfrey, and M. Doebeli (2016). Decoupling function and taxonomy in the global ocean microbiome. Science 353(6305), 1272-1277. Doi: 10.1126/science.aaf4507.
Louca, S., M. F. Polz, F. Mazel, M. B. Albright, J. A. Huber, M. I. O’Connor, M. Ackermann, A. S. Hahn, D. S. Srivastava, S. A. Crowe, and M. Doebeli (2018). Function and functional redundancy in microbial systems. Nat Ecol Evol 2(6), 936-943. Doi: 10.1038/s41559-018-0519-1.
Lough, A. J. M., D. P. Connelly, W. B. Homoky, J. A. Hawkes, V. Chavagnac, A. Castillo, M. Kazemian, K. Nakamura, T. Araki, B. Kaulich and R. A. Mills (2019). Diffuse hydrothermal venting: A hidden source of iron to the oceans. Front Mar Sci 6, 329. Doi: 10.3389/fmars.2019.00329.
Love, M. I., W. Huber, and S. Anders (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550. Doi: 10.1186/s13059-014-0550-8.
Macy, J. M., I. Schroder, R. K. Thauer and A. Kroger (1986). Growth the Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144(2), 147-150. Doi: 10.1007/Bf00414725.
Mantha, G., A. K. Awasthi, A. M. Al-Aidaroos and J. S. Hwang (2013). Diversity and abnormalities of cyclopoid copepods around hydrothermal vent fluids, Kueishantao Island, north-eastern Taiwan. J Nat Hist 47(5-12), 685-697.
Doi: 10.1080/00222933.2012.747638.
Martens-Habbena, W., P. M. Berube, H. Urakawa, J. R. de La Torre, and D. A. Stahl (2009). Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461(7266), 976-979. Doi: 10.1038/nature08465
Martín-Díaz, J. P., A. González-Vega, T. Barreyre, B. Cornide, J. M. Arrieta, J. T. Vázquez, D. Palomino, J. A. L. Rodríguez, J. Escánez-Pérez, C. Presas-Navarro, and E. Fraile-Nuez (2024). Unveiling the inherent physical-chemical dynamics: Direct measurements of hydrothermal fluid flow, heat, and nutrient outflow at the Tagoro submarine volcano (Canary Islands, Spain). Sci Total Environ 918, 170565. Doi: 10.1016/j.scitotenv.2024.170565.
Marty, L., W. Siala, M. Schwarzländer, M. D. Fricker, M. Wirtz, L. J. Sweetlove, Y. Meyer, A. J. Meyer, J. P. Reichheld, and R. Hell (2009). The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci U S A 106(22), 9109-9114. Doi: 10.1073/pnas.0900206106.
Matabos, M., T. Barreyre, S. K. Juniper, M. Cannat, D. Kelley, J. M. Alfaro-Lucas, V. Chavagnac, A. Colaço, J. Escartin, E. Escobar, and D. Fornari (2022). Integrating multidisciplinary observations in vent environments (IMOVE): decadal progress in deep-sea observatories at hydrothermal vents. Front Mar Sci 9, 866422. Doi: 10.3389/fmars.2022.866422.
Maugeri, T. L., V. Lentini, C. Gugliandolo, F. Italiano, S. Cousin and E. Stackebrandt (2009). Bacterial and archaeal populations at two shallow hydrothermal vents off Panarea Island (Eolian Islands, Italy). Extremophiles 13(1), 199-212. Doi: 10.1007/s00792-0080210-6.
McCollom, T. M. and E. L. Shock (1998). Fluid-rock interactions in the lower oceanic crust: Thermodynamic models of hydrothermal alteration. J Geophys Res Solid Earth 103(B1), 547-575.
McCutcheon, J. P., and N. A. Moran (2007). Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA 104(49), 19392-19397. Doi: 10.1073/pnas.0708855104.
McDermott, J. M., S. P. Sylva, S. Ono, C. R. German and J. S. Seewald (2020). Abiotic redox reactions in hydrothermal mixing zones: Decreased energy availability for the subsurface biosphere. P Natl Acad Sci USA 117(34), 20453-20461. Doi: 10.1073/pnas.2003108117.
McGonigle, J. M., S. Q. Lang, and W. J. Brazelton (2020). Genomic evidence for formate metabolism by Chloroflexi as the key to unlocking deep carbon in Lost City microbial ecosystems. Appl Environ Microbiol 86(8), e02583-19. Doi: 10.1128/AEM.02583-19.
McInnes, L., J. Healy and J. Melville (2018). Umap: Uniform manifold approximation and projection for dimension. arXiv preprint arXiv, 1802.03426. Doi: 10.48550/arXiv.1802.03426.
McKenna, M. F., S. Baumann-Pickering, A. C. M. Kok, W. K. Oestreich, J. D. Adams, J. Barkowski, K. M. Fristrup, J. A. Goldbogen, J. Joseph, E. B. Kim, A. Kugler, M. O. Lammers, T. Margolina, L. E. P. Reeves, T. J. Rowell, J. A. Stanley, A. K. Stimpert, E. J. Zang, B. L. Southall, C. C. Wall, S. Van Parijs and L. T. Hatch (2021). Advancing the Interpretation of Shallow Water Marine Soundscapes. Front Mar Sci 8, 719258. Doi: 10.3389/fmars.2021.719258.
Mehrbach, C., C. H. Culberson, J. E. Hawley and R. M. Pytkowicx (1973). Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18(6), 897-907. Doi: 10.4319/lo.1973.18.6.0897.
Miller, S. L. (1953). A production of amino acids under possible primitive earth conditions. Science, 117(3046), 528-529. Doi: 10.1126/science.117.3046.52.
Miller, S. L. and Urey, H. C. (1959). Organic compound synthesis on the primitive Earth: Several questions about the origin of life have been answered, but much remains to be studied. Science, 130(3370), 245-251. Doi: 10.1126/science.130.3370.24.
Minello, M., L. Calado and F. C. Xavier (2021). Ecoacoustic indices in marine ecosystems: a review on recent developments, challenges, and future directions. Ices J Mar Sci 78(9), 3066-3074. Doi: 10.1093/icesjms/fsab193.
Moi, I. M., A. T. C. Leow, M. S. M. Ali, R. N. Z. R. A. Rahman, A. B. Salleh, and S. Sabri (2018). Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production. Appl Microbiol Biotechnol 102, 5811-5826. Doi: 10.1007/s00253-018-9063-9.
Moran, M. A., R. Belas, M. A. Schell, J. M. González, F. Sun, S. Sun, B. J. Binder, J. Edmonds, W. Ye, B. Orcutt, E. C. Howard, C. Meile, W. Palefsky, A. Goesmann, Q. Ren, I. Paulsen, L. E. Ulrich, L. S. Thompson, E. Saunders and A. Buchan (2007). Ecological genomics of marine Roseobacters. Appl Environ Microbiol 73(14), 4559-4569. Doi: 10.1128/Aem.02580-06.
Monroig, Ó., D. R. Tocher, and J. C. Navarro (2013). Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms. Mar Drugs 11(10), 3998-4018. Doi: 10.3390/md11103998.
Morris Jr, S. M. (2002). Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr 22(1), 87-105. Doi: 10.1146/annurev.nutr.22.110801.140547.
Moyer, C. L., F. C. Dobbs, and D. M. Karl. (1995). Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol 61(4), 1555-1562. Doi: 10.1128/aem.61.4.1555-1562.1995.
Nandhini, B., A. Ramesh, M. Monisha, and K. S. Krishna (2021). An overview of astrobiology and microbial survival in space. Int J Innov Sci Res Technol (IJISRT) 6(3), 21-28.
Nagasaki, T., Y. Hongo, T. Koito, I. Nakamura-Kusakabe, S. Shimamura, Y. Takaki, T. Yoshida, T. Maruyama and K. Inoue (2015). Cysteine dioxygenase and cysteine sulfinate decarboxylase genes of the deep-sea mussel Bathymodiolus septemdierum: possible involvement in hypotaurine synthesis and adaptation to hydrogen sulfide. Amino Acids 47(3), 571-578. Doi: 10.1007/s00726-014-1891-z.
Nakagawa, S., F. Inagaki, K. Takai, K. Horikoshi and Y. Sako (2005). Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the ε-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Micr 55(2), 599-605. Doi: 10.1099/ijs.0.63351-0.
Nakagawa, S., Y. Takaki, S. Shimamura, A. L. Reysenbach, K. Takai and K. Horikoshi (2007). Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens. P Natl Acad Sci USA 104(29), 12146-12150.
Doi: 10.1073/pnas.0700687104.
Nelson, D. C., K. D. Hagen and D. B. Edwards (1995). The gill symbiont of the hydrothermal vent mussel Bathymodiolus Thermophilus is a psychrophilic, chemoautotrophic, sulfur bacterium. Mar Biol 121(3), 487-495. Doi: 10.1007/Bf00349457.
Newsholme, P., J. Procopio, M. M. R. Lima, T. C. Pithon‐Curi, and R. Curi (2003). Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem Funct 21(1), 1-9. Doi: 10.1002/cbf.1003.
Nikapitiya, C., W. S. Kim, K. Park, J. Kim, M. O. Lee, and I. S. Kwak (2015). Chitinase gene responses and tissue sensitivity in an intertidal mud crab (Macrophthalmus japonicus) following low or high salinity stress. Cell Stress Chaperone 20(3), 517-526. Doi: 10.1007/s12192-015-0576-1.
Nishihara, H., Y. Igarashi and T. Kodama (1991). Hydrogenovibrio marinus gen. nov., sp. nov., a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium. Int J Syst Evol Micr 41(1), 130-133. Doi: 10.1099/00207713-41-1-130.
Nishihara, H., Y. Miyashita, K. Aoyama, T. Kodama, Y. Igarashi and Y. Takamura (1997). Characterization of an extremely thermophilic and oxygen-stable membrane-bound hydrogenase from a marine hydrogen-oxidizing bacterium Hydrogenovibrio marinus. Biochem Biophys Res Commun 232(3), 766-770. Doi: 10.1006/bbrc.1997.6369.
Oda, A., H. K. Watanabe, S. Ohtsuka, S. Wada, Y. Kondo and H. Miyake (2022). Does the Kuroshio Current transport planktonic larvae of the hydrothermal-vent crab Xenograpsus Takeda & Kurata, 1977 (Decapoda: Brachyura: Grapsoidea)? J Crustacean Biol 42(1). Doi: 10.1093/jcbiol/ruac016.
Oeschger, R. and R. D. Vetter (1992). Sulfide detoxification and tolerance in Halicryptus Spinulosus (Priapulida): a multiple strategy. Mar Ecol Prog Ser 86(2), 167-179. Doi: 10.3354/meps086167.
Olson, K. R. (2019). Hydrogen sulfide, reactive sulfur species and coping with reactive oxygen species. Free Radic Biol Med, 140, 74-83. Doi: 10.1016/j.freeradbiomed.2019.01.020.
Olson, K. R. (2021). A case for hydrogen sulfide metabolism as an oxygen sensing mechanism. Antioxidants, 10(11), 1650. Doi: 10.3390/antiox10111650.
Onuki, Y., M. Morishita, Y. Chiba, S. Tokiwa, and K. Takayama (2006). Docosahexaenoic acid and eicosapentaenoic acid induce changes in the physical properties of a lipid bilayer model membrane. Chem Pharm Bull 54(1), 68-71.
Doi: 10.1248/cpb.54.68.
Papakonstanti, E. A., C. Stournaras (2008). Cell responses regulated by early reorganization of actin cytoskeleton. FEBS Lett 582(14), 2120-2127. Doi: 10.1016/j.febslet.2008.02.064.
Parsons, P. A. (2005). Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biol Rev 80(4), 589-610. Doi: 10.1017/S1464793105006822.
Park, S., S. Yoshizawa, K. Inomata, K. Kogure, and A. Yokota. (2012). Halioglobus japonicus gen. nov., sp. nov. and Halioglobus pacificus sp. nov., members of the class Gammaproteobacteria isolated from seawater. Int J Syst Evol Microbiol, 62(Pt_8), 1784-1789. Doi: 10.1099/ijs.0.031443-0.
Payne, M. S., M. R. Hall, L. Sly and D. G. Bourne (2007). Microbial diversity within earlystage cultured Panulirus ornatus phyllosomas. Appl Environ Microbiol 73(6), 19401951. Doi: 10.1128/Aem.02520-06.
Penesyan, A., J. Tebben, M. Lee, T. Thomas, S. Kjelleberg, T. Harder and S. Egan (2011). Identification of the antibacterial compound produced by the marine epiphytic bacterium Pseudovibrio sp. D323 and related sponge-associated bacteria. Mar Drugs 9(8), 1391-1402. Doi: 10.3390/md9081391.
Peng, S.-H., J.-J. Hung and J.-S. Hwang (2011). Bioaccumulation of trace metals in the submarine hydrothermal vent crab Xenograpsus testudinatus off Kueishan Island, Taiwan. Mar Pollut Bull 63(5-12), 396-401. Doi: 10.1016/j.marpolbul.2011.05.013.
Pérez-Pascual, D., A. Lunazzi, G. Magdelenat, Z. Rouy, A. Roulet, C. Lopez-Roques, R. Larocque, T. Barbeyron, A. Gobet, G. Michel, J. F. Bernardet and E. Duchaud (2017). The complete genome sequence of the fish pathogen Tenacibaculum maritimum provides insights into virulence mechanisms. Front Microbiol 8, 1542. Doi: 10.3389/fmicb.2017.01542.
Pérez-Barrancos, C., E. Fraile-Nuez, J. P. Martín-Díaz, A. González-Vega, J. Escánez-Pérez, M. I. Díaz-Durán, C. Presas-Navarro, M. Nieto-Cid, and J. M. Arrieta (2025). Shallow hydrothermal fluids shape microbial dynamics at the Tagoro Submarine Volcano (Canary Islands, Spain). Environ Microbiol 27(2), e70052. Doi: 10.1111/1462-2920.70052.
Perner, M., M. Hentscher, N. Rychlik, R. Seifert, H. Strauss and W. Bach (2011). Driving forces behind the biotope structures in two low-temperature hydrothermal venting sites on the southern Mid-Atlantic Ridge. Env Microbiol Rep 3(6), 727-737. Doi: 10.1111/j.1758-2229.2011.00291.x.
Petersen, J. M., A. Ramette, C. Lott, M. A. Cambon-Bonavita, M. Zbinden and N. Dubilier (2010). Dual symbiosis of the vent shrimp Rimicaris exoculata with filamentous gamma- and epsilonproteobacteria at four Mid-Atlantic Ridge hydrothermal vent fields. Environ Microbiol 12(8), 2204-2218. Doi: 10.1111/j.1462-2920.2009.02129.x.
Petersen, J. M., F. U. Zielinski, T. Pape, R. Seifert, C. Moraru, R. Amann, S. Hourdez, P. R. Girguis, S. D. Wankel, V. Barbe, E. Pelletier, D. Fink, C. Borowski, W. Bach and N. Dubilier (2011). Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476(7359), 176-180. Doi: 10.1038/nature10325.
Phelan, V. V., W. T. Liu, K. Pogliano, and P. C. Dorrestein (2012). Microbial metabolic exchange—the chemotype-to-phenotype link. Nat Chem Biol 8(1), 26-35. Doi: 10.1038/nchembio.739.
Phleger, C. F., M. M. Nelson, A. K. Groce, S. C. Cary, K. Coyne, J. A. Gibson, and P. D. Nichols (2005). Lipid biomarkers of deep-sea hydrothermal vent polychaetes—Alvinella pompejana, A. caudata, Paralvinella grasslei and Hesiolyra bergii. Deep Sea Res Part I: Oceanogr Res Pap 52(12), 2333-2352. Doi: 10.1016/j.dsr.2005.08.001.
Pierrot, D., Lewis, E., and Wallace, D. W. R. (2006). MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105a., Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.
Pineda, M. C., X. Turon, and S. López-Legentil (2012). Stress levels over time in the introduced ascidian Styela plicata: the effects of temperature and salinity variations on hsp70 gene expression. Cell Stress Chaperones 17(4), 435-444. Doi: 10.1007/s12192-012-0321-y.
Pijanowski, B. C., L. J. Villanueva-Rivera, S. L. Dumyahn, A. Farina, B. L. Krause, B. M. Napoletano, S. H. Gage and N. Pieretti (2011). Soundscape ecology: the science of sound in the landscape. Bioscience 61(3), 203-216. Doi: 10.1525/bio.2011.61.3.6.
Ponsard, J., M. A. Cambon-Bonavita, M. Zbinden, G. Lepoint, A. Joassin, L. Corbari, B. Shillito, L. Durand, V. Cueff-Gauchard and P. Compere (2013). Inorganic carbon fixation by chemosynthetic ectosymbionts and nutritional transfers to the hydrothermal vent host-shrimp Rimicaris exoculata. ISME Journal 7(1), 96-109. Doi: 10.1038/ismej.2012.87.
Porchas-Cornejo, M. A., M. Martínez-Porchas, F. Vargas-Albores, T. Gollas-Galvan, L. R. Martínez-Córdova, R. Vazquez-Euan and E. Peña-Messina (2017). High-resolution detection of bacterial profile of ocean water, before and after being used by shrimp farms. Aquacult Int 25(5), 1833-1843. Doi: 10.1007/s10499-017-0160-z.
Price, R. E. and D. Giovannelli (2017). A review of the geochemistry and microbiology of marine shallow-water hydrothermal vents, 1-2. In Reference Module in Earth Systems and Environmental Sciences. ELSVIER.
Price, R. E., R. Lesniewski, K. S. Nitzsche, A. Meyerdierks, C. Saltikov, T. Pichler and J. P. Amend (2013). Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation. Front Microbiol 4, 158. Doi: 10.3389/fmicb.2013.00158.
Prodromou, C. (2016). Mechanisms of Hsp90 regulation. Biochem J 473(16), 2439-2452. Doi: 10.1042/BCJ20160005.
Putland, R. L., R. Constantine and C. A. Radford (2017). Exploring spatial and temporal trends in the soundscape of an ecologically significant embayment. Sci Rep-Uk 7(1), 5713. Doi: 10.1038/s41598-017-06347-0.
Rajasabapathy, R., C. Mohandass, R. Bettencourt, A. Colaço, J. Goulart and R. M. Meena (2018). Bacterial diversity at a shallow-water hydrothermal vent (Espalamaca) in Azores Island. Curr Sci 115(11), 2110-2121. Doi: 10.18520/cs/v115/i11/2110-2121
Rajasabapathy, R., C. Mohandass, A. Colaco, S. G. Dastager, R. S. Santos and R. M. Meena (2014). Culturable bacterial phylogeny from a shallow water hydrothermal vent of Espalamaca (Faial, Azores) reveals a variety of novel taxa. Curr Sci 106(1), 58-69.
Reveillaud, J., E. Reddington, J. McDermott, C. Algar, J. L. Meyer, S. Sylva, J. Seewald, C. R. German, and J. A. Huber (2016). Subseafloor microbial communities in hydrogen‐rich vent fluids from hydrothermal systems along the Mid‐Cayman Rise. Environ Microbiol 18(6), 1970-1987.
Doi: 10.1111/1462-2920.13173.
Revelle, W., and M. W. Revelle (2015). Package ‘psych’. Comprehensive R Archive Network 337(338), 161-165.
Reysenbach, A. L., and E. Shock (2002). Merging genomes with geochemistry in hydrothermal ecosystems. Science 296(5570), 1077-1082. Doi: 10.1126/science.107248.
Riley, M., J. T. Staley, A. Danchin, T. Z. Wang, T. S. Brettin, L. J. Hauser, M. L. Land and L. S. Thompson (2008). Genomics of an extreme psychrophile, Psychromonas ingrahamii. BMC Genomics 9(1), 1-19. Doi: 10.1186/1471-2164-9-210.
Rocha, J., F. L. Garcia-Carreño, A. Muhlia-Almazán, A. B. Peregrino-Uriarte, G. Yépiz-Plascencia, and J. H. Córdova-Murueta (2012). Cuticular chitin synthase and chitinase mRNA of whiteleg shrimp Litopenaeus vannamei during the molting cycle. Aquaculture 330, 111-115. Doi: 10.1016/j.aquaculture.2011.12.024.
Romano, S. (2018). Ecology and biotechnological potential of bacteria belonging to the genus Pseudovibrio. Appl Environ Microbiol 84(8), e02516-02517. Doi: 10.1128/AEM.02516-17.
Rypien, K. L., J. R. Ward and F. Azam (2010). Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12(1), 28-39. Doi: 10.1111/j.14622920.2009.02027.x.
Sachs, J. L., R. G. Skophammer, and J. U. Regus (2011). Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci USA 108(Suppl. 2), 10800-10807. Doi: 10.1073/pnas.1100304108.
Sahling, H., D. Rickert, R. W. Lee, P. Linke and E. Suess (2002). Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231, 121-138. Doi: 10.3354/meps231121.
Salazar, G., F. M. Cornejo-Castillo, V. Benitez-Barrios, E. Fraile-Nuez, X. A. Alvarez-Salgado, C. M. Duarte, J. M. Gasol and S. G. Acinas (2016). Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J 10(3), 596-608. Doi: 10.1038/ismej.2015.137.
Salinas, A. E., and M. G. Wong (1999). Glutathione S-transferases—a review. Curr Med Chem 6(4), 279-310.
Santos, O. C. S., P. V. M. L. Pontes, J. F. M. Santos, G. Muricy, M. Giambiagi-deMarval and M. S. Laport (2010). Isolation, characterization and phylogeny of sponge- associated bacteria with antimicrobial activities from Brazil. Res Microbiol 161(7), 604-612. Doi: 10.1016/j.resmic.2010.05.013.
Sarazin, G., G. Michard and F. Prevot (1999). A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res 33(1), 290- 294. Doi: 10.1016/S0043-1354(98)00168-7.
Scherschel, M., J. O. Niemeier, L. J. Jacobs, M. D. Hoffmann, A. Diederich, C. Bell, P. Höhne, S. Raetz, J. B. Kroll, J. Steinbeck, and S. Lichtenauer (2024). A family of NADPH/NADP+ biosensors reveals in vivo dynamics of central redox metabolism across eukaryotes. Nat Commun 15(1), 10704. Doi: 10.1038/s41467-024-55302-x.
Shaumi, A., U. C. Cheang, C. Y. Yang, C. W. Chang, S. Y. Guo, C. H. Yang, T. Y. Chan, and K. L. Pang (2021). Culturable fungi associated with the marine shallow-water hydrothermal vent crab Xenograpsus testudinatus at Kueishan Island, Taiwan. Botanica Marina 64(4), 289-300. Doi: 10.1515/bot-2021-0034
Shieh, W. Y., Y. T. Lin and W. D. Jean (2004). Pseudovibrio denitrificans gen. nov., sp nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Micr 54, 2307-2312. Doi: 10.1099/ijs.0.63107-0.
Shih, S. W., J. J. Yan, Y. L. Tsou, S. W. Lu, M. C. Wang, M. Y. Chou, and P. P. Hwang (2022). In vivo functional assay in fish gills: Exploring branchial acid-excreting mechanisms in zebrafish. Int J Mol Sci 23(8), 4419. Doi: 10.3390/ijms23084419.
Shu, Y., P. Hong, D. Tang, H. Qing, O. Omondi Donde, H. Wang, B. Xiao, and H. Wu (2019). Comparison of intestinal microbes in female and male Chinese concave‐ eared frogs (Odorrana tormota) and effect of nematode infection on gut bacterial communities. MicrobiolOpen 8(6), e00749. Doi: 10.1002/mbo3.749.
Sievert, S. M. and C. Vetriani (2012). Chemoautotrophy at deep-sea vents: past, present, and future. Oceanography 25(1), 218-233. Doi: 10.5670/oceanog.2012.21.
Silverman, H., J. W. Lynn, E. C. Achberger, and T. H. Dietz (1996). Gill structure in zebra mussels: bacterial-sized particle filtration. Am Zool 36(3), 373-384. Doi: 10.1093/icb/36.3.373.
Simon, J. (2002). Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol Rev 26(3), 285-309. Doi: 10.1111/j.1574-6976.2002.tb00616.x.
Smith, C. J., D. B. Nedwell, L. F. Dong and A. M. Osborn (2007). Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl Environ Microbiol 73(11), 36123622. Doi: 10.1128/Aem.02894-06.
Sokolova, I. M., M. Frederich, R. Bagwe, G. Lannig and A. A. Sukhotin (2012). Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar Environ Res 79, 1-15. Doi: 10.1016/j.marenvres.2012.04.003.
Staaterman, E., C. B. Paris, H. A. DeFerrari, D. A. Mann, A. N. Rice and E. K. D'Alessandro (2014). Celestial patterns in marine soundscapes. Mar Ecol Prog Ser 508, 17-32. Doi: 10.3354/meps10911.
Stein, J. L. (1984). Subtidal gastropods consume sulfur-oxidizing bacteria: evidence from coastal hydrothermal vents. Science 223(4637), 696-698. Doi: 10.1126/science.223.4637.6.
Strohm, T. O., B. Griffin, W. G. Zumft and B. Schink (2007). Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol 73(5), 1420- 1424. Doi: 10.1128/Aem.02508-06.
Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P. Mesirov (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43), 15545-15550. Doi: 10.1073/pnas.0506580102.
Sun, Y., M. Wang, H. Chen, H. Wang, Z. Zhong, L. Zhou, L. Fu, C. Li, and S. Sun (2023). Insights into symbiotic interactions from metatranscriptome analysis of deep‐sea mussel Gigantidas platifrons under long‐term laboratory maintenance. Mol Ecol 32(2), 444-459. Doi: 10.1111/mec.16765.
Szafranski, K. M., B. Piquet, B. Shillito, F. H. Lallier and S. Duperron (2015). Relative abundances of methane- and sulfur-oxidizing symbionts in gills of the deep-sea hydrothermal vent mussel Bathymodiolus azoricus under pressure. Deep-Sea Res I: Oceanogr Res Pap 101, 7-13. Doi: 10.1016/j.dsr.2015.03.003.
Doi: 10.1128/Aem.71.11.7310-7320.2005.
Takai, K., F. Inagaki, S. Nakagawa, H. Hirayama, T. Nunoura, Y. Sako, K. H. Nealson and K. Horikoshi (2003). Isolation and phylogenetic diversity of members of previously uncultivated ε-proteobacteria in deep-sea hydrothermal fields. Fems Microbiol Lett 218(1), 167-174. Doi: 10.1111/j.1574-6968.2003.tb11514.x.
Takai, K., H. Hirayama, T. Nakagawa, Y. Suzuki, K.H. Nealson, and K. Horikoshi (2005). Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Micr 55(1), 183-189. Doi: 10.1099/ijs.0.63330-0.
Tarasov, V. G., A. V. Gebruk, A. N. Mironov and L. I. Moskalev (2005). Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chem Geol 224(1-3), 5-39. Doi: 10.1016/j.chemgeo.2005.07.021.
Thiermann, F., I. Akoumianaki, J. A. Hughes and O. Giere (1997). Benthic fauna of a shallow-water gaseohydrothermal vent area in the Aegean Sea (Milos, Greece). Mar Biol 128(1), 149-159. Doi: 10.1007/s002270050078.
Tivey, M. K. (2007). Generation of seafloor hydrothermal vent fluids and associated mineral Ddeposits. Oceanography 20(1), 50-65. Doi: 10.5670/oceanog.2007.80.
Toft, C., and S. G. Andersson (2010). Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet 11(7), 465-475. Doi: 10.1038/nrg2798.
Tokuda, G., A. Yamada, K. Nakano, N. O. Arita and H. Yamasaki (2008). Colonization of Sulfurovum sp. on the gill surfaces of Alvinocaris longirostris, a deep-sea hydrothermal vent shrimp. Mar Ecol-Evol Persp 29(1), 106-114. Doi: 10.1111/j.14390485.2007.00211.x.
Trembath-Reichert, E., D. A. Butterfield, and J. A. Huber (2019). Active subseafloor microbial communities from Mariana back-arc venting fluids share metabolic strategies across different thermal niches and taxa. ISME J 13(9), 2264-2279. Doi: 10.1038/s41396-019-0431-y.
Truchot, J. P. (1976). Carbon dioxide combining properties of the blood of the shore crab Carcinus maenas (L): carbon dioxide solubility coefficient and carbonic acid dissociation constants. J Exp Biol 64(1), 45-57.
Tsuchida, S., Y. Suzuki, Y. Fujiwara, M. Kawato, K. Uematsu, T. Yamanaka, C. Mizota and H. Yamamoto (2011). Epibiotic association between filamentous bacteria and the vent-associated galatheid crab, Shinkaia crosnieri (Decapoda: Anomura). J Mar Biol Assoc UK 91(1), 23-32. Doi: 10.1017/S0025315410001827.
Tunnicliffe, V. (1991). The biology of hydrothermal vents: Ecology and Evolution. Oceanogr Mar Biol Ann Rev 29, 319-407.
Tüzün, N., M. De Block, and R. Stoks (2020). Live fast, die old: oxidative stress as a potential mediator of an unexpected life‐history evolution. Oikos 129(9), 1330-1340. Doi: 10.1111/oik.07183.
Umam, K., H. J. Chuang, L. Chiu, W. K. Yang, Y. C. Wang, W. Y. Wu, and T. H. Lee (2020). Potential osmoprotective roles of branchial heat shock proteins towards Na+, K+-ATPase in milkfish (Chanos chanos) exposed to hypotonic stress. Comp Biochem Physiol A Mol Integr Physiol 248, 110749.
Doi: 10.1016/j.cbpa.2020.110749.
Urnavicius, L., K. Zhang, A. G. Diamant, C. Motz, M. A. Schlager, M. Yu, N. A. Patel, C. V. Robinson, and A. P. Carter (2015). The structure of the dynactin complex and its interaction with dynein. Science 347(6229), 1441-1446. Doi: 10.1126/science.aaa4080.
Valentin-Alvarado, L. E., S. C. Fakra, A. J. Probst, J. R. Giska, A. L. Jaffe, L. M. Oltrogge, J. West-Roberts, J. Rowland, M. Manga, D. F. Savage, and C. Greening. (2024). Autotrophic biofilms sustained by deeply sourced groundwater host diverse bacteria implicated in sulfur and hydrogen metabolism. Microbiome 12(1), 1-20. Doi: 10.1186/s40168-023-01704-w.
Valenzuela-González, F., M. Martínez-Porchas, E. Villalpando-Canchola and F. Vargas-Albores (2016). Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken). J Microbiol Meth 122, 38-42. Doi: 10.1016/j.mimet.2016.01.011.
Valero-Mora, P. M. (2010). ggplot2: Elegant graphics for data analysis. J Stat Softw 35, 1-3. Doi: 10.18637/jss.v035.i01.
Van den Heuvel, R. H. H., B. Curti, M. A. Vanoni, and A. Mattevi (2004). Glutamate synthase: a fascinating pathway from L-glutamine to L-glutamate. Cell Mol Life Sci 61, 669-681. Doi: 10.1007/s00018-003-3316-0.
Van Dover, C. L. and J. L. Trask (2000). Diversity at deep-sea hydrothermal vent and intertidal mussel beds. Mar Ecol Prog Ser 195, 169-178. Doi: 10.3354/meps195169.
Vaucher, R., S. E. Dashtgard, C. S. Horng, C. Zeeden, A. Dillinger, Y. Y. Pan, R. A. Setiaji, W. R. Chi and L. Lowemark (2021). Insolation-paced sea level and sediment flux during the early Pleistocene in Southeast Asia. Sci Rep-Uk 11(1), 16707. Doi: 10.1038/s41598-021-96372-x.
Vetriani, C., J. W. Voordeckers, M. Crespo-Medina, C. E. O'Brien, D. Giovannelli and R. A. Lutz (2014). Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME J 8(7), 1510- 1521. Doi: 10.1038/ismej.2013.246.
Vitvitsky, V., Kabil, O. and Banerjee, R., 2012. High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxidants & redox signaling, 17(1), 22-31. Doi: 10.1089/ars.2011.4310.
Vitvitsky, V., R. Kumar, M. Libiad, A. Maebius, A. P. Landry and R. Banerjee (2021). The mitochondrial NADH pool is involved in hydrogen sulfide signaling and stimulation of aerobic glycolysis. J Biol Chem 296, 100736. Doi: 10.1016/j.jbc.2021.100736.
Von Damm, K. L., M. D. Lilley, W. C. Shanks III, M. Brockington, A. M. Bray, K. M. O’Grady, E. Olson, A. Graham, and G. Proskurowski (2003). Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet Sci Lett 206(3-4), 365-378. Doi: 10.1016/S0012-821X(02)01081-6.
Yu, G., L. G. Wang, Y. Han, and Q. Y. He (2012). clusterProfiler: An R package for comparing biological themes among gene clusters. Omics J Integr Biol 16(5), 284-287. Doi: 10.1089/omi.2011.0118.
Wang, L., M. K. Cheung, H. S. Kwan, J. S. Hwang and C. K. Wong (2015). Microbial diversity in shallow-water hydrothermal sediments of Kueishan Island, Taiwan as revealed by pyrosequencing. J Basic Microb 55(11), 1308-1318. Doi: 10.1002/jobm.201400811.
Wang, L., M. K. Cheung, R. L. Liu, C. K. Wong, H. S. Kwan and J. S. Hwang (2017). Diversity of total bacterial communities and chemoautotrophic populations in sulfur-rich sediments of shallow-water hydrothermal vents off Kueishan Island, Taiwan. Microb Ecol 73(3), 571-582. Doi: 10.1007/s00248-016-0898-2.
Wang, T. W., T. Y. Chan and B. K. K. Chan (2014). Trophic relationships of hydrothermal vent and non-vent communities in the upper sublittoral and upper bathyal zones off Kueishan Island, Taiwan: a combined morphological, gut content analysis and stable isotope approach. Mar Biol 161(11), 2447-2463. Doi: 10.1007/s00227-014-2479-6.
Wang, T. W., D. C. P. Lau, T. Y. Chan and B. K. K. Chan (2022). Autochthony and isotopic niches of benthic fauna at shallow-water hydrothermal vents. Sci Rep-Uk 12(1). Doi: 10.1038/s41598-022-09839-w.
Wang, J., Q. Zheng, S. Wang, J. Zeng, Q. Yuan, Y. Zhong, L. Jiang, and Z. Shao (2023). Characterization of two novel chemolithoautotrophic bacteria of Sulfurovum from marine coastal environments and further comparative genomic analyses revealed species differentiation among deep-sea hydrothermal vent and non-vent origins. Front Mar Sci 10, 1222526. Doi: 10.3389/fmars.2023.1222526.
Watsuji, T., S. Nakagawa, S. Tsuchida, T. Toki, A. Hirota, U. Tsunogai and K. Takai (2010). Diversity and function of epibiotic microbial communities on the galatheid crab. Microbes Environ 25(4), 288-294. Doi: 10.1264/jsme2.ME10135.
Wächtershäuser, G. U. N. T. E. R. (1998). The case for a hyperthermophilic, chemolithoautotrophic origin of life in an iron-sulfur world. Thermophiles: the keys to molecular evolution and the origin of life, pp.47-57.
Wei, T., V. Simko, M. Levy, Y. Xie, Y. Jin, and J. Zemla (2017). Package corrplot. Statistician 56(316), e24.
Wickham, H. (2020). reshape2: Flexibly reshape data: A reboot of the reshape package. R Package Version 1(4)
Wills, C. and Bada, J., 2001. The spark of life: Darwin and the primeval soup. Oxford University Press, USA.
Wittinghofer, A., K. Scheffzek, and M. R. Ahmadian (1997). The interaction of Ras with GTPase-activating proteins. FEBS Lett 410(1), 63-67. Doi: 10.1016/S0014-5793(97)00321-9.
Yamamoto, M. and K. Takai (2011). Sulfur metabolisms in epsilon- and gamma-Proteobacteria in deep-sea hydrothermal fields. Front Microbiol 2, 192. Doi: 10.3389/fmicb.2011.00192.
Yang, S. H., P. W. Chiang, T. C. Hsu, S. J. Kao and S. L. Tang (2016). Bacterial community associated with organs of shallow hydrothermal vent crab Xenograpsus testudinatus near Kuishan Island, Taiwan. Plos One 11(3), e0150597. Doi: 10.1371/journal.pone.0150597.
Yoo, H., M. R. Antoniewicz, G. Stephanopoulos and J. K. Kelleher (2008). Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem 283(30), 20621-20627. Doi: 10.1074/jbc.M706494200.
Joyner-Matos, J., B. L. Predmore, J. R. Stein, C. Leeuwenburgh, and D. Julian (2010). Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate. Physiol Biochem Zool 83(2), 356-365. Doi: 10.1086/597529.
Yucel, M., S. M. Sievert, C. Vetriani, D. I. Foustoukos, D. Giovannell and N. Le Bris (2013). Eco-geochemical dynamics of a shallow-water hydrothermal vent system at Milos Island, Aegean Sea (Eastern Mediterranean). Chem Geol 356, 11-20. Doi: 10.1016/j.chemgeo.2013.07.020.
Yurgel, S. N., M. Nadeem, and M. Cheema (2022). Microbial consortium associated with crustacean shells composting. Microorganisms 10(5), 1033. Doi: 10.3390/microorganisms10051033.
Zbinden, M., B. Shillito, N. Le Bris, C. D. de Montlaur, E. Roussel, F. Guyot, F. Gaill and M. A. Cambon-Bonavita (2008). New insigths on the metabolic diversity among the epibiotic microbial community of the hydrothermal shrimp Rimicaris exoculata. J Exp Mar Biol Ecol 359(2), 131-140. Doi: 10.1016/j.jembe.2008.03.009.
Zbinden, M., L. Marqué, S. M. Gaudron, J. Ravaux, N. Léger and S. Duperron (2015). Epsilonproteobacteria as gill epibionts of the hydrothermal vent gastropod Cyathermia naticoides (North East-Pacific Rise). Mar Biol 162(2), 435-448.Doi: 10.1007/s00227-014-2591-7.
Zeebe, R. E. and Wolf-Gladrow, D. (2001). CO2 in seawater: equilibrium, kinetics, isotopes (Vol. 65). Gulf Professional Publishing.
Zeileis, A., F. Leisch, K. Hornik, and C. Kleiber (2002). strucchange: An R package for testing for structural change in linear regression models. J Stat Softw 7, 1-38. Doi: 10.18637/jss.v007.i02.
Zeppilli, D., D. Leduc, C. Fontanier, D. Fontaneto, S. Fuchs, A. J. Gooday, A. Goineau, J. Ingels, V. N. Ivanenko, R. M. Kristensen, R. C. Neves, N. Sanchez, R. Sandulli, J. Sarrazin, M. V. Sorensen, A. Tasiemski, A. Vanreusel, M. Autret, L. Bourdonnay, M. Claireaux, V. Coquille, L. De Wever, D. Rachel, J. Marchant, L. Toomey and D. Fernandes (2018). Characteristics of meiofauna in extreme marine ecosystems: a review. Mar Biodivers 48(1), 35-71. Doi: 10.1007/s12526-017-0815-z.
Zerillo, M. M., B. N. Adhikari, J. P. Hamilton, C. R. Buell, C. A. Lévesque and N. Tisserat (2013). Carbohydrate-active enzymes in Pythium and their role in plant cell wall and storage polysaccharide degradation. Plos One 8(9), e72572. Doi: 10.1371/journal.pone.0072572.
Zhang, Z., D. Liu, B. Yi, Z. Liao, L. Tang, D. Yin, and M. He (2014). Taurine supplementation reduces oxidative stress and protects the liver in an iron-overload murine model. Mol Med Rep 10(5), 2255-2262. Doi: 10.3892/mmr.2014.2544
Zhang, J., Q. L. Sun, Z. D. Luan, C. Lian and L. Sun (2017). Comparative transcriptome analysis of Rimicaris sp. reveals novel molecular features associated with survival in deep-sea hydrothermal vent. Sci Rep-Uk 7, 2000. Doi: 10.1038/s41598-017-02073-9.
Zhukova, N. V. (2019). Fatty acids of marine mollusks: Impact of diet, bacterial symbiosis, and biosynthetic potential. Biomolecules 9(12), 857. Doi: 10.3390/biom9120857.
Zierenberg, R. A., M. W. W. Adams and A. J. Arp (2000). Life in extreme environments: Hydrothermal vents. P Natl Acad Sci USA 97(24), 12961-12962. Doi: 10.1073/pnas.210395997.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97309-
dc.description.abstract近年來,淺水熱泉因其複雜的特性,受到越來越多的關注,這些特性受到多種表層海洋因素的影響,如日照、潮汐、水流和季節性變化,與深海熱泉有明顯的差異。台灣東北方宜蘭海域的龜山島,同時擁有淺水熱泉及珊瑚生態系統,相當適合作為研究熱泉環境相互作用的自然實驗室。通過監測水質及聲景特徵,我們觀察到熱泉區的間歇性熱液排放,硫化物 (HS-/S2-)、溶解無機碳 (dissolved inorganic carbon, DIC) 和pH值為區分龜山島周圍棲地的重要指標,尤其在活躍期展現了熱泉活動在淺海環境中時間與空間的動態變化。
烏龜怪方蟹 (Xenograpsus testudinatus) 作為龜山島熱泉系統最優勢其中一種動物,已發展出能存活於熱泉極端環境中的生理機制來維持體內恆定。然而,其共生菌與環境變化之間的相互作用仍未完全了解。利用全長16S rRNA基因定序和Alpha多樣性分析,我們觀察到水中細菌群落與熱泉相關的水質參數有相關性。在綱 (class) 的階層下,Campylobacteria和Gammaproteobacteria的相對豐度有相反的變化趨勢,其中,一種硫還原菌Thioreductor是Campylobacteria中相對豐度最高的菌屬,而Gammaproteobacteria中最豐富的菌屬則是一種硫氧化菌Thiomicrorhabdus,說明環境變動與微生物的物質利用之間可能密切相關。而對怪方蟹X. testudinatus來說,鰓的菌群與水質化學變化的相關性高於殼表的細菌,儘管Campylobacteria中的Sulfurovum在鰓和殼表都是優勢菌屬,但殼表的菌群有更高的多樣性。螢光原位雜交 (fluorescence in situ hybridization, FISH) 支持鰓中Sulfurovum的優勢地位。功能預測分析顯示菌群主要進行硫氧化 (sulfur oxidation) 及脫硝作用 (denitrification),相關反應可能由Sulfurovum主導。由於在海水中Sulfurovum並不是豐度較高的菌屬,怪方蟹的鰓可能為其及相關硫氧化菌 (sulfur-oxidizing bacteria, SOB) 提供了一個適合定殖 (colonization) 的微棲地 (microhabitat),進而幫助宿主乃至共生體的硫解毒機制 (sulfide detoxification) 及有機物質的提供。
熱泉的間歇性使得X. testudinatus反覆暴露於一般海水與極端環境之間。為了研究牠們的適應機制,我們將實驗室馴化的X. testudinatus回放到原熱泉棲地,採樣並透過定序技術分析鰓的細菌微生物群 (bacterial microbiota)、轉錄體 (transcriptome),同時測定其氨基酸及脂肪酸組成。在回放轉移後的0, 1, 2, 4小時 (H) 期間,細菌多樣性在2H時觀察到的屬數量 (observed genus taxa number) 和Chao 1顯著下降,Sulfurovum在1H豐度最高,並伴隨著異營性功能 (heterotrophy) 的減少和氮代謝及硫化物代謝的增加,同時轉錄組顯示宿主組織中GTPase活性和肌動蛋白骨架重構 (actin cytoskeleton remodeling) 相關的路徑被上調,而幾丁質和外骨骼的形成 (chitin and cuticle formation) 受到抑制。在之後的2H和4H,硫化物代謝有逐漸增強的趨勢,與硫化物解毒相關的氨基酸牛磺酸 (taurine) 也顯著減少,而與氮代謝相關的組氨酸 (histidine)、精氨酸 (arginine) 和谷氨酰胺 (glutamine) 則在2H及4H時累積,同時與上述胺基酸相關的代謝酵素基因如谷氨酰胺酶 (glutaminase)、組氨酸氨基水解酶 (histidine ammonia-lyase) 及丙氨酸轉氨酶 (alanine transaminase) 也被上調。抗氧化防禦 (antioxidant defense) 則藉由穀胱甘肽過氧化酶 (glutathione peroxidase) 及麩胱甘肽轉移酶 (glutathione S- transferase) 的旁系同原體 (paralogs) 在回放過程中持續進行,說明抗氧化機制對烏龜怪方蟹適應熱泉環境的重要性。此外,脂肪酸含量雖然並沒有顯著變化,相關性和倍數差異 (fold change) 分析顯示不飽和脂肪酸可能比飽和脂肪酸對環境的反應更加明顯,脂肪酸的累積與消耗可能與細胞結構的維持及抗氧化物的調節相關。
上述結果顯示X. testudinatus熱泉共生體棲息於一個比以往認知更為複雜的動態環境中,我們的研究透過多方面的分析,包含環境變量、細菌群時間性變化以及宿主生理代謝反應,探討不同層面之間的交互作用及相互依賴關係。研究熱泉共生體為我們提供了生命在挑戰性環境中所展現出韌性的相關見解,並且揭示了極端條件下跨域共演化 (inter-domain evolution) 的奧秘。
zh_TW
dc.description.abstractShallow-water hydrothermal vents have garnered growing attention due to their complex characteristics, influenced by various epipelagic factors such as insolation, tides, currents, and seasonal changes, in contrast to their deep-sea analogues. Kueishan Island, which harbors both shallow-water hydrothermal and coral ecosystems, provides an exceptional natural laboratory for investigating hydrothermal environmental interactions. We captured sporadic fluid discharges at the vent site by monitoring water quality and soundscape features. Sulfide (HS-/S2-), dissolved inorganic carbon (DIC), and pH levels were identified as key indicators for habitats differentiation around Kueishan Island, especially during active venting periods, which highlights the profound spatial and temporal dynamics of hydrothermal activity in shallow water marine environments.
The brachyuran vent crab Xenograpsus testudinatus, a dominant metazoan inhabiting Kueishan Island hydrothermal vent system, has developed robust physiological mechanisms to sustain homeostasis in this extreme environment. However, the interactions between its symbiotic bacteria and environmental fluctuations remain incompletely understood. Through the application of full-length 16S rRNA gene sequencing and alpha diversity analysis, we observed strong correlations between water bacterial community and hydrothermal-associated physicochemical parameters at the vent site. The relative abundances of Campylobacteria and Gammaproteobacteria exhibited inverse temporal patterns, where Thioreductor, a sulfur-reducing bacteria, was the most abundant genus within Campylobacteria, while the sulfur-oxidizing Thiomicrorhabdus predominated among Gammaproteobacteria, indicating a potential link between environmental dynamics and microbial resource availability. In X. testudinatus, gill-associated bacteria showed greater correlations with water quality compared to those present on the carapace surface. While Sulfurovum (Campylobacteria) was predominant in both the gills and carapace surface, the carapace surface demonstrated higher bacterial diversity. Furthermore, fluorescence in situ hybridization (FISH) and functional prediction analysis supported the branchial predominance of Sulfurovum, which performs sulfur oxidation and denitrification processes. Given that Sulfurovum is not abundant in the ambient seawater, the gills may serve as an enclave for sulfur-oxidizing bacteria (SOB) such as Sulfurovum, facilitating sulfide detoxification and organic production to the host.
The intermittent nature of hydrothermal venting repeatedly exposes X. testudinatus to transitions between normal seawater and extreme environmental conditions. To investigate their adaptive responses, we reintroduced lab-acclimated X. testudinatus to their native habitat and analyzed their gill tissue for bacterial microbiota, transcriptome, amino acid compositions, and fatty acid profiles. During the period, 0, 1, 2, and 4 hours (H) post-reintroduction, bacterial diversity showed a significant reduction in observed taxa numbers and Chao 1 estimates at the genus level at 2H. Sulfurovum had the highest abundance at 1H, coinciding with elevated nitrogen and sulfide metabolism and reduced heterotrophy-associated functions. Meanwhile, transcriptomic analysis revealed upregulation of GTPase activity and actin cytoskeleton remodeling in the host tissue, while chitin and cuticle formation pathways were suppressed. At subsequent time points (2H or 4H), both sulfide metabolism and stress responses showed progressive enhancement. Taurine, crucial for sulfide detoxification, significantly depleted at 2 and 4H. Additionally, nitrogen metabolism-related amino acids, histidine, arginine, and glutamine, accumulated at the later time points, accompanied by upregulation of related enzyme genes, including glutaminase, histidine ammonia-lyase, and alanine transaminase. During the reintroduction, fatty acid levels did not show significant changes; however, correlation and fold change analyses revealed that unsaturated fatty acids had more pronounced responses to environmental transition compared to saturated fatty acids.
These analyses demonstrate that X. testudinatus holobiont exists in a dynamic environment, more complicated than previously acknowledged. Our study provides a multi-faceted examination of environmental variables, bacteria community dynamics, and the crab host’s physiological responses, elucidating their intricate interactions and interdependencies. Exploring hydrothermal-endemic holobionts provides valuable insights into the remarkable resilience of life in a challenging environment, shedding light on the mechanisms of inter-kingdom coevolution under extreme conditions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-24T16:04:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-04-24T16:04:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書..............................i
誌謝..............................ii
摘要..............................iii
Abstract..............................v
Contents..............................viii
Background and Aims..............................x
Chapter 1. Spatial and Temporal Effects of Shallow-Water Hydrothermal Venting on the Surrounding Environment..............................1
1.1 Introduction..............................2
1.2 Materials and Methods..............................5
1.3 Results..............................8
1.4 Discussion..............................12
1.5 Tables and Figures..............................16
Chapter 2. Bacterial Communities Dynamics at the Environment-Host Interface in the Hydrothermal Vent System..............................26
2.1 Introduction..............................27
2.2 Materials and Methods..............................32
2.3 Results..............................37
2.4 Discussion..............................41
2.5 Tables and Figures..............................51
Chapter 3. Sequential Strategy Underlies Xenograpsus testudinatus Holobiont Resilience in Extreme Hydrothermal Environments..............................67
3.1 Introduction..............................68
2.2 Materials and Methods..............................72
3.3 Results..............................78
3.4 Discussion..............................84
3.5 Figures..............................96
Conclusions and Perspectives..............................116
References..............................119
Appendix..............................151
-
dc.language.isoen-
dc.subject甲殼類細菌共生體zh_TW
dc.subject微生物組zh_TW
dc.subject轉錄組zh_TW
dc.subject代謝組zh_TW
dc.subject硫氧化菌zh_TW
dc.subject硫解毒zh_TW
dc.subject脫硝作用zh_TW
dc.subject抗氧化防禦zh_TW
dc.subjectantioxidant defenseen
dc.subjectCrustacean-bacteria symbiosisen
dc.subjectmicrobiomeen
dc.subjecttranscriptomeen
dc.subjectmetabolomeen
dc.subjectsulfide-oxidizing bacteriaen
dc.subjectsulfide detoxificationen
dc.subjectdenitrificationen
dc.title龜山島淺海熱泉系統中烏龜怪方蟹共生體之環境互動與適應機制zh_TW
dc.titleEnvironmental Interactions and Adaptive Mechanisms of the Xenograpsus testudinatus Holobiont in Kueishan Island Shallow-Water Hydrothermal Vent Systemen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor曾庸哲zh_TW
dc.contributor.coadvisorYung-Che Tsengen
dc.contributor.oralexamcommittee湯森林;藤井賢彥;吳貫忠zh_TW
dc.contributor.oralexamcommitteeSen-Lin Tang;Masahiko Fuji;Guan-Chung Wuen
dc.subject.keyword甲殼類細菌共生體,微生物組,轉錄組,代謝組,硫氧化菌,硫解毒,脫硝作用,抗氧化防禦,zh_TW
dc.subject.keywordCrustacean-bacteria symbiosis,microbiome,transcriptome,metabolome,sulfide-oxidizing bacteria,sulfide detoxification,denitrification,antioxidant defense,en
dc.relation.page153-
dc.identifier.doi10.6342/NTU202500809-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-04-09-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2025-04-25-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf17.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved