請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97284完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 逄愛君 | zh_TW |
| dc.contributor.advisor | Ai-Chun Pang | en |
| dc.contributor.author | 吳品佑 | zh_TW |
| dc.contributor.author | Pin-Yu Wu | en |
| dc.date.accessioned | 2025-04-02T16:17:29Z | - |
| dc.date.available | 2025-04-03 | - |
| dc.date.copyright | 2025-04-02 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-03-13 | - |
| dc.identifier.citation | IEEE standard for local and metropolitan area networks – Bridges and Bridged Networks - Amendment 25: Enhancements for Scheduled Traffic. IEEE Std 802.1Qbv-2015, pages 1–57, 2016.
IEEE standard for local and metropolitan area networks–Bridges and Bridged Networks–Amendment 29: Cyclic Queuing and Forwarding. IEEE 802.1Qch-2017, pages 1–30, 2017. IEEE standard for local and metropolitan area networks–Frame Replication and Elimination for Reliability. IEEE Std 802.1CB-2017, pages 1–102, 2017. IEEE standard for local and metropolitan area networks–Bridges and Bridged Networks – Amendment 31: Stream Reservation Protocol (SRP) Enhancements and Performance Improvements. IEEE Std 802.1Qcc-2018, pages 1–208, 2018. A. Ademaj, D. Puffer, D. Bruckner, G. Ditzel, L. Leurs, M.-P. Stanica, P. Didier, R. Hummen, R. Blair, and T. Enzinger. Time sensitive networks for flexible manufacturing testbed characterization and mapping of converged traffic types. White paper, Industrial Internet Consortium, 2019. S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner. Scheduling real-time communication in ieee 802.1qbv time sensitive networks. In 24th International Conference on Real-Time Networks and Systems, RTNS ’16, page 183–192, 2016. P. Danielis, H. Puttnies, E. Schweissguth, and D. Timmermann. Real-time capable internet technologies for wired communication in the industrial iot-a survey. In 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), volume 1, pages 266–273, 2018. J. Falk, F. Dürr, and K. Rothermel. Exploring practical limitations of joint routing and scheduling for tsn with ilp. In 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 136–146, 2018. J. Falk, H. Geppert, F. Dürr, S. Bhowmik, and K. Rothermel. Dynamic qos-aware traffic planning for time-triggered flows in the real-time data plane. IEEE Transactions on Network and Service Management, 19(2):1807–1825, 2022. X. Feng, Y. Wang, J. Lin, W. Li, S. Zhan, Y. Liu, J. Zhang, and J. Wang. Advancing tsn flow scheduling: An efficient framework without flow isolation constraint. Computer Networks, 252:110688, 2024. M. Guo, C. Gu, S. He, Z. Shi, and J. Chen. Mss: Exploiting mapping score for cqf start time planning in time-sensitive networking. IEEE Transactions on Industrial Informatics, 19(2):2140–2150, 2023. Y. Huang, S. Wang, T. Huang, B. Wu, Y. Wu, and Y. Liu. Online routing and scheduling for time-sensitive networks. In 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), pages 272–281, 2021. Y. Huang, S. Wang, G. Li, X. Zhang, D. Xu, and T. Huang. Multi-path cqf for low-jitter and high-reliable packet delivery in time-sensitive networks. In 2024 IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6, 2024. Y. Huang, S. Wang, B. Wu, T. Huang, and Y. Liu. Tacq: Enabling zero-jitter for cyclic-queuing and forwarding in time-sensitive networks. In 2021 IEEE International Conference on Communications (ICC), pages 1–6, 2021. Y. Huang, S. Wang, X. Zhang, T. Huang, and Y. Liu. Flexible cyclic queuing and forwarding for time-sensitive software-defined networks. IEEE Transactions on Network and Service Management, 20(1):533–546, 2023. A. E. Kalør, R. Guillaume, J. J. Nielsen, A. Mueller, and P. Popovski. Network slicing in industry 4.0 applications: Abstraction methods and end-to-end analysis. IEEE Transactions on Industrial Informatics, 14(12):5419–5427, 2018. Y. Liu, D. Zhou, S. Zhan, Y. Xin, J. Lin, X. Feng, E. Shi, Y. Qi, G. Chen, J. Zheng, Y. Wang, and X. Zheng. Mccqf: Low-latency transmission based on ieee 802.1qch for hierarchical networking. In ICC 2023 - IEEE International Conference on Communications, pages 6052–6058, 2023. J. L. Messenger. Time-sensitive networking: An introduction. IEEE Communications Standards Magazine, 2(2):29–33, 2018. Z. Pang, X. Huang, Z. Li, S. Zhang, Y. Xu, H. Wan, and X. Zhao. Flow scheduling for conflict-free network updates in time-sensitive software-defined networks. IEEE Transactions on Industrial Informatics, 17(3):1668–1678, 2021. W. Quan, J. Yan, X. Jiang, and Z. Sun. On-line traffic scheduling optimization in ieee 802.1qch based time-sensitive networks. In 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages 369–376, 2020. W. Sun, Y. Zou, N. Guan, X. Zhang, J. Fan, and Y. Meng. Irfs: A cqf scheduling method integrating queue resources and flow features in time-sensitive networking. IEEE Transactions on Vehicular Technology, 73(10):14201–14211, 2024. B. Wang, F. Luo, and Z. Fang. Performance analysis of ieee 802.1qch for automotive networks: Compared with ieee 802.1 qbv. In 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology (CCET), pages 355–359, 2021. S. Wang, Q. Xu, Y. Zhang, L. Xu, and C. Chen. Hybrid traffic scheduling based on adaptive time slot slicing in time-sensitive networking. In 2022 IEEE International Conference on Industrial Technology (ICIT), pages 1–7, 2022. X.Wang, H. Yao, T.Mai, Z. Xiong, F.Wang, and Y. Liu. Joint routing and scheduling with cyclic queuing and forwarding for time-sensitive networks. IEEE Transactions on Vehicular Technology, 72(3):3793–3804, 2023. J. Yan, W. Quan, X. Jiang, and Z. Sun. Injection time planning: Making cqf practical in time-sensitive networking. In 2020 IEEE Conference on Computer Communications (INFOCOM), pages 616–625, 2020. Z. Yang, S. Wang, Q. Xu, X. Li, and C. Chen. A timeslot clustering-based hybrid traffic scheduling in time-sensitive networking. In 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN), pages 1–6, 2024. Y. Zhang, Q. Xu, L. Xu, C. Chen, and X. Guan. Efficient flow scheduling for industrial time-sensitive networking: A divisibility theory-based method. IEEE Transactions on Industrial Informatics, 18(12):9312–9323, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97284 | - |
| dc.description.abstract | 時效性網路在工業物聯網應用中至關重要,這類應用需要確保通訊的確定性、低延遲以及零抖動,以支持即時控制與同步。然而,工業物聯網網路中大量設備的存在,導致了顯著的可擴展性挑戰。現有方法如時間感知整流器和循環佇列與轉發面臨明顯的限制:時間感知整流器計算複雜度高,限制了其在即時排程場景中的應用,而循環佇列與轉發無法保證零抖動,使其不適用於同步流的排程。此外,現有結合時間感知整流器與循環佇列與轉發的方法在處理同步流時效率不足,仍然難以應對可擴展性問題。為了解決這些挑戰,我們提出了零抖動循環佇列與轉發,這是一種整合排程架構,結合循環佇列與轉發進行初始傳輸,並在最後一跳利用時間感知整流器和重新排序機制來確保流的順序並實現零抖動傳輸。此方法提升了可擴展性並增強了可排程性,使其特別適用於工業物聯網應用。實驗結果顯示,零抖動循環佇列與轉發在多種網路拓撲中相較於現有方法,實現了更高的可排程性與更短的運行時間,有效驗證了其在時間關鍵型工業物聯網環境中的優勢。 | zh_TW |
| dc.description.abstract | Time-Sensitive Networking (TSN) is critical for Industrial Internet of Things (IIoT) applications, which require deterministic communication, low latency, and zero jitter to support real-time control and synchronization. However, the large number of devices in IIoT networks introduces significant scalability challenges. Existing approaches, such as the Time-Aware Shaper (TAS) and Cyclic Queuing and Forwarding (CQF), face notable limitations: TAS incurs high computational complexity, limiting its applicability in online scheduling scenarios, while CQF cannot ensure zero jitter, making it unsuitable for scheduling isochronous flows. Furthermore, existing methods that integrate TAS and CQF face scalability challenges due to the inefficient handling of isochronous flows. To address these challenges, we propose ZCQF (Zero-Jitter Cyclic Queuing and Forwarding), a novel scheduling architecture that integrates CQF for initial transmission and utilizes a reordering mechanism combined with TAS at the final hop to ensure flow order and achieve zero-jitter transmission. This approach improves scalability and enhances schedulability, making it well-suited for IIoT applications. Experimental results demonstrate that ZCQF outperforms existing methods across various network topologies by achieving higher schedulability and shorter runtime, validating its effectiveness for time-critical IIoT environments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:17:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-04-02T16:17:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 1
Abstract 2 Table of Contents 4 List of Figures 6 List of Tables 7 Chapter 1 Introduction 1 Chapter 2 Related Work 5 2.1 Time-Aware Shaper (TAS) 5 2.2 Cyclic Queuing and Forwarding (CQF) 6 2.3 Integration of TAS and CQF 8 Chapter 3 System Model 10 3.1 Network Paradigm 10 3.2 Time-Aware Shaper (TAS) 11 3.3 Cyclic Queuing and Forwarding (CQF) 11 3.4 Problem Formulation 13 Chapter 4 Proposed Method 16 4.1 Addressing Zero-Jitter Issues in CQF 16 4.2 ZCQF Architecture 18 4.3 Parameter 20 4.4 Constraints 21 4.5 Scheduling Algorithm 23 Chapter 5 Experiment Results 26 5.1 Comparison of Online Algorithms 27 5.1.1 Normal Mode 28 5.1.2 Until Fail Mode 31 5.2 Runtime 33 5.3 Impact of Flow Ratio 34 5.4 Impact of TSSR 36 Chapter 6 Conclusion 38 References 40 | - |
| dc.language.iso | en | - |
| dc.subject | 即時排程 | zh_TW |
| dc.subject | 零抖動 | zh_TW |
| dc.subject | 循環佇列與轉發 | zh_TW |
| dc.subject | 時效性網路 | zh_TW |
| dc.subject | 工業物聯網 | zh_TW |
| dc.subject | Zero jitter | en |
| dc.subject | Industrial internet of things | en |
| dc.subject | Time-sensitive networking | en |
| dc.subject | Cyclic queuing and forwarding | en |
| dc.subject | Online scheduling | en |
| dc.title | 針對時效性網路之零抖動可擴展線上排程 | zh_TW |
| dc.title | Scalable Online Scheduling with Zero Jitter for Time-Sensitive Networking | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 施淵耀;莊清智;王協源;施吉昇 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Yao Shih;Ching-Chih Chuang;Shie-Yuan Wang;Chi-Sheng Shih | en |
| dc.subject.keyword | 工業物聯網,時效性網路,循環佇列與轉發,即時排程,零抖動, | zh_TW |
| dc.subject.keyword | Industrial internet of things,Time-sensitive networking,Cyclic queuing and forwarding,Online scheduling,Zero jitter, | en |
| dc.relation.page | 44 | - |
| dc.identifier.doi | 10.6342/NTU202500765 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-03-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 818.23 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
