請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97282
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳中平 | zh_TW |
dc.contributor.advisor | Chung-Ping Chen | en |
dc.contributor.author | 呂怡玫 | zh_TW |
dc.contributor.author | I MEI LU | en |
dc.date.accessioned | 2025-04-02T16:16:56Z | - |
dc.date.available | 2025-04-03 | - |
dc.date.copyright | 2025-04-02 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-26 | - |
dc.identifier.citation | [1] C Tarver, A Balatsoukas-Stimming, JR Cavallaro,”Design and Implementation of a Neural Network Based Predistorter for Enhanced Mobile Broadband”, 2019 IEEE international workshop on signal processing systems (SiPS), 10.1109/SiPS47522.2019.9020606,20-23 October 2019, Publisher: IEEE
[2] Hamza Imtiaz, Zibo Zheng, Rizan Homayoun Nejad, Leslie A. Rusch, and Ming Zeng “Performance vs. Complexity in NN Predistortion for a Nonlinear Channel”, 2023 Nov 6;31(23):38513-38528. doi: 10.1364/OE.500467. [3] OFDM學習筆記(二)(OFDM基本原理): https://blog.csdn.net/daijingxin/article/details/108110436 [4] https://www.ebyte.com/news/1253.html (功率放大器指標) [5] chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.tpce.org.tw/data/data5/714-1.pdf 5G-技師園地-林鵬飛技師 [6] https://ithelp.ithome.com.tw/articles/10301074 -DNN [7] Chance Tarver; Alexios Balatsoukas-Stimming; Joseph R. Cavallaro ,”Design and Implementation of a Neural Network Based Predistorter for Enhanced Mobile Broadband” 2019 IEEE International Workshop on Signal Processing Systems (SiPS), 10.1109/SiPS47522.2019.9020606, 20-23 October 2019, Publisher: IEEE [8] J. Renteria-Cedano; C. Peréz-Wences; L. M. Aguilar-Lobo; J. R. Loo-Yau; S. Ortega-Cisneros; P. Moreno,”A Novel Configurable FPGA Architecture for Hardware Implementation of Multilayer Feedforward Neural Networks Suitable for Digital Pre-Distortion Technique” 2016 46th European Microwave Conference (EuMC), 10.1109/EuMC.2016.7824478, Publisher: IEEE [9] Yiyue Jiang; Andrius Vaicaitis; Miriam Leeser; John Dooley”Neural Network on the Edge: Efficient and Low Cost FPGA Implementation of Digital Predistortion in MIMO Systems” 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), 10.23919/DATE56975.2023.10137251, Publisher: IEEE [10] Hongyun Huang; Zhipeng Li; Jingfu Bao”FPGA implementation of RVFTDNN for digital predistortion” 2013 International Workshop on Microwave and Millimeter Wave Circuits and System Technology, 10.1109/MMWCST.2013.6814552, Publisher: IEEE [11] Zhe Li; Yucheng Yu; Peng Chen; Ziming Wang; Chao Yu”AI-Based_RF-Input_RF-Output_Digital_Predistortion_Architecture_for_the_Linearization_of_RF_Power_Amplifiers” 2024 IEEE MTT-S International Wireless Symposium (IWS), 10.1109/IWS61525.2024.10713821,Publisher: IEEE [12] Masaaki Tanio; Naoto Ishii; Norifumi Kamiya “A Sparse Neural Network-Based Power Adaptive DPD Design and Its Hardware Implementation” IEEE Access ( Volume: 10), 10.1109/ACCESS.2022.3218109 Date of Publication: 28 October 2022,Publisher: IEEE [13] Dongming Wang; Mohsin Aziz; Mohamed Helaoui; Fadhel M. Ghannouchi” Augmented Real-Valued Time-Delay Neural Network for Compensation of Distortions and Impairments in Wireless Transmitters” IEEE Transactions on Neural Networks and Learning Systems ( Volume: 30, Issue: 1, January 2019) Page(s): 242 - 254, 10.1109/TNNLS.2018.2838039, Publisher: IEEE [14] https://hyper.ai/cn/wiki/3670 (稀疏性 Sparsity) [15] https://www.chinaaet.com/article/3000069733(Sigmoid) [16] Kim K., Jang S.J., Park J., Lee E., Lee S.S. Lightweight and Energy-Efficient Deep Learning Accelerator for Real-Time Object Detection on Edge Devices. Sensors, Intelligent Image Processing Research Center, Korea Electronics Technology Institute, Seongnam-si 13488, Sensors 2023, 23(3), 1185, Submission received: 15 December 2022 / Revised: 17 January 2023 / Accepted: 18 January 2023 / Published: 20 January 2023 [17] Yiyue Jiang 1, Andrius Vaicaitis 2, John Dooley 2, Miriam Leeser 1,”Efficient Neural Networks on the Edge with FPGAs by Optimizing an Adaptive Activation Function”Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA, [18] Kim K., Jang S.J., Park J., Lee E., Lee S.S. Lightweight and Energy-Efficient Deep Learning Accelerator for Real-Time Object Detection on Edge Devices. Sensors. 2023;23:1185. Doi, Submission received: 17 January 2024 / Revised: 8 March 2024 / Accepted: 9 March 2024 / Published: 13 March 2024 [19]X. Hu, Z. Liu, X. Yu, Y. Zhao, W. Chen, and B. e. a. Hu, “Convolutional neural network for behavioral modeling and predistortion of wideband power amplifiers,” IEEE Transactions on Neural Networks and Learning Systems ( Volume: 33, Issue: 8, August 2022) Page(s): 3923 - 3937, vol. 33, no. 8, pp. 3923–3937, 2022, 10.1109/TNNLS.2021.3054867, Publisher: IEEE [20] X. Hu, Z. Liu, X. Yu, Y. Zhao, W. Chen, and B. e. a. Hu, “Convolutional neural network for behavioral modeling and predistortion of wideband power amplifiers,” IEEE Transactions on Neural Networks and Learning Systems ( Volume: 33, Issue: 8, August 2022), vol. 33, no. 8, pp. 3923–3937, 2022, 10.1109/TNNLS.2021.3054867, Publisher: IEEE [21] https://aws.amazon.com/tw/what-is/recurrent-neural-network/(RNN) [22] Reina Hongyo; Yoshimasa Egashira; Keiichi Yamaguchi, “Deep Neural Network Based Predistorter with ReLU Activation for Doherty Power Amplifiers,” 2018 Asia-Pacific Microwave Conference (APMC), 10.23919/APMC.2018.8617612 [23]碩博士論文”應用於智慧型標籤系統基站發射機之數位訊號處理架構設計”-程奕,台大電子所,2018 [24] Karan Gumber 1, Meenakshi Rawat, “Digital Predistorter Design using Linear Spline and its Fixed Point Implementation,” 2016 Proceedings of the Asia-Pacific Microwave Conference, 10.1109/APMC.2016.7931349 [25] Hoon Chung, Sung Joo Lee, Jeon Park, “Deep neural network using trainable activation functions,” Conference: 2016 International Joint Conference on Neural Networks (IJCNN), 10.1109/IJCNN.2016.7727219, Publisher: IEEE [26]碩博士論文”使用最適權值選擇的時間延遲類神經網路於移動物體預測的研究”-曾英璟,東華電機,2004 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97282 | - |
dc.description.abstract | 傳統射頻功率放大器數位預失真方式可分為多項式法、查表(LUT)法…等。近年來因為5G與物聯網的發展許多產品都必須以低功耗低面積去做設計,傳統數位預失真無法處理嚴重的非線性失真因此造成效能上的嚴重損失,而近年來類神經網路(Deep Neural Network, DNN)和機器學習(Machine Learning, ML)的發展,將其與數位預失真上做結合得到很好的效果。本論文主要研究神經網路演算法應用於數位預失真上,首先我們先分析不同神經網路演算法在數位預失真上的ACPR,EVM,再來我們選擇最適當的神經網路演算法並根據所制定的發射機規格模擬出ACPR,NMSE,EVM結果,在模擬過程中為了以後寫硬體做準備引入量化流程將浮點數運算轉換成定點數運算,在不大量損失精確度的同時,大幅減少儲存空間與運算複雜度,並利用訓練序列最佳化shuffle演算法加快訓練序列收斂速度,進而減少訓練時間,我們發現加了shuffle演算法將序列打亂後得到優化序列後所需要的training時間比原先tranining少了40%。
我們的ARVTDNN演算法應用於數位預失真上在5G規格下並使用Saleh PA與Doherty PA Model當作模型,我們可以發現與其他幾篇DPD相關做數據比較可以發現我們的ACPR,NMSE,EVM數值皆有較佳的表現。 | zh_TW |
dc.description.abstract | The digital predistortion (DPD) methods for traditional RF power amplifiers can be categorized into polynomial methods, lookup table (LUT) methods, and others. In recent years, due to the development of 5G and the Internet of Things (IoT), many products must be designed with low power consumption and minimal area. Traditional digital predistortion techniques struggle to handle severe nonlinear distortions, leading to significant performance degradation. However, with the recent advancements in deep neural networks (DNN) and machine learning (ML), integrating these techniques into digital predistortion has shown promising results.
This paper primarily investigates the application of neural network algorithms in digital predistortion. First, we analyze different neural network algorithms in terms of Adjacent Channel Power Ratio (ACPR) and Error Vector Magnitude (EVM). Next, we select the most suitable neural network algorithm and simulate the ACPR, Normalized Mean Square Error (NMSE), and EVM results based on the defined transmitter specifications. During the simulation process, in preparation for future hardware implementation, we introduce a quantization process that converts floating-point operations into fixed-point operations. This significantly reduces storage space and computational complexity while maintaining accuracy. Additionally, we optimize the training sequence using a shuffle algorithm to accelerate sequence convergence, thereby reducing training time. We found that incorporating the shuffle algorithm to randomize the sequence resulted in a 40% reduction in training time compared to the original training process. Our ARVTDNN algorithm is applied to digital predistortion under 5G specifications, using the Saleh PA and Doherty PA models. Compared to other DPD-related studies, our results demonstrate superior ACPR, NMSE, and EVM performance. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:16:56Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-04-02T16:16:56Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書---------------------------------------------------------------------------ii
誌謝-------------------------------------------------------------------------------------iii 中文摘要----------------------------------------------------------------------------------iv ABSTRACT-----------------------------------------------------------------------------------v 目次--------------------------------------------------------------------------------------vi 圖次------------------------------------------------------------------------------------viii 表次---------------------------------------------------------------------------------------x 第一章緒論---------------------------------------------------------------------------------1 1.1簡介------------------------------------------------------------------------------------1 1.2本文貢獻--------------------------------------------------------------------------------2 1.3本文大綱--------------------------------------------------------------------------------2 第二章研究背景與相關研究---------------------------------------------------------------------3 2.1發射機架構------------------------------------------------------------------------------3 2.2 5G簡介---------------------------------------------------------------------------------4 2.3數位預失真介紹---------------------------------------------------------------------------5 2.4神經網路介紹-----------------------------------------------------------------------------6 2.5神經網路數位預失真模型-------------------------------------------------------------------8 2.6 稀疏性(Sparsity)----------------------------------------------------------------------12 2.7功率放大器性能指標----------------------------------------------------------------------12 2.8功率放大器種類--------------------------------------------------------------------------17 2.9功率放大器行為模型----------------------------------------------------------------------17 2.10近年神經網路數位預失真加速器------------------------------------------------------------19 第三章發射機系統與DNN分析------------------------------------------------------------------21 3.1本論文修改並使用之DNN模型---------------------------------------------------------------21 3.2發射機架構系統--------------------------------------------------------------------------21 3.3訓練序列最佳化--------------------------------------------------------------------------23 3.4算術精確度分析--------------------------------------------------------------------------25 第四章ARVTDNN硬體加速器設計----------------------------------------------------------------28 4.1整體架構介紹----------------------------------------------------------------------------28 4.2 layer---------------------------------------------------------------------------------29 第五章 數據分析與比較----------------------------------------------------------------------31 5.1實驗數據分析----------------------------------------------------------------------------31 5.2與既有文猷的比較------------------------------------------------------------------------34 第六章 結論與未來展望----------------------------------------------------------------------36 6.1結論-----------------------------------------------------------------------------------36 6.2未來展望-------------------------------------------------------------------------------36 參考文獻(References)----------------------------------------------------------------------37 附錄.Shuffle 演算法-----------------------------------------------------------------------41 | - |
dc.language.iso | zh_TW | - |
dc.title | 應用於OFDM 發射機之增強實值時滯神經網路預失真補償設計 | zh_TW |
dc.title | Design of augmented real-valued time-delay Neural Network Predistortion Compensation for OFDM Transmitters | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 曹恆偉 | zh_TW |
dc.contributor.coadvisor | Hen-Wai Tsao | en |
dc.contributor.oralexamcommittee | 張勝良;蔡佩芸 | zh_TW |
dc.contributor.oralexamcommittee | Sheng-Lyang Jang;PEI-YUN TSAI | en |
dc.subject.keyword | OFDM,機器學習,類神經網路,數位預失真,射頻功率放大器補償, | zh_TW |
dc.subject.keyword | OFDM,machine learning,neural networks,digital predistortion,power amplifier compensation, | en |
dc.relation.page | 42 | - |
dc.identifier.doi | 10.6342/NTU202500743 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-02-26 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電子工程學研究所 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-2.pdf 目前未授權公開取用 | 1.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。