請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97281完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林宗賢 | zh_TW |
| dc.contributor.advisor | Tsung-Hsien Lin | en |
| dc.contributor.author | 賴耀承 | zh_TW |
| dc.contributor.author | Yao-Chen Lai | en |
| dc.date.accessioned | 2025-04-02T16:16:38Z | - |
| dc.date.available | 2025-04-03 | - |
| dc.date.copyright | 2025-04-02 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-03-03 | - |
| dc.identifier.citation | [1] B. Patra et al., “A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4×32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers,” IEEE International Solid-State Circuits Conference, pp. 304-305, Feb. 2020.
[2] J. C. Bardin et al., “A 28nm Bulk-CMOS 4-to-8GHz <2mW Cryogenic Pulse Modulator for Scalable Quantum Computing,” IEEE International Solid-State Circuits Conference, pp. 304-305, Feb. 2020. [3] W. Sansen, “Analog design challenges in nanometer CMOS technologies,” IEEE Asian Solid-State Circuits Conference, pp. 5-9, Nov. 2007. [4] B. Nauta and A.-J. Annema, “Analog/RF circuit design techniques for nanometerscale IC technologies,” European Solid-State Circuits Conference, pp. 45-53, Sep. 2005. [5] T. Laxminidhi, V. Prasadu, and S. Pavan, "Widely programmable highfrequency active RC filters in CMOS technology," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 2, pp. 327-336, Feb. 2009. [6] S. D'Amico, V. Giannini, and A. Baschirotto, " A 4th-order active-Gm-RC reconfigurable (UMTS/WLAN) filter," IEEE Journal of Solid-State Circuits, vol. 41, no. 7, pp. 1630-1637, Jul. 2006. [7] S. D'Amico, M. Conta, and A. Baschirotto, " A 4.1-mW 10-MHz fourth-order source-follower-based continuous-time filter with 79-dB DR," IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2713-2719, Dec. 2006. [8] S. D'Amico, M. D. Matteis, and A. Baschirotto, " A 6th-order 100 μA 280 MHz source-follower-based single-loop continuous-time filter," IEEE International Solid-State Circuits Conference, pp. 72-596, Feb. 2008. [9] P. Wambacq, V. Giannini, K. Scheir, W. Van Thillo, and Y. Rolain, "“A fifth-order 880 MHz/1.76 GHz active lowpass filter for 60 GHz communications in 40 nm digital CMOS," European Solid-State Circuits Conference, pp. 350-353, Sep. 2010. [10] L. Wang, Z. Liu and C. P. Yue, " A 33 MHz 70 dB-SNR Super-Source-Follower-Based Low-Pass Analog Filter," IEEE Journal of Solid-State Circuits, vol. 50, no. 7, pp. 1516-1524, July 2015. [11] T. B. Kumar, K. Ma, and K. S. Yeo, " Temperature-compensated dB-linear digitally controlled variable gain amplifier with DC offset cancellation," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2661, Jul. 2013. [12] I. Choi, H. Seo, and B. Kim, " Accurate dB-linear variable gain amplifier with gain error compensation," IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 456-464, Feb. 2013. [13] H. Liu, X. Zhu, C. C. Boon, and X. He, "Cell-based variable-gain amplifiers with accurate dB-linear characteristic in 0.18 μm CMOS technology," IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 586-596, Feb. 2015. [14] Q.-H. Duong, Q. Le, C.-W. Kim, and S.-G. Lee, " A 95-dB linear low-power variable gain amplifier," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, no. 8, pp. 1648-1657, Aug. 2006. [15] H. Liu et al., " A wideband analog-controlled variable-gain amplifier with dB-linear characteristic for high-frequency applications," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 2, pp. 533-540, Feb. 2016. [16] L. Kong et al., " Design of a Wideband Variable-Gain Amplifier With Self-Compensated Transistor for Accurate dB-Linear Characteristic in 65 nm CMOS Technology," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4187-4198, Dec. 2020. [17] Y. Peng, J. Yin, P. -I. Mak and R. P. Martins, " Design of a low power, inductorless wideband variable-gain amplifier for high speed receiver systems," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 4, pp. 696-707, Apr. 2012. [18] Van Dijk, Jeroen Petrus Gerardus et al. , " A Scalable Cryo-CMOS Controller for the Wideband Frequency-Multiplexed Control of Spin Qubits and Transmons," IEEE Journal of Solid-State Circuits, vol. 55, no. 11, pp. 2930-2946, Nov. 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97281 | - |
| dc.description.abstract | 本論文提出一個應用於控制量子位元的類比前端控制電路之設計與實現,該電路採用台積電40奈米 CMOS 製程進行製作。此前端電路包含超源極跟隨器架構濾波器與可變增益放大器,目標為在低溫環境下達成高保真度、低功耗及寬頻操作的性能要求。
基於超源極跟隨器架構之濾波器實現一個二階低通轉換函數,其-3 dB頻寬達到400 MHz,同時在1 V 電源下保持42.8 dB的信噪比與-50.4 dB的總諧波失真,同時功耗僅為0.057毫瓦特。該濾波器的擬差動架構消除了對共模回授電路的需求,提升了功率效率與線性度。 可變增益放大器採用自補償電晶體與主動電感進行頻寬延展,實現了35.4 dB的增益調變範圍,並可操作至1 GHz。設計展現出精確的dB 線性特性,同時功耗僅為0.438毫瓦特。 實驗驗證部分,晶片透過鍵合線連接至自行設計的印刷電路板進行量測,所使用的儀器包括示波器、信號產生器與頻譜分析儀等。晶片實拍顯示,總面積為1.109 × 1.011 mm²,核心電路面積為0.046 mm²。量測結果證實,所提出之設計達到了量子信號控制所需的嚴格性能要求,具備高保真度、寬頻操作及低功耗等特性。 | zh_TW |
| dc.description.abstract | This thesis presents the design and implementation of an analog front-end control circuit for qubit control, fabricated using TSMC 40-nm CMOS technology. The front-end includes a Super-Source-Follower (SSF)-based filter and a Variable Gain Amplifier (VGA), targeting high fidelity, low power, and wide bandwidth operation in cryogenic environments.
The SSF-based filter achieves a second-order low-pass transfer function , achieving a -3 dB bandwidth of 400 MHz. Under a 1 V power supply, it maintains a signal-to-noise ratio (SNR) of 42.8 dB and a total harmonic distortion (THD) of -50.4 dB, while power consuming only 0.057 mW. Its pseudo-differential architecture eliminates the need for a common-mode feedback circuit, improving power efficiency and linearity. The VGA, designed with self-compensated transistors and active inductors for bandwidth extension, provides a gain variation range of 35.4 dB and operates up to 1 GHz. The design demonstrates precise dB-linear characteristics while consuming 0.438 mW. Experimental validation was performed with the chip bonded to a custom-designed PCB, using measurement instruments such as oscilloscopes, signal generators, and spectrum analyzers. The die photo shows a total area of 1.109 × 1.011 mm², with a core circuit area of 0.046 mm². Measurement results confirm that the proposed design meets the stringent requirements for quantum signal control, achieving high fidelity, wide bandwidth, and low power consumption. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:16:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-04-02T16:16:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
摘要 v Abstract vii List of Figures xi List of Tables xiv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Overview 3 Chapter 2 Fundamental of the Analog Front-End Control Circuit 5 2.1 Basic Cryo-CMOS System of Qubits Control 5 2.2 Fundamentals of the Filter 8 2.3 Fundamentals of the Variable Gain Amplifier 14 Chapter 3 Design of the Analog Front-End Control Circuit 23 3.1 The Block Diagram and Architecture of the Proposed System 23 3.2 Circuit Implementation of the Filter 26 3.2.1 Design of the SSF-Based Baquadratic Cell 26 3.2.2 Design of the SSF-Based Filter 32 3.2.3 Conclusions 38 3.3 Circuit Implementation of the Variable Gain Amplifier 39 3.3.1 Theory of Self-Compensated Transistor 39 3.3.2 Design of the dB-Linear Variable Gain Amplifier Unit 42 3.3.3 Design of the Fixed Gain Unit 47 3.3.4 Design of the Variable Gain Amplifier Stage 48 3.3.5 Conclusions 54 Chapter 4 Experimental Result of Proposed Analog Front-End Control Circuit 55 4.1 Die Photo 55 4.2 Measurement Environment Setup 56 4.3 PCB Board 57 4.4 Measurement Results 59 4.4.1 Measurement Results of the SSF-Based Filter 59 4.4.2 Measurement Results of the VGA 64 4.4.3 Comparison Table 65 4.4.4 Discussion and Summary 68 Chapter 5 Conclusions and Future Works 69 5.1 Conclusions 69 5.2 Future Works 70 References 71 | - |
| dc.language.iso | en | - |
| dc.subject | 自補償電晶體 | zh_TW |
| dc.subject | 主動式電感 | zh_TW |
| dc.subject | 可變增益放大器 | zh_TW |
| dc.subject | 基於超源極跟隨器的濾波器 | zh_TW |
| dc.subject | 控制量子位元 | zh_TW |
| dc.subject | Active Inductors | en |
| dc.subject | Qubit Control | en |
| dc.subject | Super-Source-Follower (SSF)-Based Filter | en |
| dc.subject | Variable Gain Amplifier (VGA) | en |
| dc.subject | Self-Compensated Transistors | en |
| dc.title | 應用於控制量子位元之低溫CMOS類比前端電路 | zh_TW |
| dc.title | Design of Cryo-CMOS Analog Front-End Circuits for Qubit Control | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 呂良鴻;陳筱青 | zh_TW |
| dc.contributor.oralexamcommittee | Liang-Hung Lu;Hsiao-Chin Chen | en |
| dc.subject.keyword | 控制量子位元,基於超源極跟隨器的濾波器,可變增益放大器,自補償電晶體,主動式電感, | zh_TW |
| dc.subject.keyword | Qubit Control,Super-Source-Follower (SSF)-Based Filter,Variable Gain Amplifier (VGA),Self-Compensated Transistors,Active Inductors, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202500600 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-03-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | 2025-04-03 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 3.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
