Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97277
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立民zh_TW
dc.contributor.advisorLi-Min Wangen
dc.contributor.author黃冠銓zh_TW
dc.contributor.authorKuan-Chuan Huangen
dc.date.accessioned2025-04-02T16:15:30Z-
dc.date.available2025-04-03-
dc.date.copyright2025-04-02-
dc.date.issued2025-
dc.date.submitted2025-02-23-
dc.identifier.citation[1] Onnes, H. Kamerlingh. "The discovery of superconductivity." Commun. Phys. Lab 12 (1911): 120.
[2] Kozhevnikov, Vladimir. "Meissner effect: History of development and novel aspects." Journal of Superconductivity and Novel Magnetism 34.8 (2021): 1979-2009.
[3] Bardeen, John, Leon N. Cooper, and John Robert Schrieffer. "Theory of superconductivity." Physical review 108.5 (1957): 1175.
[4] Chu, C. W., et al. "Evidence for superconductivity above 40 K in the La-Ba-Cu-O compound system." Physical Review Letters 58.4 (1987): 405.
[5] Ray, Pia Jensen. Structural investigation of La 2-x Sr x CuO 4+ y. Diss. Master’s thesis (University of Copenhagen, 2015), 2015.
[6] Li, Wanying, et al. "Recent progresses in two-dimensional Ising superconductivity." Materials Today Physics 21 (2021): 100504.
[7] Wang, Chong, Yong Xu, and Wenhui Duan. "Ising Superconductivity and Its Hidden Variants." Accounts of Materials Research 2.7 (2021): 526-533.
[8] Wickramaratne, Darshana, et al. "Ising superconductivity and magnetism in NbSe 2." Physical Review X 10.4 (2020): 041003.
[9] Revolinsky, E., G. A. Spiering, and D. J. Beerntsen. "Superconductivity in the niobium-selenium system." Journal of Physics and Chemistry of Solids 26.6 (1965): 1029-1034.
[10] X. L. Qi and S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[11] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[12] X. L. Qi,S. C. Zhang, Physics Today 63, 1, 33 (2010).
[13] C. Day, Physics Today, 61(1), 19 (2008).
[14] B. A. Bernevig and S. C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
[15] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[16] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[17] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava and M. Z. Hasan, Nature 452, 970 (2008).
[18] Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang and Shou-Cheng Zhang, Nature phys. 5, 438 (2009).
[19] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan, Nature phys. 5, 398 (2009).
[20] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. 103, 146401 (2009).
[21] Y. L. Chen, J. G. Analytis, J.H. Chu, Z. K. Liu, S.K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain and Z.X. Shen, Science 325, 178 (2009).
[22] Y. Tokura, K. Yasuda, A. Tsukazaki, Nature Reviews Physics 4, 126–143 (2019).
[23] J. Wu, O. Pelleg, G. Logvenov, et al., Nat Mater, vol. 12(10), pp. 877-881, 2013.
[24] L. M. Wang , C.Y. Wang , P. Adelmann, et al., New Journal of Physics, vol. 19(3), p. 033039, 2017.
[25] Poole, C.P., et al., 2 - Phenomenon of superconductivity, in Superconductivity
[26] London, F., H. London, and F.A. Lindemann, The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences, 1935. 149(866): p. 71-88.
[27] Poole, Charles P., Horacio A. Farach, and Richard J. Creswick.Superconductivity. Academic press, 2013 Sharma, Ram Gopal. Superconductivity: Basics and applications to magnets. Vol. 214. Springer Nature, 2021.
[28] Saint-James, Daniel, and PG de Gennes. "Onset of superconductivity in decreasing fields." Physics Letters 7.5 (1963): 306-308.
[29] Finnemore, D. K., T. F. Stromberg, and C. A. Swenson. "Superconducting properties of high-purity niobium." Physical Review 149.1 (1966): 231.
[30] Abrikosov, A. A. (1957). "The magnetic properties of superconducting alloys". Journal of Physics and Chemistry of Solids. 2 (3): 199–208.
[31] London, F. (1948-09-01). "On the Problem of the Molecular Theory of Superconductivity". Physical Review. 74 (5): 562–573.
[32] Anderson, P.W., Theory of Flux Creep in Hard Superconductors. Physical Review Letters, 1962. 9(7): p. 309-311.
[33] Kim, Y.B., C.F. Hempstead, and A.R. Strnad, Flux Creep in Hard Superconductors. Physical Review, 1963. 131(6): p. 2486-2495.
[34] Anderson, P.W. and Y.B. Kim, Hard Superconductivity: Theory of the Motion of Abrikosov Flux Lines. Reviews of Modern Physics, 1964. 36(1): p. 39-43.
[35] Venditti, G., et al. "Nonlinear I− V characteristics of two-dimensional superconductors: Berezinskii-Kosterlitz-Thouless physics versus inhomogeneity." Physical Review B 100.6 (2019): 064506.
[36] Phillips, Philip (2008). Advanced Solid State Physics. Perseus Books. p. 224. ISBN 978-81-89938-16-1.
[37] Behnia, Kamran. "On the Origin and the Amplitude of T‐Square Resistivity in Fermi Liquids." Annalen der Physik 534.5 (2022): 2100588.
[38] Jiao, Wen-He, et al. "Possible Evidence for Berezinskii–Kosterlitz–Thouless Transition in Ba (Fe0. 914Co0. 086) 2As2 Crystals." Materials 14.21 (2021): 6294.
[39] Zou, Yi-Chao, et al. "Superconductivity and magnetotransport of single-crystalline NbSe 2 nanoplates grown by chemical vapour deposition." Nanoscale 9.43 (2017): 16591-16595.
[40] Charles Kittel, Introduction to Solid State Physics, 8th Edition, Wiley, 2004.
[41] Pavlosiuk, Orest, Przemysław Swatek, and Piotr Wiśniewski. "Giant magnetoresistance, three-dimensional Fermi surface and origin of resistivity plateau in YSb semimetal." Scientific reports 6.1 (2016): 38691.
[42] 吳洺宏, 台大物理所碩士論文, 2023
[43] Neelesh Kumar Jain, Mayur Sawant, Sagar Hanmant Nikam, Suyog Jhavar (2016). Metal Deposition: Plasma-Based Processes. Taylor and Francis, New York (USA).
[44] Pervin, Rukshana, et al. "Enhancement of superconducting critical current density by Fe impurity substitution in NbSe 2 single crystals and the vortex pinning
[45] Bragg, William Henry, and William Lawrence Bragg. "The reflection of X-rays by doi:10.6342/NTU20230243186 crystals." Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 88.605 (1913): 428-438.
[46] https://nmi3.eu/service/print-template-artid=332.html
[47] https://en.wikipedia.org/wiki/SQUID
[48] Pervin, Rukshana. "Single crystals growth and physical properties characterization of NbSe2 superconductor." (2020).
[49] A. A. Shanenko, N. V. Orlova, A. Vagov, N. Banerjee, S. Dutta, D. Roychowdhury, et al., “Ginzburg–landau theory: The case of two-band superconductors,” Physics-Uspekhi, vol. 49, p. 1003, 2006
[50] Sanchez, David, et al. "Specific heat of 2H-NbSe2 in high magnetic fields." Physica B: Condensed Matter 204.1-4 (1995): 167-175.
[51] Askerzade, I.N.; Gencer, A.; Güclü, N. On the Ginzburg-Landau analysis of the upper critical field Hc2 in MgB2. Supercond. Sci. Technol. 2002, 15, L13
[52] Ahmed, Ejaz, et al. “Te Substitution Effect in Low-Dimensional Superconductor NbS2-XTeX (x = 0, 0.1, 0.2).” Materials Science Forum, vol. 546–549, Trans Tech Publications, Ltd., 15 May 2007, pp. 2019–2022.
[53] Pervin, Rukshana, et al. "Study of transport properties in Se-deficient and Fe-intercalated NbSe2 single crystals: experiment and theory." Journal of Materials Science55.1 (2020): 250-262.
[54] M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur (1989). Theory of collective flux creep. Phys. Rev. Lett. 63, 2303.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97277-
dc.description.abstract本研究主要探討了拓撲絕緣體Sb2Te3以及金屬Au與二維材料NbSe2形成的異質結構的超導特性。實驗由台科大透過化學氣相傳輸(CVT)方法生長出的NbSe2單晶,經過加壓退火處理後,將20 nm的Sb2Te3和Au分別鍍在NbSe2上,形成不同的異質結構。這些結構的電子性質通過電阻率測量和磁阻實驗進行了詳細的分析。研究發現,Sb2Te3/NbSe2顯示了明顯的超導轉變,而Au/NbSe2則作為參考系統展示了與Sb2Te3/NbSe2相比較的性質。此外,我們觀察了Sb2Te3/NbSe2結構中的釘扎效應和BKT相變行為,這些發現對於理解異質結構中的超導機制和超導態的微觀物理行為具有重要意義。
從電阻率對溫度的測量我們發現Sb2Te3/NbSe2的Tc為7.04 K略高於Au/NbSe2的6.88 K,前者平行於樣品表面的磁場的上臨界溫度Hc2為14.73 T則是高於後者的9.11 T,表示著典型的導體可能有著破壞Ising 超導的效果,而垂直於樣品表面的磁場的Hc2前者則大幅上升至8.88 T,後者則小幅的下降至5.75 T,使得兩樣品的各向異性都大幅下降。接下來利用V-H圖分析釘扎力,發現前者的釘扎力在兩個方向上都比較大,意味著能夠承受更多的臨界電流。再來由V-I圖的斜率得到α與溫度的關係,以此來得出BKT相變溫度TBKT,也比較了加磁場前後的差別,觀察到兩個樣品的TBKT均有下降,證明了其二維的性質。最後利用從小電流量測出磁場平行表面的Hc3再與理論值的Hc3 = 1.695 Hc2做對比,可以發現典型的金屬鍍層會使表面超導存在的空間更大。
zh_TW
dc.description.abstractThis study primarily investigates the superconducting properties of heterostructures formed by the topological insulator Sb₂Te₃ and the metal Au with the two-dimensional material NbSe₂. The NbSe₂ single crystals were grown at NTUST using the chemical vapor transport (CVT) method, and after annealing under pressure, Sb₂Te₃ and Au were respectively deposited on NbSe₂ to form different heterostructures. The electronic properties of these structures were thoroughly analyzed through resistivity measurements, and magnetoresistance experiments. The study found that Sb₂Te₃/NbSe₂ exhibited a significant superconducting transition, while Au/NbSe₂ served as a reference system, showing comparative properties to Sb₂Te₃/NbSe₂. Additionally, we observed pinning effects and BKT transition behavior in the Sb₂Te₃/NbSe₂ structure, which are crucial for understanding the superconducting mechanisms and microscopic physical behavior in heterostructures.
From the resistivity vs. temperature measurements, we found that the critical temperature (Tc) of Sb₂Te₃/NbSe₂ is 7.04 K, slightly higher than the 6.88 K of Au/NbSe₂. The upper critical field (Hc2) parallel to the sample surface for Sb₂Te₃/NbSe₂ is 14.73 T, higher than the 9.11 T for Au/NbSe₂, indicating that typical conductors may have a detrimental effect on Ising superconductivity. When the magnetic field is perpendicular to the sample surface, the Hc2 for Sb₂Te₃/NbSe₂ increases significantly to 8.88 T, whereas for Au/NbSe₂ it slightly decreases to 5.75 T, greatly reducing the anisotropy of both samples.
Next, by analyzing the pinning force through V-H plots, we found that the pinning force in Sb₂Te₃/NbSe₂ is larger in both directions, meaning it can withstand higher critical currents. Furthermore, from the slope of the V-I plots, we obtained the relationship between the exponent α and temperature, and thus determined the BKT transition temperature (TBKT). We also compared the differences before and after applying the magnetic field, observing a decrease in TBKT for both samples, confirming their two-dimensional nature.
Finally, by measuring the upper critical field Hc3 and comparing it with Hc2 in the direction parallel to the sample surface, we found that the typical metal coating allows for a larger space for surface superconductivity. These findings provide valuable insights into the design and optimization of new quantum materials and devices.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:15:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-04-02T16:15:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 viii
表次 x
第一章 緒論 1
1-1 超導簡史 1
1-2 Ising 超導 2
1-3 NbSe2 3
1-4 拓撲絕緣體 4
1-5 研究動機 5
第二章 理論背景與原理簡介 7
2-1 超導體特性 7
2-1-1 臨界溫度時的零電阻現象 7
2-1-2 完美抗磁性(Perfect Diamagnetism) 10
2-1-3 倫敦穿透深度(London penetration depth) 12
2-1-4 二流體模型(Two-fluid Model) 14
2-1-5 吉因茨堡-朗道理論(Ginzburg-Landau,簡稱 G-L 理論) 15
2-1-6 I 類和 II 類超導體 17
2-1-8 Anderson-Kim 磁通蠕動模型 21
2-2 朗道-費米液體理論(Landau-Fermi Liquid Theory) 23
2-3 BKT 相變(Berezinskii-Kosterlitz-Thouless 相變) 23
2-4 磁阻 Magnetoresistance (MR) 24
2-5 Kohler's rule 25
第三章 實驗方法 28
3-1 實驗過程 28
3-1-1 實驗流程 28
3-1-2 系統搭建 29
3-1-3 濺鍍原理 31
3-1-4 樣品製程流程 33
3-2 量測系統 34
3-2-1 X光繞射儀(X-ray Diffractometer, XRD) 34
3-2-2 SQUID 量測系統 35
第四章 實驗結果與討論 38
4-1 XRD結果 38
4-2 電阻率、上臨界磁場與釘扎 39
4-2-1 電阻率與溫度變化分析 39
4-2-2 上臨界磁場、相干長度與溫度關係分析 46
4-2-3 釘扎力與磁場關係分析 54
4-3 MR分析 60
4-3 BKT 相變分析 63
4-4 Hc3 分析 67
第五章 結論 70
Reference 72
-
dc.language.isozh_TW-
dc.subjectNbSe₂zh_TW
dc.subjectHc3zh_TW
dc.subjectBKT相變zh_TW
dc.subject釘扎效應zh_TW
dc.subject二維材料zh_TW
dc.subject第二類超導zh_TW
dc.subject拓撲超導體zh_TW
dc.subjectSb₂Te₃zh_TW
dc.subjectIsing 超導zh_TW
dc.subjectIsing superconductivityen
dc.subjectpinning effecten
dc.subjecttype-II superconductorsen
dc.subjecttwo-dimensional materialsen
dc.subjectBKT transitionen
dc.subjectHc3en
dc.subjecttopological superconductorsen
dc.subjectSb₂Te₃en
dc.subjectNbSe₂en
dc.title三碲化二銻/硒化鈮和金/硒化鈮異質結構的超導性能zh_TW
dc.titleSuperconducting properties of Sb2Te3/NbSe2 and Au/NbSe2 hetrostructuresen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee尤孝雯;陳昭翰zh_TW
dc.contributor.oralexamcommitteeHsiao-Wen Yu;Jau-Han Chenen
dc.subject.keyword二維材料,第二類超導,拓撲超導體,Sb₂Te₃,NbSe₂,Ising 超導,釘扎效應,BKT相變,Hc3,zh_TW
dc.subject.keywordtwo-dimensional materials,type-II superconductors,topological superconductors,Sb₂Te₃,NbSe₂,Ising superconductivity,pinning effect,BKT transition,Hc3,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202500733-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-24-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用物理研究所-
dc.date.embargo-lift2025-04-03-
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf5.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved