Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97271
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一薰zh_TW
dc.contributor.advisorI-Hsuan Hongen
dc.contributor.author陳孟寰zh_TW
dc.contributor.authorMeng-Huan Chenen
dc.date.accessioned2025-04-02T16:13:47Z-
dc.date.available2025-04-03-
dc.date.copyright2025-04-02-
dc.date.issued2024-
dc.date.submitted2025-02-26-
dc.identifier.citationAbbasi, K. R., Shahbaz, M., Zhang, J., Irfan, M., & Alvarado, R. (2022). Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy. Renewable Energy, 187, 390-402. https://doi.org/https://doi.org/10.1016/j.renene.2022.01.066
Abdolrasol, M. G. M., Hussain, S. M. S., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., Ali, J. A., Mekhilef, S., & Milad, A. (2021). Artificial Neural Networks Based Optimization Techniques: A Review. Electronics, 10(21).
Afzal, A., Kim, K.-Y., & Seo, J.-W. (2017). Effects of Latin hypercube sampling on surrogate modeling and optimization. International Journal of Fluid Machinery and Systems, 10. https://doi.org/10.5293/IJFMS.2017.10.3.240
Alizadeh, R., Allen, J. K., & Mistree, F. (2020). Managing computational complexity using surrogate models: a critical review. Research in Engineering Design, 31(3), 275-298. https://doi.org/10.1007/s00163-020-00336-7
Bozorg-Haddad, O., Solgi, M., & Loáiciga, H. A. (2017). Meta‐Heuristic and Evolutionary Algorithms for Engineering Optimization. John Wiley & Sons. https://doi.org/10.1002/9781119387053
Carvalho, M., & Ludermir, T. B. (2007, 17-19 Sept. 2007). Particle Swarm Optimization of Neural Network Architectures andWeights. 7th International Conference on Hybrid Intelligent Systems (HIS 2007),
de Paula Ferreira, W., Armellini, F., & De Santa-Eulalia, L. A. (2020). Simulation in industry 4.0: A state-of-the-art review. Computers & Industrial Engineering, 149, 106868. https://doi.org/https://doi.org/10.1016/j.cie.2020.106868
Deng, S., Zhang, J., Zhang, C., Luo, M., Ni, M., Li, Y., & Zeng, T. (2022). Prediction and optimization of gas distribution quality for high-temperature PEMFC based on data-driven surrogate model. Applied Energy, 327, 120000. https://doi.org/https://doi.org/10.1016/j.apenergy.2022.120000
Ding, S., Xu, X., Zhu, H., Wang, J., & Jin, F. (2011). Studies on Optimization Algorithms for Some Artificial Neural Networks Based on Genetic Algorithm (GA). Journal of Computers, 6(5). https://doi.org/10.4304/jcp.6.5.939-946
Eason, J., & Cremaschi, S. (2014). Adaptive sequential sampling for surrogate model generation with artificial neural networks. Computers & Chemical Engineering, 68, 220-232. https://doi.org/https://doi.org/10.1016/j.compchemeng.2014.05.021
Galvão Scheidegger, A. P., Fernandes Pereira, T., Moura de Oliveira, M. L., Banerjee, A., & Barra Montevechi, J. A. (2018). An introductory guide for hybrid simulation modelers on the primary simulation methods in industrial engineering identified through a systematic review of the literature. Computers & Industrial Engineering, 124, 474-492. https://doi.org/https://doi.org/10.1016/j.cie.2018.07.046
Garud, S. S., Karimi, I. A., & Kraft, M. (2017). Smart Sampling Algorithm for Surrogate Model Development. Computers & Chemical Engineering, 96, 103-114. https://doi.org/https://doi.org/10.1016/j.compchemeng.2016.10.006
Hateley, J. C., Wei, H., & Chen, L. (2015). Fast Methods for Computing Centroidal Voronoi Tessellations. Journal of Scientific Computing, 63(1), 185-212. https://doi.org/10.1007/s10915-014-9894-1
Herraz, M., Redonnet, J.-M., Sbihi, M., & Mongeau, M. (2023). Blackbox optimization and surrogate models for machining free-form surfaces. Computers & Industrial Engineering, 177, 109029. https://doi.org/https://doi.org/10.1016/j.cie.2023.109029
Ibrahim, M., Al-Sobhi, S., Mukherjee, R., & AlNouss, A. (2019). Impact of Sampling Technique on the Performance of Surrogate Models Generated with Artificial Neural Network (ANN): A Case Study for a Natural Gas Stabilization Unit. Energies, 12(10), 1906. https://www.mdpi.com/1996-1073/12/10/1906
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2022). An Introduction to Statistical Learning (2 ed.). Springer New York, NY.
Jiang, P., Zhou, Q., & Shao, X. (2020). Surrogate Model-Based Engineering Design and Optimization. Springer Singapore.
Kamath, C. (2022). Intelligent sampling for surrogate modeling, hyperparameter optimization, and data analysis. Machine Learning with Applications, 9, 100373. https://doi.org/https://doi.org/10.1016/j.mlwa.2022.100373
Kaminsky, A., Wang, Y., & Pant, K. (2020). An Efficient Batch K-Fold Cross-Validation Voronoi Adaptive Sampling Technique for Global Surrogate Modeling. Journal of Mechanical Design, 143, 1-14. https://doi.org/10.1115/1.4047155
Lieu, Q. X., Nguyen, K. T., Dang, K. D., Lee, S., Kang, J., & Lee, J. (2022). An adaptive surrogate model to structural reliability analysis using deep neural network. Expert Systems with Applications, 189, 116104. https://doi.org/https://doi.org/10.1016/j.eswa.2021.116104
Lin, J., Li, H., Huang, Y., Huang, Z., & Luo, Z. (2020). Adaptive Artificial Neural Network Surrogate Model of Nonlinear Hydraulic Adjustable Damper for Automotive Semi-Active Suspension System. IEEE Access, 8, 118673-118686. https://doi.org/10.1109/ACCESS.2020.3004886
Loeppky, J. L., Sacks, J., & Welch, W. J. (2009). Choosing the Sample Size of a Computer Experiment: A Practical Guide. Technometrics, 51(4), 366-376. https://doi.org/10.1198/TECH.2009.08040
Luo, J., Ji, Y., & Lu, W. (2019). Comparison of Surrogate Models Based on Different Sampling Methods for Groundwater Remediation. Journal of Water Resources Planning and Management, 145(5), 04019015. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001062
Malik, H., Iqbal, A., Joshi, P., Agrawal, S., & Bakhsh, F. I. (2021). Metaheuristic and Evolutionary Computation: Algorithms and Applications. Springer Singapore.
McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21(2), 239-245. https://doi.org/10.2307/1268522
Mycek, P., Gaurier, B., Germain, G., Pinon, G., & Rivoalen, E. (2014). Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renewable Energy, 66, 729-746. https://doi.org/https://doi.org/10.1016/j.renene.2013.12.036
Nurdiansyah, R., Su, J. C. P., Hong, I. H., Olson, S. S., & Silva, H. (2023). A surrogate model-based framework to calibrate the turbulence parameters of a vegetative canopy model for a marine turbine simulation. Journal of Ocean Engineering and Marine Energy, 9(3), 531-545. https://doi.org/10.1007/s40722-023-00282-1
Olson, S. S., Su, J. C. P., Silva, H., Chartrand, C. C., & Roberts, J. D. (2021). Turbulence-parameter estimation for current-energy converters using surrogate model optimization. Renewable Energy, 168, 559-567. https://doi.org/https://doi.org/10.1016/j.renene.2020.12.036
Owen, A. B. (2017). A randomized Halton algorithm in R. arXiv preprint arXiv:1706.02808. https://doi.org/10.48550/arXiv.1706.02808
REN21. (2022). Renewables 2022 Global Status Report.
Ren, C., Aoues, Y., Lemosse, D., & Souza De Cursi, E. (2022). Ensemble of surrogates combining Kriging and Artificial Neural Networks for reliability analysis with local goodness measurement. Structural Safety, 96, 102186. https://doi.org/https://doi.org/10.1016/j.strusafe.2022.102186
scikit-learn User Guide. (2024). https://scikit-learn.org/stable/modules/cross_validation.html
Shafiei Chafi, Z., & Afrakhte, H. (2021). Short-Term Load Forecasting Using Neural Network and Particle Swarm Optimization (PSO) Algorithm. Mathematical Problems in Engineering, 2021, 5598267. https://doi.org/10.1155/2021/5598267
Sun, G., & Wang, S. (2019). A review of the artificial neural network surrogate modeling in aerodynamic design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(16), 5863-5872. https://doi.org/10.1177/0954410019864485
Sun, Y., Yuan, J., Zhou, T., Zhao, Y., Yu, F., & Ma, J. (2020). Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review. Environmental Pollution, 265, 114864. https://doi.org/https://doi.org/10.1016/j.envpol.2020.114864
Tyan, M., Nguyen, N. V., & Lee, J.-W. (2015). Improving variable-fidelity modelling by exploring global design space and radial basis function networks for aerofoil design. Engineering Optimization, 47(7), 885-908. https://doi.org/10.1080/0305215X.2014.941290
Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft Computing, 22(2), 387-408. https://doi.org/10.1007/s00500-016-2474-6
Wei, H.-X., Mao, Q., Guan, Y., & Li, Y.-D. (2017). A centroidal Voronoi tessellation based intelligent control algorithm for the self-assembly path planning of swarm robots. Expert Systems with Applications, 85, 261-269. https://doi.org/https://doi.org/10.1016/j.eswa.2017.05.048
Wilberforce, T., El Hassan, Z., Durrant, A., Thompson, J., Soudan, B., & Olabi, A. G. (2019). Overview of ocean power technology. Energy, 175, 165-181. https://doi.org/https://doi.org/10.1016/j.energy.2019.03.068
Xu, C., Wu, Y., Rong, J., & Peng, Z. (2020). A driving simulation study to investigate the information threshold of graphical variable message signs based on visual perception characteristics of drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 74, 198-211. https://doi.org/https://doi.org/10.1016/j.trf.2020.08.023
Xu, S., Liu, H., Wang, X., & Jiang, X. (2014). A Robust Error-Pursuing Sequential Sampling Approach for Global Metamodeling Based on Voronoi Diagram and Cross Validation. Journal of Mechanical Design, 136(7). https://doi.org/10.1115/1.4027161
Zhang, X., Xie, F., Ji, T., Zhu, Z., & Zheng, Y. (2021). Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization. Computer Methods in Applied Mechanics and Engineering, 373, 113485. https://doi.org/https://doi.org/10.1016/j.cma.2020.113485
Zheng, J., Shao, X., Gao, L., Jiang, P., & Li, Z. (2013). A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and kriging correction. Journal of Engineering Design, 24(8), 604-622. https://doi.org/10.1080/09544828.2013.788135
Zobel, C. W., & Keeling, K. B. (2008). Neural network-based simulation metamodels for predicting probability distributions. Computers & Industrial Engineering, 54(4), 879-888. https://doi.org/https://doi.org/10.1016/j.cie.2007.08.012
國家海洋研究院(2024)。洋流能發電專區。取自 https://www.namr.gov.tw/ch/home.jsp?id=138&parentpath=0,8
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97271-
dc.description.abstract近年來,由於永續發展及淨零碳排的目標,海洋能源相關議題逐漸獲得重視,洋流能更是當中極具潛力的發電形式。然而,受限於水下渦輪機的建置成本及資源限制,物理實驗難以頻繁及重複進行。本研究設計了不同的抽樣方法進行電腦模擬,使用人工神經網路(artificial neural network, ANN)建構後設模型(surrogate model),捕捉模擬器的輸入輸出關係,並採用啟發式演算法(metaheuristic)搜尋最佳參數。在本研究的數值分析案例中,後設模型與電腦模擬在測試集的平均百分比誤差小於5%,最佳參數模擬結果與物理實驗的誤差可達到小於14%。zh_TW
dc.description.abstractIn recent years, marine energy issues have increasingly garnered attentions due to the goal of sustainable development and net-zero carbon emissions, with ocean current energy emerging as a highly promising form. Physical experiments, constrained by the high implementation cost and limited resources, are challenging to conduct frequently and repetitively. This study designs various sampling methods to perform computer simulations and applies artificial neural networks (ANN) to build a surrogate model, capturing the input-output relationships of the simulator. Additionally, we employ metaheuristic algorithms to search for optimal parameters of the simulator. In the investigated numerical examples, the average percentage error between the surrogate model and computer simulation on the test set is less than 5%. The error between the simulation results with optimal parameters and the physical experiments can reach less than 14%.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:13:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-04-02T16:13:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目次 v
圖次 vii
表次 ix
第一章 緒論 1
第二章 模擬參數最佳化 6
2.1 研究背景 6
2.2 抽樣方法 10
2.2.1 拉丁超立方抽樣 10
2.2.2 Halton序列 11
2.2.3 重心法Voronoi鑲嵌抽樣 12
2.3 人工神經網路 14
2.4 啟發式演算法 16
2.4.1 基因演算法 16
2.4.2 粒子群演算法 18
第三章 數值分析 20
3.1 輸入資料設定 20
3.1.1 抽樣設定 20
3.1.2 神經網路設定 21
3.1.3 啟發式演算法設定 21
3.2 輸入參數組合分析 22
3.3 電腦模擬結果分析 24
3.4 最佳參數模擬結果分析 26
3.5 結果綜合探討 29
第四章 結論 41
參考文獻 42
-
dc.language.isozh_TW-
dc.subject電腦模擬zh_TW
dc.subject水下渦輪機zh_TW
dc.subject抽樣方法zh_TW
dc.subject啟發式演算法zh_TW
dc.subject後設模型zh_TW
dc.subjectMarine Turbinesen
dc.subjectComputer Simulationen
dc.subjectSurrogate Modelen
dc.subjectMetaheuristicen
dc.subjectSampling Methodsen
dc.title連續型後設模型求解模擬器參數之應用zh_TW
dc.titleApplication of Continuous Surrogate Model for Solving Simulator Parametersen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor蘇哲平zh_TW
dc.contributor.coadvisorChe-Ping Suen
dc.contributor.oralexamcommittee陳文智;羅弘岳zh_TW
dc.contributor.oralexamcommitteeWen-Chih Chen;Hong-Yueh Loen
dc.subject.keyword水下渦輪機,抽樣方法,電腦模擬,後設模型,啟發式演算法,zh_TW
dc.subject.keywordMarine Turbines,Sampling Methods,Computer Simulation,Surrogate Model,Metaheuristic,en
dc.relation.page46-
dc.identifier.doi10.6342/NTU202500750-
dc.rights.note未授權-
dc.date.accepted2025-02-27-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved