請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97264完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林致廷 | zh_TW |
| dc.contributor.advisor | Chih-Ting Lin | en |
| dc.contributor.author | 陳宗揚 | zh_TW |
| dc.contributor.author | Tsung-Yang Chen | en |
| dc.date.accessioned | 2025-04-02T16:11:39Z | - |
| dc.date.available | 2025-08-26 | - |
| dc.date.copyright | 2025-04-02 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-10 | - |
| dc.identifier.citation | [1] Ahmad, F. B., Cisewski, J. A., Xu, J., & Anderson, R. N. (2023). Provisional mortality data—United States, 2022. MMWR Morbidity and Mortality Weekly Report, 72(18), 488–492.
[2] Gubanova, O., Poletaev, A., Komarova, N., Grudtsov, V., Ryazantsev, D., Shustinskiy, M., Shibalov, M., & Kuznetsov, A. (2024). A novel extended gate ISFET design for biosensing application compatible with standard CMOS. Materials Science in Semiconductor Processing, 177, 108387. [3] Xu, G., Abbott, J., & Ham, D. (2016). Optimization of CMOS-ISFET-Based Biomolecular Sensing: Analysis and demonstration in DNA detection. IEEE Transactions on Electron Devices, 1–8. [4] Zou, J., Bai, H., Zhang, L., Shen, Y., Yang, C., Zhuang, W., Hu, J., Yao, Y., & Hu, W. (2024). Ion-sensitive field effect transistor biosensors for biomarker detection: current progress and challenges. Journal of Materials Chemistry B, 12(35), 8523–8542. [5] Cai, B., Wang, S., Huang, L., Ning, Y., Zhang, Z., & Zhang, G. (2014). Ultrasensitive Label-Free detection of PNA–DNA hybridization by reduced graphene oxide Field-Effect transistor biosensor. ACS Nano, 8(3), 2632–2638. [6] Pan, T., Wang, C., Lu, Y., Wang, C., Hsieh, I., & Wen, M. (2021). Rapid and label-free detection of the troponin in human serum by a TIN-based extended-gate field-effect transistor biosensor. SSRN Electronic Journal. [7] Komarova, N., Panova, O., Titov, A., & Kuznetsov, A. (2022). Aptamers targeting cardiac biomarkers as an analytical tool for the diagnostics of cardiovascular diseases: A review. Biomedicines, 10(5), 1085. [8] Xingjun, H., & Shouqi, W. (1990). Study of feasibility of using Ag–AgCl electrode as reference electrode of the ISFET. Journal of Electronics (China), 7(3), 285–288. [9] Singh, K., Chen, C., Tai, L., Huang, W., & Pan, T. (2024). Label-Free EGFR Sensing by Using a Flexible IrOx Extended Gate Field-Effect Transistor based Biosensor. IEEE Sensors Letters, 8(9), 1–4. [10] Sohn, Y., Lee, S., & Choi, S. (2007). Detection of C-Reactive protein using BioFET and extended gate. Sensor Letters, 5(2), 421–424. [11] Janićijević, Ž., Nguyen-Le, T., & Baraban, L. (2023). Extended-gate field-effect transistor chemo- and biosensors: State of the art and perspectives. Next Nanotechnology, 3–4, 100025. [12] Yin, L., Chou, J., Chung, W., Sun, T., & Hsiung, S. (2001). Study of indium tin oxide thin film for separative extended gate ISFET. Materials Chemistry and Physics, 70(1), 12–16. [13] Ahn, C., Park, C. W., Kim, A., Yang, J., Ah, C. S., Kim, T., Jang, M., & Sung, G. Y. (2009). Modified ISFETs having an extended gate on the thick dielectric. IEEE Sensors, 371–374. [14] Kwon, J., Lee, B., Kim, S., Park, J., Bae, H., Choi, Y., & Ahn, J. (2019). Nanoscale FET-Based Transduction toward Sensitive Extended-Gate Biosensors. ACS Sensors, 4(6), 1724–1729. [15] Hussin, M. R. M., Ismail, R., & Syono, I. (2012). Simulation and fabrication of extended gate ion sensitive field effect transistor for biosensor application. In Communications in computer and information science (pp. 396–403). [16] Tyagi, A., & Gupta, R. K. (2017). Carbon nanostructures from biomass waste for supercapacitor applications. In CRC Press eBooks (pp. 261–282). [17] Pachauri, V., & Ingebrandt, S. (2016). Biologically sensitive field-effect transistors: From ISFETs to nanoFETs. Essays in Biochemistry, 60(1), 81–90. [18] Yates, D. E., Levine, S., & Healy, T. W. (1974). Site-binding model of the electrical double layer at the oxide/water interface. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 70, 1807–1818. [19] Bousse, L., De Rooij, N. F., & Bergveld, P. (1983). Operation of chemically sensitive field-effect sensors as a function of the insulator–electrolyte interface. IEEE Transactions on Electron Devices, 30(10), 1263–1270. [20] P. Bergveld, "ISFET, theory and practice," in IEEE Sensor Conference, Toronto, 2003, vol. 328. [21] van Hal, R., Eijkel, J., & Bergveld, P. (1996). A general model to describe the electrostatic potential at electrolyte oxide interfaces. Advances in Colloid and Interface Science, 69(1–3), 31–62. [22] Dinar, A. M., Zain, A. S., & Salehuddin, F. (2017). CMOS ISFET device for DNA sequencing: Device compensation, application requirements and recommendations. International Journal of Applied Engineering Research, 12, 11015–11028. [23] Moser, N., Lande, T. S., Toumazou, C., & Georgiou, P. (2016). ISFETs in CMOS and emergent trends in instrumentation: A review. IEEE Sensors Journal, 16(17), 6496–6514. [24] High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC. (2015, December 1). 2015 International Electron Devices Meeting (IEDM). IEEE Xplore. [25] Spijkman, M., Smits, E. C. P., Cillessen, J. F. M., Biscarini, F., Blom, P. W. M., & De Leeuw, D. M. (2011). Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors. Applied Physics Letters, 98(4), Article 043502. [26] Sayil, S., Lamichhane, S., & Sayil, K. (2020). Crosstalk noise mitigation using a transmission gate with varied gate bias. Analog Integrated Circuits and Signal Processing, 105(2), 183–190. [27] Cao, S., Sun, P., Xiao, G., Tang, Q., Sun, X., Zhao, H., Zhao, S., Lu, H., & Yue, Z. (2022). ISFET‐based sensors for (bio)chemical applications: A review. Electrochemical Science Advances, 3(4). [28] Schöning, M. J., & Poghossian, A. (2002). Recent advances in biologically sensitive field-effect transistors (BioFETs). The Analyst, 127(9), 1137–1151. [29] Falina, S., Syamsul, M., Rhaffor, N. A., Hamid, S. S., Zain, K. A. M., Manaf, A. A., & Kawarada, H. (2021). Ten years progress of electrical detection of heavy metal ions (HMIS) using various field-effect transistor (FET) nanosensors: A review. Biosensors, 11(12), 478. [30] Sohbati, M., & Toumazou, C. (2014). Dimension and shape effects on the ISFET performance. IEEE Sensors Journal, 15(3), 1670–1679. [31] Jamasb, S., Collins, S., & Smith, R. L. (1998). A physical model for drift in pH ISFETs. Sensors and Actuators B: Chemical, 49(1–2), 146–155. [32] Iler, R. K. (1979). The chemistry of silica: Solubility, polymerization, colloid and surface properties, and biochemistry. John Wiley and Sons. [33] Boussw, L., & Bergveld, P. (1984). The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs. Sensors and Actuators, 6, 65–78. [34] Jakobson, C., Dinnar, U., Feinsod, M., & Nemirovsky, Y. (2002). Ion-sensitive field effect transistors in standard CMOS fabricated by post processing. IEEE Sensors Journal, 2(4), 279–287. [35] Vacic, A., Criscione, J. M., Rajan, N. K., Stern, E., Fahmy, T. M., & Reed, M. A. (2011). Determination of molecular configuration by Debye length modulation. Journal of the American [36] Ortiz-Conde, A., Sánchez, F. G., Liou, J. J., Cerdeira, A., Estrada, M., & Yue, Y. (2002). A review of recent MOSFET threshold voltage extraction methods. Microelectronics Reliability, 42(4–5), 583–596. [37] Georgiou, P., & Toumazou, C. (2009). ISFET characteristics in CMOS and their application to weak inversion operation. Sensors and Actuators B: Chemical, 143(1), 211–217. [38] Parizi, K. B., Xu, X., Pal, A., Hu, X., & Wong, H. S. P. (2017b). ISFET pH sensitivity: Counter-ions play a key role. Scientific Reports, 7(1). [39] Mohammadi, E., & Manavizadeh, N. (2017). Performance and sensitivity analysis of dual-gated ion sensitive FET. In 2017 Iranian Conference on Electrical Engineering (ICEE) (pp. 440–444). IEEE. [40] Chavel, I. (2001). Isoperimetric inequalities: Differential geometric and analytic perspectives. Cambridge University Press. [41] Cui, F., Yue, Y., Zhang, Y., Zhang, Z., & Zhou, H. S. (2020). Advancing biosensors with machine learning. ACS Sensors, 5(11), 3346–3364. [42] Chadha, U., Bhardwaj, P., Agarwal, R., Rawat, P., Agarwal, R., Gupta, I., Panjwani, M., Singh, S., Ahuja, C., Selvaraj, S. K. (2022). Recent progress and growth in biosensors technology: A critical review. Journal of Industrial and Engineering Chemistry, 109, 21– 51. [43] Kaisti, M. (2017). Detection principles of biological and chemical FET sensors. Biosensors and Bioelectronics, 98, 437–448. Chemical Society, 133(35), 13886–13889. [44] Ryu, S., Lee, S., Sohn, Y., Son, W., & Choi, S. (2012). CHARACTERISTICS of AL2O3 GATE pH-ISFET DIFFERENCE OF THERMAL ANNEALING TEMPERATURE. Biomedical Engineering Applications Basis and Communications, 24(02), 117–121. [45] Chou, J., & Weng, C. (2001). Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET. Materials Chemistry and Physics, 71(2), 120–124. [46] Wakida, S., Mochiziuki, S., Makabe, R., Kawahara, A., Yamane, M., Takasuka, S., & Higashi, K. (2002). pH-sensitive ISFETs based on titanium nitride and their application to battery monitor. TRANSDUCERS ’91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, 222–224. [47] Sinha, S., Pal, T., Kumar, D., Sharma, R., Kharbanda, D., Khanna, P., & Mukhiya, R. (2021b). Design, fabrication and characterization of TiN sensing film-based ISFET pH sensor. Materials Letters, 304, 130556. [48] Lai, C., Lue C., Yang C., and Jao J., Modifications on pH sensitivity of Si3N4 membrane by CF4 plasma and rapid thermal annealing for ISFET/REFET applications. 2006 International Conference on Solid State Devices and Materials, 11-15. [49] Yusof, K.A., Noh, N.I., Herman, S.H., Abdullah, A.Z., Zolkapli, M., & Abdullah, W.F. (2013). pH sensing characteristics of silicon nitride thin film and silicon nitride-based ISFET sensor. 2013 IEEE 4th Control and System Graduate Research Colloquium, 132-135. [50] Chen, M., Jin, Y., Qu, X., Jin, Q., & Zhao, J. (2014). Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment. Sensors and Actuators. B, Chemical, 192, 399–405. [51] Bousse, L., Mostarshed, S., van der Schoot, B., & de Rooij, N.F. (1994). Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators. Sensors and Actuators. B, Chemical, 17(2), 157–164. [52] Yao, P., Chiang, J., & Lee, M. (2014). Application of sol–gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor. Solid State Sciences, 28, 47–54. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97264 | - |
| dc.description.abstract | 隨著醫療的進步,我們的重點不僅應該放在治療疾病上,還應該關注預防疾病。在疾病預防中,測量生物標記物的濃度對於評估疾病進展十分重要。與此同時,隨著半導體技術的快速發展,「離子敏感型場效應電晶體」(ISFET)經常被用作檢測與各種疾病相關的生物分子傳感器。然而,這個半導體元件受限於能斯特物理極限,在室溫(298.15K)下其最大靈敏度約為 59.16 mV/pH,這樣的特性限制了其感測能力。
因此,本研究希望設計具有增強感測響應的 ISFET 晶片,以 ISFET 為核心元件,提出可以提升性能突破感測靈敏度的感測元件架構。首先,我們從元件架構入手,設計了一種新型雙閘極 ISFET 結構,並使用後製程技術測量了兩種類型的感測膜,即 TiN 和 Al2O3。此外,也藉由量測架構著手,將分壓電路與感測器元件集成,進一步使相關感測元件具有調整放大因子的能力。最後,我們也探索了感測區域形狀與面積的不同設計,以研究其對感測穩定性能的影響。 在本論文中,我們通過各種晶片架構放大了感測響應,實現了超越原始能斯特極限的表現;此外,我們比較了不同形狀和面積的感測區域的穩定性,確認了較長的周長和更多的幾何角會導致感測性能下降;最後,我們將這樣的新設計應用在Troponin I 的感測,並且成功放大 Troponin I 感測的表現。這一系列研究為未來的感測器晶片應用提供了寶貴的養分。 | zh_TW |
| dc.description.abstract | With advancements in medical technology, the focus should not only be on disease treatment but also on disease prevention. In disease prevention, measuring the concentration of biomarkers is crucial for assessing disease progression. Meanwhile, with the rapid development of semiconductor technology, ion-sensitive field-effect transistors (ISFETs) have been widely used as biosensors for detecting disease-related biomolecules. However, this semiconductor device is constrained by the Nernstian physical limit, where its maximum sensitivity is approximately 59.16 mV/pH at room temperature (298.15 K), thereby limiting its sensing capabilities.
Therefore, this study aims to design an ISFET-based sensor with enhanced sensing response by proposing a sensor architecture that can improve performance and surpass the sensing sensitivity limit. First, we designed a novel dual-gate ISFET structure from a device architecture perspective and employed post-processing techniques to evaluate two types of sensing membranes, namely TiN and Al₂O₃. Additionally, we integrated a voltage divider circuit with the sensing device to enable tunable gain adjustment, further enhancing the sensing capability. Furthermore, we explored different designs of sensing area shapes and dimensions to investigate their impact on sensing stability. In this study, we successfully enhanced the sensing response beyond the intrinsic Nernst limit through various device architectures. Moreover, by comparing sensing areas with different geometries and sizes, we confirmed that a longer perimeter and a greater number of geometric corners lead to a decline in sensing stability. Finally, we applied this novel sensor design to the detection of Troponin I and successfully amplified the Troponin I sensing signal. This series of investigations provides valuable insights for the future development of semiconductor-based biosensor chips. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:11:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-04-02T16:11:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ...................................................................................................................................... i
摘要 ...................................................................................................................................... iii Abstract......................................................................................................................v Table of contents ....................................................................................................... vii List of Figures............................................................................................................ ix List of Tables .............................................................................................................xiii Chapter 1 Preamble ...................................................................................................1 1.1 Research background...........................................................................................1 1.2 Research motivation ............................................................................................1 1.3 Objectives ............................................................................................................3 1.4 Thesis structure....................................................................................................4 Chapter 2 Introduction to experimental principles ....................................................5 2.1 Introduction to ISFET..........................................................................................5 2.2 Working principle................................................................................................7 2.3 Double-Gate Ion-Sensitive Field-Effect Transistors (DG-ISFET) ......................17 2.4 Parasitic-Gate Ion-Sensitive Field-Effect Transistors (PG-ISFET).....................19 2.5 Resistance-mode Ion-Sensitive Field-Effect Transistors.....................................20 2.6 NMOSs-mode Ion-Sensitive Field-Effect Transistors.........................................22 2.7 Ion-Sensitive Field-Effect Transistor applications ..............................................24 2.8 Drifting effect ......................................................................................................25 Chapter 3 Chip design and experimental setup .........................................................27 3.1 Chip design and fabrication of EG-ISFET ..........................................................27 3.2 Process flow after chip out ..................................................................................35 3.3 Post-fabrication processing..................................................................................35 3.4 Wire bonding and package ..................................................................................37 3.5 pH measurement ..................................................................................................39 3.6 Voltage divider measurement..............................................................................41 3.7 Surface modification of sensing membranes.......................................................41 Chapter 4 Experimental result and analysis ..............................................................45 4.1 Evaluation of sensing performance .....................................................................45 4.2 Measurement under 5 pH conditions...................................................................47 4.3 Threshold voltage extraction ...............................................................................47 4.4 Stability................................................................................................................48 4.5 Result and discussion of ISFETs – pH measurement ..........................................48 4.6 Result and discussion of the stability in different sensing size and shape ..........74 4.7 Result and discussion of Troponin I measurement ..............................................78 Chapter 5 Conclusion and future work......................................................................87 5.1 Conclusion...........................................................................................................87 5.2 Future work .........................................................................................................89 References .................................................................................................................93 | - |
| dc.language.iso | en | - |
| dc.subject | 延伸式閘極 | zh_TW |
| dc.subject | 離子敏感型場效電晶體 | zh_TW |
| dc.subject | 寄生閘極 | zh_TW |
| dc.subject | 穩定度 | zh_TW |
| dc.subject | 感測器架構設計 | zh_TW |
| dc.subject | Troponin I檢測 | zh_TW |
| dc.subject | parasitic gate | en |
| dc.subject | extended-gate | en |
| dc.subject | Troponin I detection | en |
| dc.subject | sensor architecture design | en |
| dc.subject | stability | en |
| dc.subject | ISFET | en |
| dc.title | 改良型ISFET的感測器架構並用於檢測Troponin I | zh_TW |
| dc.title | An Improved Architecture ISFET-Based Biosensor for Troponin I Detection | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建甫;張子璿 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Fu Chen;Tzu-Hsuan Chang | en |
| dc.subject.keyword | 延伸式閘極,離子敏感型場效電晶體,寄生閘極,穩定度,感測器架構設計,Troponin I檢測, | zh_TW |
| dc.subject.keyword | extended-gate,ISFET,parasitic gate,stability,sensor architecture design,Troponin I detection, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202500535 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-02-11 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | 2030-03-05 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.65 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
