請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97221完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林乃君 | zh_TW |
| dc.contributor.advisor | Nai-Chun Lin | en |
| dc.contributor.author | 莊繹叡 | zh_TW |
| dc.contributor.author | Yi-Jui Chuang | en |
| dc.date.accessioned | 2025-02-27T16:44:26Z | - |
| dc.date.available | 2025-02-28 | - |
| dc.date.copyright | 2025-02-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-14 | - |
| dc.identifier.citation | 王才義。1989。理想介質之調配。設施園藝研習會專集: 65-75。
何韻詩。2004。椰纖-泥炭外的選擇。臺中區農業改良場特刊 69: 87-88。行政院。臺中市。 吳正宗。2001。鹽害土壤的診斷與改良。興大農業 36: 19-23。臺中市。 李窓明。1993。臺灣草莓產業演進四十年。農業試驗所特刊 36: 315-332。行政院。臺中市。 林昭雄。1981。地帶地區草莓生產及發展可行性之研究。中華農業研究 30: 173-185。 邱燕欣、連珮君、薛道原、蘇士及簡怡文。2020。臺灣中部草莓栽種地區Neopestalotiopsis sp. 引起草莓病害初步調查與防治藥劑篩選。種苗科技專訊112: 2-5。 邵柔涵。2022。練香草莓組織培養苗生物健化有意細菌之研究。臺灣大學植物醫學碩士學位學程。臺北。臺灣。 徐巧芳、鄭婷文、陳冠勳、連怡婷、林政谷、黃卓君、夏凱及王惠亮。2020。由Neopestalotiopsis rosae引起之臺灣草莓新病害與藥劑篩選。植物醫學 62: 39-47。 張廣淼。2002。草莓高架床栽培技術之探討。農情與農政 124: 10。 張廣淼、吳添益、蔡正賢。2008。介紹椰纖土不同比例栽培介質的理化性與應用。 苗栗區農業專訊 41: 7-8。行政院。苗栗縣。 楊紹榮。1993。不織布浮動敷蓋在園藝作物栽培之利用。臺南區農業專訊 5: 9-11。行政院。臺南市。 齊文隆和林進財。1988。健康草莓苗的栽培與管理。苗栗區農業專訊 3: 3。行政院。苗栗縣。 蔡正賢。2019。草莓土壤管理與施肥推薦參考資訊。作物土壤管理與施肥技術 蔬菜與雜糧篇: 50-60。行政院。臺中市。 蔡佳祐。2024。抗鹽細菌 Pseudomonas sp. T1C2 提升番茄鹽害耐受性之潛力研究。臺灣大學植物醫學碩士學位學程。臺北。臺灣。 簡怡文、邱燕欣、文紀鑾、張定霖。2021。草莓健康種苗之生產。苗栗區農業改良場特刊 5: 11–22。行政院。苗栗縣。 羅秋雄、王斐能。2003。聖誕紅栽培介質物理性適宜值評估。桃園區農業改良場研究彙報 52: 32-44。行政院。桃園市。 羅國偉。2021。草苺品種檢定與開發品系特性介紹。苗栗區農業改良場特刊 5: 107-113。行政院。苗栗縣。 鐘珮哲、黃勝泉、蔡正賢、吳添益、張訓堯、張素貞、吳登楨。2013。草莓健康管理生產體系之研究。102年度重點作物健康管理生產體系及關鍵技術之研發成果研討會論文集: 46-57。 鐘珮哲、彭淑貞。2013。草莓育苗期重要病害管理。苗栗區農業專訊61:9-10。行政院。苗栗縣。 鐘珮哲、吳竑毅。2017。草莓田休閒期土壤管理對萎凋病之抑制效果。苗栗區農業改良場研究專報 6: 15-25。行政院。苗栗縣。 鐘珮哲、吳竑毅。2020。草莓育苗病害管理策略。苗栗區農業專訊89: 911。行政院。苗栗縣。 鐘珮哲、吳竑毅。2021a。利用滴帶給水降低草莓育苗期病害發生。苗栗區農業專訊93: 15-16。行政院。苗栗縣。 鐘珮哲、吳竑毅、江詩筑及蔡季芸。2021b。草莓新興病害- 葉枯病病原鑑定及防治方法評估。苗栗區農業改良場研究彙報10: 1-14。行政院。苗栗縣。 Acosta-Motos, J. R., M. F. Ortuño, A. Bernal-Vicente, P. Diaz-Vivancos, M. J. Sanchez-Blanco, and J. A. Hernandez. 2017. Plant responses to salt stress adaptive mechanisms. Agronomy Journal 7: 18. Alzate Zuluaga, M. Y., R. Fattorini, S. Cesco, and Y. Pii. 2024. Plant-microbe interactions in the rhizosphere for smarter and more sustainable crop fertilization: The case of PGPR-based biofertilizers. Frontiers in Microbiology 15: 1440978. Anna, F., G. Incalcaterra, A. Moncada, and A. Miceli. 2003. Effects of different electrical conductivity levels on strawberries grown in soilless culture. Acta Horticulturae 609: 355-360. Arenas, M., C. Vavrina, and J. Cornell. 2002. Coir as an alternative to peat in media for tomato transplant production. HortScience 37: 309-312. Bagale, K. V. 2018. The effect of electrical conductivity on growth and development of strawberries grown in deep tank hydroponic systems, a physiological study. Journal of Pharmacognosy and Phytochemistry 7: 1. Bakhat, N., A. Vielba-Fernández, I. Padilla-Roji, J. Martínez-Cruz, A. Polonio, D. Fernández- Ortuño, and A. Pérez-García. 2023. Suppression of chitin-triggered immunity by plant fungal pathogens: A case study of the cucurbit powdery mildew fungus Podosphaera xanthii. Journal of Fungi 9: 771. Basu, G., L. Mishra, S. Jose, and A. Samanta. 2015. Accelerated retting cum softening of coconut fibre. Industrial Crops and Products 77: 66-73. Beauchamp, C., and I. Fridovich. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44: 276-287. Boxi, S. S., and P. Jana. 2024. Application of coir pith as plant growing medium for tomato tree plantation. ES Food and Agroforestry 16: 1141. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. Caron, J., and V. K. N. Nkongolo. 1999. Aeration in growing media: Recent developments. Acta Horticulturae 481: 545-552. Caron, J., L. Rivière, and G. Guillemain. 2005. Gas diffusion and air-filled porosity: Effect of some oversize fragments in growing media. Canadian Journal of Soil Science 85: 57-65. Chapman, H. D. 1965. Cation-exchange capacity. Method of soil analysis–Chemical and microbiological proportion. Agronomy 9: 891-901. Chung, P. C., H. Y. Wu, H. A. Ariyawansa, S. S. Tzean, and C. L. Chung. 2019. First report of Anthracnose crown rot of strawberry caused by Colletotrichum Siamense in Taiwan. Plant Disease 103: 1775-1776. Chung, P. C., H.Y. Wu, Y. W. Wang, H. A. Ariyawansa, H. P. Hu, T. H. Hung, S. S. Tzean, and C. L. Chung. 2020. Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov. Scientific Reports: 14664. Culman, S., M. Mann, and C. Brown. 2019. Calculating cation exchange capacity, base saturation, and calcium saturation. Ohio State University Extension ANR-81. Dai, Y., X. Qiao, and X. Wang. 2018. Study on cation exchange capacity of agricultural soils. IOP Conference Series Materials Science and Engineering 392: 042039. De Oliveira, J., G. Dalmazo, T. Morselli, V. de Oliveira, L. Corrêa, L. Nora, and É. Corrêa. 2018. Composted slaughterhouse sludge as a substitute for chemical fertilizers in the cultures of lettuce (Lactuca sativa L.) and radish (Raphanus sativus L.) Food Science and Technology 38: 91-97. De Tender, C., B. Mesuere, F.Van der Jeugt, A. Haegeman, T. Ruttink, B. Vandecasteele, P. Dawyndt, J. Debode, and E. E. Kuramae. 2019. Peat substrate amended with chitin modulates the N-cycle, siderophore and chitinase responses in the lettuce rhizobiome. Scientific Reports 9: 9890. De Tender, C., B. Vandecasteele, B. Verstraetan, S. Ommeslag, T. De Meyer, J. De Visscher, P. Dawyndt, L. Clement, T. Kyndt, and J. Debode. 2021. Chitin in strawberry cultivation: foliar growth and defense response promotion, but reduced fruit yield and disease resistance by nutrient imbalances. Molecular Plant-Microbe Interactions 34: 3. De Visscher J. 2019. Effect of biochar and chitin on plant defense and rhizosphere microbiome of strawberry. Master’s Dissertation. Ghent university. Degree of Master of Science in Bioscience Engineering: Cell and Gene Biotechnology. Belgium. Debode, J., C. De Tender, S. Soltaninejad, C. Van Malderghem, A. Haegeman, I. Van der Linden, B. Cottyn, M. Heyndrickx, and M. Maes. 2016. Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology. Frontiers in Microbiology 7: 565. Demirsoy, H., L. Demirsoy, and A. Öztürk. 2005. Improved model for the non-destructive estimation of strawberry leaf area. Fruits 60: 69-73. Dempsey, D. A., and D. F. K. 2017. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biology 15: 23. Dresbøll D. B. 2010. Effect of growing media composition, compaction and periods of anoxia on the quality and keeping quality of potted roses (Rosa sp.). Scientia Horticulturae 126: 56-63. El-Alsayed S. G., and S. M. Ismall. 2017. Impact of soil amendments and irrigation water on growth and flowering of rosa plant grown in sandy soil rosa hybrida. Alexandria Science Exchange Journal 38: 626-641. Fan, Y., J. Liu, Z. Liu, X. Hu, Z. Yu, Y. Li, X. Chen, L. Li, J. Jin, and G. Wang. 2022. Chitin amendments eliminate the negative impacts of continuous cropping obstacles on soil properties and microbial assemblage. Fronters in Plant Science 13: 1067618. Fan, Z., L. Wang, Y. Qin, and P. Li. 2023. Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: A review. Carbohydrate Polymers 306: 120592. Freeman, S., S. Horowitz, and A. Sharon. 2007. Pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum from strawberry and other plants. Phytopathology 91: 986-992. Garcés-Fiallos, F., M. de Borba, E. Schmidt, Z. Bouzon, and M. Stadnik. 2017. Delayed upward colonization of xylem vessels is associated with resistance of common bean to Fusarium oxysporum f. sp. phaseoli. European Journal of Plant Pathology 149: 477-489. Gbollie, S. N., S. M. Mwonga, and A. M. Kibe. 2021. Effects of calcium nitrate levels and soaking durations on cocopeat nutrient content. Journal of Agricultural Chemistry and Environment 10: 372-388. Galotto, G., I. Abreu, C. Sherman, B. Liu, M. Gonzalez-Guerrero, and L. Vidali. 2020. Chitin triggers calcium-mediated immune response in the plant model Physcomitrella patens. Molecular Plant-Microbe Interactions 33: 911-920. Gougoulias, N., I. Vagelas. L. Giurgiulescu, E. Touliou, V. Kostoulis, and A. Chouliara. 2017. The coir substrate for soilless cultures, reused as soil amendment (study in vitro and in vivo). Carpathian Journal of Food Science and Technology 9: 61-70. Gruda, N. S. 2019. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 9: 298. Güneş, A., N. Ataoğlu, M. Turan, A. Eşitken, and Q. M. Ketterings. 2009. Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. Journal of Plant Nutrition and Soil Science 172: 385-392. Hassan, O., and T. Chang. 2017. Chitosan for eco-friendly control of plant disease. Asian Journal of Plant Pathology 11: 53-70. Hernández, V., M. Á. Botella, P. Hellín, J. Fenoll, and P. Flores. 2022. Dose-dependent potential of chitosan to increase yield or bioactive compound content in tomatoes. Horticulturae 8: 1152. Hoagland, D. R., W. C. Snyder. 1933.Nutrition of strawberry plant under controlled conditions: (a) effects of deficiencies of boron and certain other elements: (b) susceptibility to injury from sodium salts. Proceedings American Society for Horticultural Science 30: 94. Huat B. B. K., S. K. Huat, A. Prasad, and M. Barghchi. 2011. State of an art review of peat: General perspective. International Journal of the Physical Sciences 6: 1988-1996. Iwasaki, Y. 2008. Root zone aeration improves growth and yields of coir-cultured strawberry (fragaria × ananassa duch.) during summer. Acta Horticulturae 779: 251-254. Jahromi, N. B., A. Fulcher, F. Walker, and J. Altland. 2020. Optimizing substrate available water and coir amendment rate in pine bark substrates. Water 12: 362. Jayasekara, C., and N. Amarasinghe. 2010. Coir - Coconut Cultivation, Extraction and Processing of Coir. Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications: 197-217. Kato, M., and S. Shimizu. 1985. Chlorophyll metabolism in higher plants VI. involvement of peroxidase in chlorophyll degradation. Plant and Cell Physiology 26: 1291-1301. Komi, D. E. A., L. Sharma, and C. S. D. Cruz. 2018. Chitin and its effects on inflammatory and immune responses. Clinical Reviews in Allergy & Immunology 54:213-223. Kjeldahl, J. 1883. A new method for the determination of nitrogen in organic matter. Zeitschrift für Analytische Chemie 22: 366-382. Kumarasinghe, S. and S. Subasinghe. 2015. Effect of coco peat particle size for the optimum growth of nursery plant of greenhouse vegetables. Tropical Agricultural Research and Extension 18: 40-46. Leandro, l., M. Gleason, S. Nutter, Jr., S. Wegulo, and P. Dixon. 2007. Germination and sporulation of Colletotrichum acutatum on symptomless strawberry leaves. Phytopathology 91: 659-664. Letey, J. 1958. Relationship between soil physical properties and crop production. Advances in Soil Science: 277-294. Li, P., R. J. Linhardt, and Z. Cao. 2016. Structural characterization of oligochitosan elicitor from Fusarium sambucinum and its elicitation of defensive responses in Zanthoxylum bungeanu. International Journal of Molecular Sciences 17: 2076. Lian, Y., Y. Wu, W. Tang, Q. Shen, Y. Hu, and J. Wang. Investigation and suggestions on the application of pesticide and chemical fertilizer in strawberry cultivation in Ningbo City. Journal of Zhejiang Agricultural Sciences 59: 1881-1885. Londra, P., A. Paraskevopoulou, and M. Psychogiou. 2018. Hydrological behavior of peat- and coir-based substrates and their effect on begonia growth. Water 10: 722. MacAdam, J. W., C. J. Nelson, and R. E. Sharp. Peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology 99: 872-878. Machado, R. M. A., I. Alves-Pereira, I. Alves, R. M. A. Ferreira, and N. S. Gruda. 2023. Reusing coir-based substrates for lettuce growth: nutrient content and phytonutrients accumulation. Horticulturae 9: 1080. Mariotti, B., S. Martini, S. Raddi, A. Tani, D. F. Jacobs, J. A. Oliet, and A. Maltoni. 2020. Coconut coir as a sustainable nursery growing media for seedling production of the ecologically diverse quercus species. Forests 11: 552. Markoska, V., V. Spalevic, K. Lischkov, K. Atkovska, and R. Gulaboski. 2018. Determination of water retention characteristics of perlite and peat. The Journal Agriculture and Forestry 64: 113-126. Mejía-Teniente, L., F. D. Durán-Flores, A. M. Chapa-Oliver, I. Torres-Pacheco, A. Cruz-Hernández, M. M. González-Chavira, R. V. Ocampo-Velázquez, and R.G. Guevara-González. 2013. Oxidative and molecular responses in Capsicum annuum L. After hydrogen peroxide, salicylic acid and chitosan foliar applications. International Journal of Molecular Sciences 14: 10178-10196. Ngasotter, S., K. Xavier, M. Meitei, D. Waikhom, Madhulika, J. Pathak, and S. Singh. 2023. Crustacean shell waste derived chitin and chitin nanomaterials for application in agriculture, food, and health–A review. Carbohydrate Polymer Technologies and Applications 6: 100349. No, H. K., S. P. Meyers, and K. S. Lee. 1989. Isolation and characterization of chitin from crawfish shell waste. Journal of Agricultural and Food Chemistry 37: 575-579. Nürnberger, T., and F. Brunner. 2002. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Current Opinion in Plant Biology 5: 318-324. Orzali, L., B. Corsi, C. Forni, and L. Riccioni. 2017. Chitosan in agriculture: A new challenge for managing plant disease. Biological Activities and Application of Marine Polysaccharides: 17-36. Pal, K., S. Rakshit, K. C. Mondal, and S. K. Halder. 2021. Microbial decomposition of crustacean shell for production of bioactive metabolites and study of its fertilizing potential. Environmental Science and Pollution Research 28: 58915-58928. Paramanandham, J., and P. R. Ross. 2018. A study on cation exchange capacity of sieved coir pith. Chemical Methodologies 3: 94-103. Patiño, H. L., E. Bustamante R., and L. M. Salazar P. 2007. Effect of foliar substrates on black sigatoka (Mycosphaerella fijiensis Morelet) in banana (Musa paradisiaca L.) and plantain (Musa acuminata Colla). Agricultura Técnica (Chile) 67: 437-445. Prakash, V., J. R. Kavitha, R. Kamaleshwaran, P. Prabharan, and S. Alagendran. 2021. Effect of coir pith compost in agriculture. Journal of Medicinal Plants Studies 9: 106-110. Pusztahelyi, T. 2018. Chitin and chitin-related compounds in plant–fungal interactions. Mycology 9: 189-201. Remani, K., E. Nirmala, and S. Nair. 1989. Pollution due to coir retting and its effect on estuarine flora and fauna. International Journal of Environmental Studies 32: 285-295. Ronald Ross, P., P. Thenmozhi, and S. Paul Raj. 2010. Utilization of coir waste as a soilless medium. Advances in Biological Research 4: 198-200. Salwan, R., M. Sharma, A. Sharma, and V. Sharma. 2023. Insights into plant beneficial microorganism-triggered induced systemic resistance. Plant Stress 7: 100140. Shamshina, J. L., A. Kelly, T. Oldham, and R. D. Rogers. 2020. Agricultural uses of chitin polymers. Environmental Chemistry Letters 18: 53-60. Sharp, R. G. 2013. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3: 757-793. Shinuya, N., and E. Minami. 2001. Oligosaccharide signalling for defence responses in plant. Physiological and Molecular Plant Pathology 59: 223-233. Solly, E. F., V. Weber, S. Zimmermann, L. Walthert, F. Hagedorn, and M. W. I. Schmidt. 2020. A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in swiss forest soils. Frontiers in Forests and Global Change 3: 98. Sun, L., Y. Ma, Y. Liu, J. Li, J. Deng, X. Rao, and Y. Zhang. 2019. The combined effects of nitrogen fertilizer, humic acid, and gypsum on yield-scaled greenhouse gas emissions from a coastal saline rice field. Environmental Science and Pollution Research 26: 19502-19511. Sun, Y., G. Niu, R. Wallace, J. Masabni, and M. Gu. 2015. Relative Salt Tolerance of Seven Strawberry Cultivars. Horticulturae 1: 27-43. Sutana, V., S. Ehteshamul-Haque, J. Ava, R. Qasim, and A. Ghaffar. 2000. Effect of crustacean chitin on the efficacy of plant growth promoting bacteria in the control of root infecting fungi of sunflower and chickpea. Acta Agrobotanica 53: 5-12. Tabatabaei, S. J., M. Yuesefi, and J. Hajiloo. 2007. Effects of shading and NO3:NH4 ratio on the yield, quality and N metabolism in strawberry. Scientia Horticulturae 116: 264-272. Thakur, N., A. Nath, A. Chauhan, S. C. Parmar, H. Pandey, and K. Thakur. Chitinases from microbial sources, their role as biocontrol agents and other potential applications. Journal of Entomology and Zoology Studies 7: 837-843. Thomas, G. W. 1982. Exchangeable Cations. Method of soil analysis–Chemical and microbiological proportion. Agronomy 9: 159-165. Thordal- Chistensen, H., Z. G. Zhang, Y. D. Wei, and D. B. Collinge. 1997. Subcellular localization of H2O2 in plant. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal 11: 1187-1194. Tohidloo, G., M. K. Souri, and S. Eskandarpour. 2018. Growth and fruit biochemical characteristics of three strawberry genotypes under different potassium concentrations of nutrient solution. Open Agriculture 3: 356-362. Tomasz, W., K. Krzysztof, V. Bart, and S. Anita. 2024. Reuse of coir, peat, and wood fiber in strawberry production. Frontiers in Plant Science 14: 2023. Tränkner, M., E. Tavakol, and B. Jákli. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum 163: 414-431. Treder, J. 2008. The effects of cocopeat and fertilization on the growth and flower ing of oriental lily ‘star gazer’. Journal of Fruit and Ornamental Plant Research 16: 361-370. Ullah, I., M. D. Toor, B. A. Yerlikaya, H. I Mohamed, S. Yerlikaya, A. Basit, and A. U. Renman. 2024. High-temperature stress in strawberry: understanding physiological, biochemical and molecular responses. Planta 260: 118. Um-e-Aiman, N. Nisar, T. Tsuzuki, A. Lowe, J. T. Rossiter, A. Javaid, G. Powell, R. Waseem, S. H. Al-Mijalli, and M. Iqbal. 2021. Chitin nanofibers trigger membrane bound defense signaling and induce elicitor activity in plants. International Journal of Biological Macromolecules 178: 253-262. Velásquez, C. L., and M. R. Pirela. 2016. Biochemical aspects of the chitin fungicidal activity in agricultural uses. Chitosan in the Preservation of Agricultural Commodities: 279-298. Verhagen, J. B. G. M. 1999. CEC and the saturation of the adsorption complex of coir dust. Acta Horticulturae 481: 151-155. Vidhana Arachchi L., and L. L. Somasiri. 1997. Use of coir dust on the productivity of coconut on sandy soils. Cocos 12: 54-71. Wang Y., Y. Pei, X. Wang, X. Dai, and M. Zhu. 2024. Antimicrobial metabolites produced by the plant growth-promoting rhizobacteria (PGPR): Bacillus and Pseudomonas. Advanced Agrochem 3: 206-221. Wang, B., J. Yuan, J. Zhang, Z. Shen, M. Zhang, R. Li, Y. Ruan, and Q. Shen. 2013. Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biology and Fertility of Soils 49: 435–446. Wittman, M. 2020. Buffering up adjusting the cation exchange capacity in coco growing media. Maximum Yield, 2-5. Wright, W. R., and J. E. Foss. 1972. Contributions of clay and organic matter to the cation exchange capacity of maryland soils. Soil Science Society of America Journal 36: 115-118. Wu, H. Y., Y. M. Tsai, Y. M. Wu, H. A. Ariyawansa, C. L. Chung, and P. C. Chung. 2020. First Report of Neopestalotiopsis rosae causing leaf blight and crown rot on strawberry in Taiwan. Plant Disease 105: 487. Xiong, J., Y. Tian, J. Wang, W. Liu, and Q. Chen. 2017. Comparison of coconut coir, rockwool, and peat cultivations for tomato production: nutrient balance, plant growth and fruit quality. Frontiers in Plant Science 8: 1327. Xu X., X. Du, F. Wang, J. Sha, Q. Chen, G. Tian, Z. Zhu, S. Ge, and Y. Jiang. 2020. Effects of Potassium Levels on Plant Growth, Accumulation and Distribution of Carbon, and Nitrate Metabolism in Apple Dwarf Rootstock Seedlings. Frontiers in Plant Science 11: 534048. Zhao, W., J. Gu, X. Wang, Z. Song, T. Hu, X. Dai, and J. Wang. 2022. Insights into the associations of copper and zinc with nitrogen metabolism during manure composting with shrimp shell powder. Bioresource Technology 349: 126431. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97221 | - |
| dc.description.abstract | 草莓是臺灣的高經濟價值作物之一,主要產區在苗栗縣。在臺灣,草莓的耕作週期分為育苗期和本田期,而本田期除了傳統土壤栽培之外,有些農民會以高架栽培方式進行。高架栽培時,常使用介質進行種植,而椰纖 (coir pith) 是目前被使用較多的種類。然而,椰纖在製造過程中可能殘留鹽類和化學藥劑,加上椰纖微生物含量或豐度較低且化學緩衝能力弱等缺點,可能會影響草莓產量。此外,近年來臺灣草莓耕地逐年上升,但產量卻不升反降,病蟲害是原因之一,全球暖化更加劇此劣勢。幾丁質 (chitin) 作為良好的土壤改良劑,在過去研究發現除了能改善土壤性質之外,還能夠促進植物生長、提升土壤中有益微生物相對豐度以及作為微生物相關分子模式 (Microbe-Associated Molecular Patterns; MAMP) 誘發植物先天性免疫反應,因此含大量幾丁質的農業廢棄物—蝦蟹殼粉應用於農業的潛力與優勢極高。為了優化作為栽培草莓介質的椰纖,甚至賦予其提高草莓耐受重要病害—炭疽病的功能,本研究首先調整清洗椰纖方式來解決鹽類殘留問題,考慮到用水量及效果後發現,以清水:椰纖=15:1 (w/w) 泡發椰纖後再以等量水清洗的效果佳,可使電導度降至0.32 dS m-1。再以特定比例混合常用於草莓栽植的椰纖及培養土,發現以椰纖:培養土=3:1 (v/v) 種植的草莓,其第三葉葉面積及生物量顯著高於其他處理組,從土壤化學、土壤養分、土壤微生物以及介質再利用可能性等來考量,認為此混合比例為佳。在此基礎上,添加 0.1、0.5 及 1.0 % (w/w) 蝦蟹殼粉,結果顯示1.0 % 蝦蟹殼粉可使栽培介質中的有效無機氮顯著提升、促進草莓生長並抑制炭疽病發生嚴重度。雖然過氧化氫酶、超氧化物歧化酶和過氧化物酶等抗氧化酵素活性在接種炭疽病後,有無處理蝦蟹殼粉的植株並無顯著差異;但 3,3’-二氨基二丙胺染色後可觀察到處理蝦蟹殼粉的植株葉片中 H2O2 的累積較低。綜上所述,本研究結果不僅可提出清洗椰纖的建議步驟及用水量,也發現於椰纖中添加適量培養土能改善其化學性質、營養元素及微生物含量;在此基準上,搭配蝦蟹殼粉作為土壤改良劑,除了可更加促進草莓生長外,還可降低炭疽病發病情形。未來期望能將此栽培管理方式推薦給草莓農民,以害物整合管理的概念有效地降低化學肥料及化學農藥的使用量。 | zh_TW |
| dc.description.abstract | Strawberry is one of the high-value cash crops in Taiwan, with the main production area in Miaoli County. In Taiwan, strawberry cultivation goes through nursery and main production stages. In addition to growing strawberry seedlings directly in the soil, more and more farmers choose raised beds for strawberry production. Growing media are usually used for raised-bed farming, with coir pith being the primary choice for farmers. However, the residual salts and chemicals from the production process, the low microbial content or abundance, and the weak chemical buffer capacity may abate the quality of coir pith, causing a decline in strawberry production. Recently, strawberry farming areas in Taiwan have been increasing, but strawberry production is declining yearly due to pests and diseases, and global warming worsens such negative aspects. As an excellent soil amendment, chitin has been shown in previous studies to promote plant growth, enhance the relative abundance of beneficial soil microorganisms, and act as a microbe-associated molecular pattern (MAMP) to induce innate immunity in plants. As a result, shrimp and crab shell powder (SCSP), an organic waste containing abundant chitin, is of great potential and advantage for application in agriculture. In order to improve the quality of coir pith as a growing medium for strawberry production and even grant it the ability to enhance resistance to anthracnose, one of the major strawberry diseases, this study first aimed to solve the problem of residual salt in coir pith by adjusting the washing steps. Considering water usage and effectiveness, the coir pith soaked in water at a ratio of 15:1 (water: coir pith; w/w) and then washed again with the same amount of water performed well, reducing the electrical conductivity to 0.3 dS m-1. Next, two well-known materials for strawberry cultivation, potting soil, and coir pith, were mixed in designated proportions, and the results indicated that coir pith-to-soil at a ratio of 3:1 (v/v) significantly increased the third leaf area and biomass of strawberries compared with the other treatment groups. Based on the chemical, nutrient, and microbial analyses of the growing media and the potential for reuse, the growing medium composed of three parts of coir pith and one part of potting soil is more effective. Then, SCSP was supplemented in the growing media at 0.1, 0.5, and 1.0% (w/w). The results showed that the growing medium containing 1.0% SCSP significantly increased available nitrogen in the medium, promoted strawberry growth, and suppressed disease severity of strawberry anthracnose disease. Although there was no difference in the activities of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) between treatments with and without SCSP supplement, the 3,3’-diaminobenzidine (DAB) staining revealed that H2O2 accumulation was lower in the leaves from plants raised in growing media with SCSP. In conclusion, this study provides recommended steps and water usage for washing coir pith and identifies that the chemical properties, nutrient, and microbial abundance of coir pith can be improved by amending the proper proportion of potting soil. Based on this, supplementing SCSP as soil amendment could further promote strawberry growth and reduce the severity of strawberry anthracnose. In the future, the culture strategy developed in this study could benefit strawberry farmers by reducing the use of chemical fertilizers and pesticides more effectively using integrated pest management. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:44:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-27T16:44:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract v 目次 vii 圖次 x 附表次 xi 附圖次 xii 壹、前人研究 1 一、草莓基本特性與臺灣栽培現況 1 二、臺灣草莓栽培模式及高架栽培 2 三、介質物化性質與椰纖 3 1. 介質物化性質對植物生長的影響 3 2. 常用介質與椰纖介紹 3 3. 混合介質對植物生長的影響 4 四、草莓近年重要病害 5 1. 草莓炭疽病 (Anthracnose) 5 2. 草莓萎凋病 (Fusarium wilt) 6 3. 草莓葉枯病 (Leaf blight) 6 五、幾丁質 (Chitin) 與蝦蟹殼粉於農業應用及效果 7 1. 幾丁質與其衍生物用於促進植物生長 7 2. 幾丁質 (chitin) 與其衍生物用於抑制病蟲害發生 8 3. 蝦蟹殼粉 (shrimp and crab shell powder) 9 貳、研究動機與目的 10 參、材料與方法 11 一、試驗植物材料栽種條件 11 二、椰纖的清洗時間及次數對椰纖 pH 值及電導度之影響 11 三、椰纖添加培養土後對微生物量之影響 11 四、不同介質比例對草莓生長之影響 12 五、添加蝦蟹殼粉對草莓植株生長之影響 12 六、介質與植體物化性質及元素分析 13 1. pH 值及電導度 (Electrical Conductivity, EC) 測定 13 2. 介質含水量之測定及水分校正係數 13 3. 陽離子交換能力 (Cation Exchange Capacity, CEC) 測定 13 4. 介質有效無機氮 (Available inorganic nitrogen) 測定 14 5. 介質有效磷 (Available Phosphorus) 測定 15 6. 介質有效鉀 (Available Potassium) 測定 15 7. 植體消化分解 16 七、介質中添加蝦蟹殼粉對草莓抗炭疽病之影響 16 1. 製備草莓炭疽病分生孢子懸浮液 16 2. 炭疽病菌接種 16 八、抗氧化酵素活性分析 17 1. 蛋白質粗萃取液備製 17 2. 過氧化酶 (Catalase, CAT) 17 3. 超氧化物歧化酶 (Superoxide dismutase, SOD) 18 4. 過氧化酶 (Peroxidase, POD) 19 九、二氨基聯苯胺四鹽酸鹽 (3, 3,–diaminobenzidine, DAB) 染色 20 十、數據統計 20 肆、結果 21 一、清洗用水量及次數對椰纖 pH 值及電導度之影響 21 二、椰纖添加培養土後對微生物量之影響 21 二、添加培養土對介質化學性質、營養元素及草莓生長之影響 21 1. 添加培養土對椰纖化學性質及養分含量之影響 21 2. 不同比例的介質對草莓生長之影響 22 3. 培養土的添加對種植草莓後椰纖化學性質之影響 23 三、添加蝦蟹殼粉對介質化學性質和營養元素以及草莓生長之影響 24 1. 混拌蝦蟹殼粉對混合介質化學性質及營養元素含量之影響 24 2. 混拌蝦蟹殼粉對草莓生長之影響 24 四、介質混拌蝦蟹殼粉對草莓炭疽病發生之影響 24 1. 外觀與病害嚴重度 24 2. 抗氧化酵素活性 25 3. DAB 染色 25 伍、討論 26 一、清洗用水量及次數對椰纖 pH 值及電導度之影響 26 二、添加培養土後對椰纖及草莓生長的影響 27 三、混拌蝦蟹殼粉對草莓生長及對草莓炭疽病發生之影響 30 陸、結論 33 柒、參考文獻 34 捌、圖 44 玖、附表 60 拾、附圖 62 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 植物生物量 | zh_TW |
| dc.subject | 炭疽病 | zh_TW |
| dc.subject | 蝦蟹殼粉 | zh_TW |
| dc.subject | 有效氮 | zh_TW |
| dc.subject | 椰纖 | zh_TW |
| dc.subject | Anthracnose | en |
| dc.subject | Coir pith | en |
| dc.subject | Available nitrogen | en |
| dc.subject | Shrimp and crab shell powder (SCSP) | en |
| dc.subject | Plant biomass | en |
| dc.title | 椰纖介質搭配蝦蟹殼粉對草莓生長及炭疽病發生之影響 | zh_TW |
| dc.title | Effects of coir pith-based growing media supplemented with shrimp and crab shell powder on growth and anthracnose disease of strawberry | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許正一;李國譚;黃政華 | zh_TW |
| dc.contributor.oralexamcommittee | Zeng-Yei Hseu;Kuo-Tan Li;Cheng-Hua Huang | en |
| dc.subject.keyword | 椰纖,有效氮,蝦蟹殼粉,植物生物量,炭疽病, | zh_TW |
| dc.subject.keyword | Coir pith,Available nitrogen,Shrimp and crab shell powder (SCSP),Plant biomass,Anthracnose, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202500717 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-02-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | - |
| dc.date.embargo-lift | 2030-02-14 | - |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 3.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
