請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97207
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭光成 | zh_TW |
dc.contributor.advisor | Kuan-Chen Cheng | en |
dc.contributor.author | 丸田恵人 | zh_TW |
dc.contributor.author | Keito Maruta | en |
dc.date.accessioned | 2025-02-27T16:40:43Z | - |
dc.date.available | 2025-02-28 | - |
dc.date.copyright | 2025-02-27 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-14 | - |
dc.identifier.citation | 王正利 (2011) 臺灣紫芝多醣體免疫調節機轉與功能評估。國立臺灣大學生化科技學系博士論文。臺北,臺灣。
吳書裴 (2016) 利用 PCS 生物反應器最適化生產紫芝胞外多醣與其抗發炎能力之探討。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。 宋庭瑄 (2022) 以 PCS 固定化蛹蟲草菌絲體及其生理成分分析。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。 陳明煦 (2006) 臺灣紫芝生物活性代謝產物之醱酵生產與功能評估。國立臺灣大學微生物與生化學研究所碩士論文。臺北,臺灣。 陳詩瑤 (2019) 評估臺灣紫芝萃取物抗 PM2.5 誘導 ROS 之潛力。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。 許妤安 (2019) 評估臺灣紫芝萃取物於 PM2.5 誘發 ROS 及細胞傷害之保護效果。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。 小堀彰久 (2022) クロカワ(Boletopsis leucomelas)からの生物活性物質の探索。筑波大学大学院理工情報生命学術院生命地球科学研究群生物資源科学学位プログラム修士論文。茨城,日本。 黃筱筑 (2023) 評估固態發酵發芽臺灣藜胜肽期延緩衰老之功效。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。 雷筱芸 (2022) 臺灣紫芝中酪胺酸酶抑制劑之純化及鑑定。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。 Aminov, R. I. (2009). The role of antibiotics and antibiotic resistance in nature. Environmental Microbiology, 11(12), 2970-2988. Barros, R. M., Misuta, M. S., Menezes, R. P., Figueroa, P. J., Moura, F. A., Cunha, S. A., Anido, R., & Leite, N. J. (2007). Analysis of the distances covered by first division Brazilian soccer players obtained with an automatic tracking method. Journal of Sports Science & Medicine, 6(2), 233. Beck-Sague, C. M., Jarvis, W. R., & System, N. N. I. S. (1993). Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. The Journal of Infectious Diseases, 1247-1251. Bertrand, G. (1896). Sur une nouvelle oxydase, ou ferment soluble oxydant, d’origine végétale. CR Académie des Sciences. Paris, 122, 1215. Bochot, C., Gouron, A., Bubacco, L., Milet, A., Philouze, C., Réglier, M., Serratrice, G., Jamet, H., & Belle, C. (2014). Probing kojic acid binding to tyrosinase enzyme: insights from a model complex and QM/MM calculations. Chemical Communications, 50(3), 308-310. Bourquelot, E., & Bertrand, A. (1895). A re-examination of the Raper’s scheme: Cyclodopa as a biological precursor of eumelanin. CR Society Biology, 47, 582-584. Burger, P., Landreau, A., Azoulay, S., Michel, T., & Fernandez, X. (2016). Skin whitening cosmetics: Feedback and challenges in the development of natural skin lighteners. Cosmetics, 3(4), 36. Burlando, B., Clericuzio, M., & Cornara, L. (2017). Moraceae plants with tyrosinase inhibitory activity: A review. Mini Reviews in Medicinal Chemistry, 17(2), 108-121. Burnett, C. L., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks, J. G., Shank, R. C., Slaga, T. J., & Snyder, P. W. (2010). Final report of the safety assessment of kojic acid as used in cosmetics. International Journal of Toxicology, 29(6_suppl), 244S-273S. Chahardehi, A. M., Arsad, H., & Lim, V. (2020). Zebrafish as a successful animal model for screening toxicity of medicinal plants. Plants, 9(10), 1345. Chang, T.-S. (2009). An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences, 10(6), 2440-2475. Chen, H. W., Chou, Y. S., Young, T. H., & Cheng, N. C. (2020). Inhibition of melanin synthesis and melanosome transfer by chitosan biomaterials. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(4), 1239-1250. Choi, M.-H., Jo, H.-G., Yang, J. H., Ki, S. H., & Shin, H.-J. (2018). Antioxidative and anti-melanogenic activities of bamboo stems (Phyllostachys nigra variety henosis) via PKA/CREB-mediated MITF downregulation in B16F10 melanoma cells. International Journal of Molecular Sciences, 19(2), 409. Chuenjitt, S., Kongsuwan, A., Phua, C. H., Saichanapan, J., Soleh, A., Saisahas, K., Samoson, K., Wangchuk, S., Promsuwan, K., & Limbut, W. (2022). A poly (neutral red)/porous graphene modified electrode for a voltammetric hydroquinone sensor. Electrochimica Acta, 434, 141272. Dalle, F., Wächtler, B., L'Ollivier, C., Holland, G., Bannert, N., Wilson, D., Labruère, C., Bonnin, A., & Hube, B. (2010). Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cellular Microbiology, 12(2), 248-271. David M, P., Douglas R, O., Michael R, K., & Arlen D, H. (2002). Delayed reimplantation arthroplasty for candidal prosthetic joint infection: a report of 4 cases and review of the literature. Clinical Infectious Diseases, 34(7), 930-938. Decker, H., Schweikardt, T., Nillius, D., Salzbrunn, U., Jaenicke, E., & Tuczek, F. (2007). Similar enzyme activation and catalysis in hemocyanins and tyrosinases. Gene, 398(1-2), 183-191. Deri, B., Kanteev, M., Goldfeder, M., Lecina, D., Guallar, V., Adir, N., & Fishman, A. (2016). The unravelling of the complex pattern of tyrosinase inhibition. Scientific Reports, 6(1), 1-10. Desmedt, B., Courselle, P., De Beer, J., Rogiers, V., Grosber, M., Deconinck, E., & De Paepe, K. (2016). Overview of skin whitening agents with an insight into the illegal cosmetic market in Europe. Journal of the European Academy of Dermatology and Venereology, 30(6), 943-950. Dissanayake, C.-Y., Moon, H.-H., Yang, K.-M., Lee, Y., & Han, C.-H. (2018). The effects of green tea (Camellia sinensis) flower extract on melanin synthesis in B16-F10 melanoma cells. Korean Journal of Veterinary Research, 58(2), 65-72. Dutcher, T. F., & Fahey, J. L. (1959). The histopathology of the macroglobulinemia of Waldenström. JNCI: Journal of the National Cancer Institute, 22(5), 887-916. Elmastas, M., Isildak, O., Turkekul, I., & Temur, N. (2007). Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. Journal of Food Composition and Analysis, 20(3-4), 337-345. Halaban, R., Patton, R. S., Cheng, E., Svedine, S., Trombetta, E. S., Wahl, M. L., Ariyan, S., & Hebert, D. N. (2002). Abnormal acidification of melanoma cells induces tyrosinase retention in the early secretory pathway. Journal of Biological Chemistry, 277(17), 14821-14828. Han, H. J., Park, S. K., Kang, J. Y., Kim, J. M., Yoo, S. K., & Heo, H. J. (2020). Anti-melanogenic effect of ethanolic extract of Sorghum bicolor on IBMX–induced melanogenesis in B16/F10 melanoma cells. Nutrients, 12(3), 832. Hawksworth, D. L. (1995). Steps along the road to a harmonized bionomenclature. Taxon, 44(3), 447-456. He, J.-H., Gao, J.-M., Huang, C.-J., & Li, C.-Q. (2014). Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicology and Teratology, 42, 35-42. Hearing, V. J. (2005). Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. Journal of Dermatological Science, 37(1), 3-14. Hoog, G. d., Guarro, J., Gene, J., & Figueras, M. J. (2000). Atlas of Clinical Fungi. Hu, Z., Sha, X., Zhang, L., Huang, S., & Tu, Z. (2022). Effect of grass carp scale collagen peptide FTGML on cAMP-PI3K/Akt and MAPK signaling pathways in B16F10 melanoma cells and correlation between anti-melanin and antioxidant properties. Foods, 11(3), 391. Isildak, Ö., Turkekul, I., Elmastas, M., & Tuzen, M. (2004). Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chemistry, 86(4), 547-552. Jesumani, V., Du, H., Pei, P., Zheng, C., Cheong, K.-L., & Huang, N. (2019). Unravelling property of polysaccharides from Sargassum sp. as an anti-wrinkle and skin whitening property. International Journal of Biological Macromolecules, 140, 216-224. Juliano, C. C. (2022). Spreading of dangerous skin-lightening products as a result of colourism: a review. Applied Sciences, 12(6), 3177. Lee, H. J., Lee, W. J., Chang, S. E., & Lee, G.-Y. (2015). Hesperidin, a popular antioxidant inhibits melanogenesis via Erk1/2 mediated MITF degradation. International Journal of Molecular Sciences, 16(8), 18384-18395. Lee, H.-R., Jung, J. M., Seo, J.-Y., Chang, S. E., & Song, Y. (2021). Anti-melanogenic property of ginsenoside Rf from Panax ginseng via inhibition of CREB/MITF pathway in melanocytes and ex vivo human skin. Journal of Ginseng Research, 45(5), 555-564. Lee, J. W., Ji, S.-H., Choi, B.-R., Choi, D. J., Lee, Y.-G., Kim, H.-G., Kim, G.-S., Kim, K., Lee, Y.-H., & Baek, N.-I. (2018). UPLC-QTOF/MS-based metabolomics applied for the quality evaluation of four processed Panax ginseng products. Molecules, 23(8), 2062. Lorenz, A., Wells, J. L., Pryce, D. W., Novatchkova, M., Eisenhaber, F., McFarlane, R. J., & Loidl, J. (2004). S. pombe meiotic linear elements contain proteins related to synaptonemal complex components. Journal of Cell Science, 117(15), 3343-3351. Li, J., Li, C., Peng, X., Li, S., Liu, B., & Chu, C. (2023). Recent discovery of tyrosinase inhibitors in traditional Chinese medicines and screening methods. Journal of Ethnopharmacology, 303, 115951. Li, Q., & Uitto, J. (2014). Zebrafish as a model system to study skin biology and pathology. Journal of Investigative Dermatology, 134(6), 1-6. Lim, H. Y., Jeong, D., Park, S. H., Shin, K. K., Hong, Y. H., Kim, E., Yu, Y.-G., Kim, T.-R., Kim, H., & Lee, J. (2020). Antiwrinkle and antimelanogenesis effects of tyndallized Lactobacillus acidophilus KCCM12625P. International Journal of Molecular Sciences, 21(5), 1620. Liu, Q., Shu, X., Sun, A., Sun, Q., Zhang, C., An, H., Liu, J., & Cao, X. (2008). Plant-derived small molecule albaconol suppresses LPS-triggered proinflammatory cytokine production and antigen presentation of dendritic cells by impairing NF-κB activation. International Immunopharmacology, 8(8), 1103-1111. Maeda, K. (2022). Timeline of the development of skin-lightening active ingredients in Japan. Molecules, 27(15), 4774. Masub, N., & Khachemoune, A. (2022). Cosmetic skin lightening use and side effects. Journal of Dermatological Treatment, 33(3), 1287-1292. Mau, J.-L., Chao, G.-R., & Wu, K.-T. (2001). Antioxidant properties of methanolic extracts from several ear mushrooms. Journal of Agricultural and Food Chemistry, 49(11), 5461-5467. Netea, M. G., Van der Graaf, C. A., Vonk, A. G., Verschueren, I., Van der Meer, J. W., & Kullberg, B. J. (2002). The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. Journal of Infectious Diseases, 185(10), 1483-1489. Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Developmental Science, 10(4), 464-480. Nukata, M., Hashimoto, T., Yamamoto, I., Iwasaki, N., Tanaka, M., & Asakawa, Y. (2002). Neogrifolin derivatives possessing anti-oxidative activity from the mushroom Albatrellus ovinus. Phytochemistry, 59(7), 731-737. Odds, F. C., Van Nuffel, L., & Dams, G. r. (1998). Prevalence of Candida dubliniensis isolates in a yeast stock collection. Journal of Clinical Microbiology, 36(10), 2869-2873. Pavic, A., Ilic-Tomic, T., & Glamočlija, J. (2021). Unravelling anti-melanogenic potency of edible mushrooms Laetiporus sulphureus and Agaricus silvaticus in vivo using the zebrafish model. Journal of Fungi, 7(10), 834. Pillaiyar, T., Manickam, M., & Namasivayam, V. (2017). Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 403-425. Pillaiyar, T., Namasivayam, V., Manickam, M., & Jung, S.-H. (2018). Inhibitors of melanogenesis: an updated review. Journal of Medicinal Chemistry, 61(17), 7395-7418. Ramsden, C. A., & Riley, P. A. (2014). Tyrosinase: The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorganic & Medicinal Chemistry, 22(8), 2388-2395. Rodrigo, M.-J., Alquezar, B., & Zacarías, L. (2006). Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). Journal of Experimental Botany, 57(3), 633-643. Saba, E., Kim, S.-H., Lee, Y. Y., Park, C.-K., Oh, J.-W., Kim, T.-H., Kim, H.-K., Roh, S.-S., & Rhee, M. H. (2020). Korean Red Ginseng extract ameliorates melanogenesis in humans and induces antiphotoaging effects in ultraviolet B–irradiated hairless mice. Journal of Ginseng Research, 44(3), 496-505. Scherwitz, C. (1982). Ultrastructure of human cutaneous candidosis. Journal of Investigative Dermatology, 78(3), 200-205. Shen, C., & Zuo, Z. (2020). Zebrafish (Danio rerio) as an excellent vertebrate model for the development, reproductive, cardiovascular, and neural and ocular development toxicity study of hazardous chemicals. Environmental Science and Pollution Research, 27(35), 43599-43614. Sobel, J. D., & Chaim, W. (1997). Treatment of Torulopsis glabrata vaginitis: retrospective review of boric acid therapy. Clinical Infectious Diseases, 24(4), 649-652. Srikram, A., & Supapvanich, S. (2016). Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand. Agriculture and Natural Resources, 50(6), 432-436. Sudbery, P., Gow, N., & Berman, J. (2004). The distinct morphogenic states of Candida albicans. Trends in Microbiology, 12(7), 317-324. Sun, G.-F., Hu, W.-T., Yuan, Z.-H., Zhang, B.-A., & Lu, H. (2017). Characteristics of mercury intoxication induced by skin-lightening products. Chinese Medical Journal, 130(24), 3003-3004. Teissedre, P.-L., & Landrault, N. (2000). Wine phenolics: contribution to dietary intake and bioavailability. Food Research International, 33(6), 461-467. Turkekul, I., Elmastas, M., & Tüzen, M. (2004). Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chemistry, 84(3), 389-392. Valentão, P., Lopes, G., Valente, M., Barbosa, P., Andrade, P. B., Silva, B. M., Baptista, P., & Seabra, R. M. (2005). Quantitation of nine organic acids in wild mushrooms. Journal of Agricultural and Food Chemistry, 53(9), 3626-3630. Wang, F., Luo, D.-Q., & Liu, J.-K. (2005). Aurovertin E, a new polyene pyrone from the basidiomycete Albatrellus confluens. The Journal of Antibiotics, 58(6), 412-415. Wu, Z., & Li, Y. (2017). Grifolin exhibits anti-cancer activity by inhibiting the development and invasion of gastric tumor cells. Oncotarget, 8(13), 21454. Ye, M., Liu, J.-k., Lu, Z.-x., Zhao, Y., Liu, S.-f., Li, L.-l., Tan, M., Weng, X.-x., Li, W., & Cao, Y. (2005). Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, inhibits tumor cell growth by inducing apoptosis in vitro. FEBS Letters, 579(16), 3437-3443. Zhao, K., Wang, W., Rando, O. J., Xue, Y., Swiderek, K., Kuo, A., & Crabtree, G. R. (1998). Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell, 95(5), 625-636. Zhao, W., Liu, Z., Liang, X., Wang, S., Ding, J., Li, Z., Wang, L., & Jiang, Y. (2022). Preparation and characterization of epigallocatechin-3-gallate loaded melanin nanocomposite (EGCG@ MNPs) for improved thermal stability, antioxidant and antibacterial activity. Lebensmittel-Wissenschaft & Technologie, 154, 112599. Zhi‐Hui, D., Ze‐Jun, D., & Ji‐Kai, L. (2001). Albaconol, A novel prenylated resorcinol (= benzene‐1, 3‐diol) from basidiomycetes Albatrellus confluens. Helvetica Chimica Acta, 84(1), 259-262. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97207 | - |
dc.description.abstract | 在第一章中,由國立科學博物館植物研究部保坂健太郎博士提供的 34 種野生食用菌萃取物,經由 TLC、抗菌活性和抗氧化活性試驗進行蘑菇篩選,本實驗選擇了生物活性相對較高的 Albatrellus confluens 進行研究。將其乙酸乙酯萃取物利用 HPLC、MS 及 NMR 等方法分離並純化出 Meroterpenoids Grifolin 及 Neogrifolin,而這兩種化合物的結構與 Podogigant A 等化合物相似,Podogigant A 曾在文獻中被提及可提升真菌劑 amphotericin B (AmB) 的抗真菌活性,因此後續實驗與北里大學合作研究 meroterpenoids Grifolin 及 Neogrifolin 兩種化合物的活性。結果顯示 2 μg/mL 和 4 μg /mL 的組合對帶有念珠菌病病原的白色念珠菌具有 4 倍AmB 增效活性,而 8 μg /mL 的組合則具有 8 倍的 AmB 增效活性。因此將 meroterpenoids Grifolin 及 Neogrifolin 與抗生素結合,可減少所需劑量,並有助於將副作用減至最低。
在第二章中,自 30 種野生食用菌萃取物,包含先前研究曾使用的蘑菇、文獻未曾提及與分離成天然產品的蘑菇、長期被當作藥用蘑菇的蘑菇 (例如靈芝 Ganoderma lucidum),以及食用蘑菇 (例如日本白松露 Tuber japonicum) 等,這些蘑菇萃取物在台灣大學進行美白活性測試。首先測試酪氨酸酶的抑制活性,酪氨酸酶有助於產生黑色素,而黑色素是使皮膚變黑的成分。結果發現,其中七種蘑菇具有相對較高的抑制活性。接著使用小鼠身上產生黑色素的 B16-F10 黑色素瘤細胞進行活性抑制與毒性測試,結果發現 Ganoderma lucidum、Boletopsis grisea、Pleurotus ostreatus、Grifola frondosa、Albatrellus confluens 和 Calvatia craniiformis 等六種蘑菇在無毒濃度範圍內具有美白活性。最後使用斑馬魚進行測試,結果顯示,這六種蘑菇的萃取物皆能抑制色素沉澱,且不會對生物造成不良影響。因此這些蘑菇具有開發新的、安全的、天然的美白化妝品材料的潛力。 | zh_TW |
dc.description.abstract | In the 1st chapter, several species of mushrooms were selected by screening 34 wild edible mushroom extracts provided by Dr. Kentaro Hosaka of the National Museum on Nature and Science, Plant Research Department, Japan, using TLC, antibacterial activity, and antioxidant activity tests, according to previous research conducted by the same laboratory. In the initial experiments, Albatrellus confluens, which showed relatively high biological activity among them, was selected for study. The ethyl acetate extract was divided into several fractions, and the meroterpenoids grifolin and neogrifolin were isolated, purified, and elucidated using HPLC, MS, and NMR. Since the structures of these two compounds were similar to those of compounds such as podogigant A, which has been reported to enhance the antifungal activity of the fungal agent amphotericin B (AmB), I investigated their activity in collaboration with Kitasato University. The results showed that 2 and 4 μg/mL combination showed 4-fold and 8 μg/mL combination showed 8-fold AmB potentiating activity against Candida albicans, the cause of candidiasis. Combining those two compounds with antibiotics may reduce the required dosage and minimize side effects.
In the 2nd chapter, extracts were obtained from 30 wild edible mushrooms, including several mushrooms used in previous studies, mushrooms that have not been reported and isolated as natural products, mushrooms that have long been used as medicinal mushrooms such as Ganoderma lucidum, and edible mushrooms such as Tuber japonicum, a white truffle found in Japan. The extracts were tested for whitening activity at National Taiwan University. First, I tested the inhibitory activity of tyrosinase, an enzyme that helps producing melanin, a component that darkens the skin. As a result, seven types of mushrooms were found to have relatively high inhibitory activity. The seven mushrooms were tested for activity inhibition and toxicity using melanin-producing B16-F10 melanoma cells derived from mice. The results showed that six of the seven mushrooms (Ganoderma lucidum, Boletopsis grisea, Pleurotus ostreatus, Grifola frondosa, Albatrellus confluens, and Calvatia craniiformis) were found to have whitening activity in the non-toxic concentration range, and these six were tested using zebrafish. The results showed that all six extracts inhibited pigmentation without adverse effects on the organism. This could lead to the discovery of new, safe, whitening cosmetic materials of natural origin. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:40:43Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-27T16:40:43Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Certificate Letter from Oral Defense Committee ................................................... i
Acknowledgments ............................................................................................ ii Abbreviation ................................................................................................... iv Abstract .......................................................................................................vi 摘要 ........................................................................................................ viii Contents ...................................................................................................... ix I. Introduction for Chapter 1 .............................................................................. 1 II. Literature review ........................................................................................ 13 2.1 Wild edible mushroom ..................................................................................... 13 2.1.1 Albatrellus confluens .................................................................................... 14 2.2 Antibiotics ............................................................................................... 14 2.2.1 Amphotericin B ........................................................................................ 15 2.3 Fungi that cause infections ................................................................................ 16 2.3.1 Candida albicans ........................................................................................ 16 III. Objectives ................................................................................................ 19 IV. Experimental framework ............................................................................ 20 V. Materials and methods ................................................................................. 21 5.1. Materials ............................................................................................ 21 5.2. Methods ................................................................................................ 21 5.2.1. Extraction .............................................................................................. 21 5.2.2. Separation and purification ........................................................................... 21 5.2.3. Structural analysis ..................................................................................... 22 5.2.4. HPLC analysis .......................................................................................... 22 5.2.5. Amphotericin B (AmB) antifungal activity potentiation test (Requested to Kitasato University, Faculty of Pharmaceutical Sciences, Japan) .................................................................... 22 VI. Results and discussion ............................................................................... 23 6.2. Structural analysis ................................................................................. 33 6.3. Amphotericin B (AmB) antifungal activity potentiation test ................................ 45 VII. Conclusion .............................................................................................. 48 VIII. Introduction for Chapter 2 ....................................................................... 50 IX. Literature review ....................................................................................... 54 9.1. Global whitening market demand ..................................................................... 54 9.2. Melanogenesis ........................................................................................... 55 9.3. Tyrosinase ............................................................................................ 57 9.3.1. Tyrosinase inhibitor ................................................................................ 59 9.4. Whitening ingredients from natural sources ...................................................... 62 9.5. Development of skin-lightening active ingredients in Japan ................................ 64 9.6. Melanoma cell ................................................................................ 66 9.7. Zebrafish ............................................................................................ 66 X. Objectives .................................................................................................. 68 XI. Experimental Framework ........................................................................... 69 XII. Materials and methods ............................................................................. 70 12.1. Extraction from wild edible mushrooms .......................................................... 70 12.2. Cell-free tyrosinase activity inhibition test ....................................................... 71 12.3. Preparation of medium for culturing B16-F10 melanoma cells .......................... 72 12.4. B16-F10 melanoma cell culture ....................................................................... 73 12.5. Cell counting and preparing for cell viability assay and cell seeding ................... 73 12.6. Cell viability assay using B16-F10 melanoma cells ............................................ 74 12.7. Measuring melanin content in B16-F10 melanoma cells .................................... 75 12.8. Measuring melanin content in zebrafish ..................................................... 77 12.9. Statistical Analysis ..................................................................................... 78 XIII. Results and discussion ............................................................................ 79 13.1. The weight of the obtained extraction .............................................................. 79 13.2 Cell-free Tyrosinase activity inhibition test.............................................................. 80 13.3. Cell viability assay using B16-F10 melanoma cells ............................................ 82 13.4. Measuring melanin content in B16-F10 melanoma cells .................................... 85 13.5. Effects on the survival rate of zebrafish ........................................................... 87 13.6. Effects on heart rate in zebrafish .................................................................... 89 13.7. Measuring melanin content in zebrafish .......................................................... 91 13.8. Effects on the survival rate of zebrafish (grifolin and neogrifolin) ...................... 95 13.9. Effects on heart rate in zebrafish (grifolin and neogrifolin) ............................. 97 13.10. Measuring melanin content in zebrafish (grifolin and neogrifolin) ................. 99 XIV. Conclusion ........................................................................................... 101 XV. References ............................................................................................. 104 | - |
dc.language.iso | en | - |
dc.title | 野生食用菇類作為藥品與化妝品潛在應用性之研究 | zh_TW |
dc.title | Research into the Potential Use of Wild Edible Mushrooms as Pharmaceuticals and Cosmetics | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 繁森英幸 | zh_TW |
dc.contributor.coadvisor | Hideyuki Shigemori | en |
dc.contributor.oralexamcommittee | 陳明煦;山田小須弥;宮前友策 | zh_TW |
dc.contributor.oralexamcommittee | Ming-Hsu Chen;Kosumi Yamada;Yusaku Miyamae | en |
dc.subject.keyword | 抗生素,B16-F10黑色素瘤細胞,蘑菇,酪氨酸酶,美白活性,斑馬魚, | zh_TW |
dc.subject.keyword | Antibiotic,B16-F10 melanoma cells,Mushroom,Tyrosinase,Whitening activity,Zebrafish, | en |
dc.relation.page | 110 | - |
dc.identifier.doi | 10.6342/NTU202500678 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-02-14 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物科技研究所 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 生物科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 21.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。