請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97200
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡曜陽 | zh_TW |
dc.contributor.advisor | Yao-Yang Tsai | en |
dc.contributor.author | 許元瀧 | zh_TW |
dc.contributor.author | Yuan-Long Hsu | en |
dc.date.accessioned | 2025-02-27T16:38:51Z | - |
dc.date.available | 2025-02-28 | - |
dc.date.copyright | 2025-02-27 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-17 | - |
dc.identifier.citation | [1] A. Abdulghafour and A. Hasan, “Automatic tool path generation based freeform features recognition,” 2019.
[2] F. Wu and Y. Ke, “Iso-parametric tool path planning for five-axis compound surface machining,” Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, vol. 15, pp. 1247–1252, 10 2003. [3] S. Ding, M. Mannan, A. Poo, D. Yang, and Z. Han, “Adaptive iso-planar tool path generation for machining of free-form surfaces,” Computer-Aided Design, vol. 35, no. 2, pp. 141–153, 2003. [4] A. Balabokhin and J. Tarbutton, “Iso-scallop tool path building algorithm “based on tool performance metric"for generalized cutter and arbitrary milling zones in 3-axis cnc milling of free-form triangular meshed surfaces,” Journal of Manufacturing Processes, vol. 28, pp. 565–572, 2017. SI: NAMRC 45. [5] R. K. Agrawal, D. Pratihar, and A. R. Choudhury, “Optimization of cnc isoscallop free form surface machining using a genetic algorithm,” International Journal of Machine Tools and Manufacture, vol. 46, no. 7-8, p. 811–819, 2006. Cited by: 52. [6] W. Liu, J.-W. Zhang, Z.-Y. Cao, S.-M. Zhu, and T.-J. Yuan, “Direct 5-axis tool posture local collision-free area generation for point clouds,” The International Journal of Advanced Manufacturing Technology, vol. 86, no. 5, pp. 2055–2067, 2016. [7] J.-H. Yoon, H. Pottmann, and Y.-S. Lee, “Locally optimal cutting positions for 5-axis sculptured surface machining,” Computer-Aided Design, vol. 35, no. 1, pp. 69–81, 2003. [8] L. Zhiwei, S. Hongyao, G. Wenfeng, and F. Jianzhong, “Approximate tool posture collision-free area generation for five-axis cnc finishing process using admissible 63 area interpolation,” The International Journal of Advanced Manufacturing Technology, vol. 62, no. 9, pp. 1191–1203, 2012. [9] C. K. Fusheng Liang and F. Fang, “A review on tool orientation planning in multi-axis machining,” International Journal of Production Research, vol. 59, no. 18, pp. 5690–5720, 2021. [10] L. Zhiwei, S. Hongyao, G. Wenfeng, and F. Jianzhong, “Approximate tool posture collision-free area generation for five-axis cnc finishing process using admissible area interpolation,” The International Journal of Advanced Manufacturing Technology, vol. 62, no. 9, pp. 1191–1203, 2012. [11] S. Wang, L. Geng, Y. Zhang, K. Liu, and T. Ng, “Chatter-free cutter postures in five-axis machining,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 230, no. 8, pp. 1428–1439, 2015. doi: 10.1177/0954405415615761. [12] 黃顯雄, “應用切削力分析於五軸加工路徑優化,” Master’s thesis, 國立臺灣大學, 台北, 台灣, 2022. 碩士論文. [13] 蔡兆庭, “基於粒子群演算法之五軸加工刀具軸向優化,” Master’s thesis, 國立臺灣大學, 台北, 台灣, 2023. 碩士論文. [14] R. Cripps, B. Cross, M. Hunt, and G. Mullineux, “Singularities in five-axis machining: Cause, effect and avoidance,” International Journal of Machine Tools and Manufacture, vol. 116, pp. 40–51, 2017. [15] A. Affouard, E. Duc, C. Lartigue, J.-M. Langeron, and P. Bourdet, “Avoiding 5-axis singularities using tool path deformation,” International Journal of Machine Tools and Manufacture, vol. 44, no. 4, pp. 415–425, 2004. [16] E. S. Abouel Nasr and A. K. Kamrani, “A new methodology for extracting manufacturing features from cad system,” Computers Industrial Engineering, vol. 51, no. 3, pp. 389–415, 2006. Special Issue on Selected Papers from the 34th. International Conference on Computers and Industrial Engineering (ICCIE). [17] Y. Anzai, Pattern Recognition Machine Learning. San Francisco, CA: Morgan Kaufmann, 1992. Department of Electrical Engineering, Keio University, Yokohama, Japan. [18] N. N. Z. GINDY, “A hierarchical structure for form features,” International Journal of Production Research, vol. 27, no. 12, pp. 2089–2103, 1989. [19] E. S. Abouel Nasr and A. K. Kamrani, “A new methodology for extracting manufacturing features from cad system,” Computers Industrial Engineering, vol. 51, no. 3, pp. 389–415, 2006. Special Issue on Selected Papers from the 34th. International Conference on Computers and Industrial Engineering (ICCIE). [20] International Organization for Standardization, “Industrial automation systems and integration – product data representation and exchange – part 224: Application protocol: Mechanical product definition for process planning using machining features.” https://www.iso.org/standard/38047.html, 2006. [21] Y. Shi, Y. Zhang, K. Xia, and R. Harik, “A critical review of feature recognition techniques,” Computer-Aided Design and Applications, vol. 17, no. 5, pp. 861–899, 2020. [22] R. K. Gupta and B. Gurumoorthy, “Automatic extraction of free-form surface features (ffsfs),” Computer-Aided Design, vol. 44, no. 2, pp. 99–112, 2012. [23] K. He, Z. Chen, and L. Zhao, “A new method for classification and parametric representation of freeform surface feature,” The International Journal of Advanced Manufacturing Technology, vol. 57, no. 1, pp. 271–283, 2011. [24] J. Yang, R. Mayer, and Y. Altintas, “A position independent geometric errors identification and correction method for five–axis serial machines based on screw theory,” International Journal of Machine Tools and Manufacture, vol. 95, pp. 52–66, 05 2015. [25] S. Xiang, J. Yang, K. Fan, and H. Lu, “Multi-machine tools volumetric error generalized modeling and ethernet-based compensation technique,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 230, 02 2015. [26] Y. Jung, D. Lee, J. Kim, and H. Mok, “Nc post-processor for 5-axis milling machine of table-rotating/tilting type,” Journal of Materials Processing Technology, vol. 130-131, pp. 641–646, 2002. AFDM 2002 S.I. [27] P. Gao, Z. Liang, X. Wang, T. Zhou, J. Xie, S. Li, and W. Shen, “Fabrication of a micro-lens array mold by micro ball end-milling and its hot embossing,” Micromachines, vol. 9, no. 3, 2018. [28] K. Suresh and D. C. H. Yang, “Constant Scallop-height Machining of Free-form Surfaces,” Journal of Engineering for Industry, vol. 116, pp. 253–259, 05 1994. [29] 張耀滿, 王仁德, 趙亮, and 趙春雨, 機床數控技術王仁德... [等] 編著. 瀋陽: 東北大學出版社, 第2 版ed., 2007. [30] R. Breaz, O. Bologa, S.-G. Racz, and V. Oleksik, “Motion control systems for machine tools - a mechatronic approach by means of simulation,” IEEE International Symposium on Industrial Electronics, pp. 1353–1358, 06 2008. [31] H. Zhao, H. Zhang, S. Xin, Y. Deng, C. Tu, W. Wang, D. Cohen-Or, and B. Chen, “Dscarver: decompose-and-spiral-carve for subtractive manufacturing,” ACM Trans. Graph., vol. 37, jul 2018. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97200 | - |
dc.description.abstract | 隨著五軸加工技術在機械製造領域中的廣泛應用與智慧製造的發展,目前關於五軸加工的研究工作多旨在自動化解決加工時常見的問題,從而減少人員的工作內容並提高加工過程的可控制性。近年來許多研究專注於刀具軸向的調整,以此優化加工中的物理量、降低加工時間、提升工件表面品質,然而對於應以何種依據決定刀具路徑策略仍然沒有定論,因此本研究欲討論常見圖形特徵中合適的刀具路徑策略,未來可將其結合徵辨識技術,自動化給出刀具路徑。
本研究針對五軸加工中常見的圖形特徵規劃其常用之刀具路徑策略,從加工時間的方面衡量其優劣。針對床台旋轉型五軸加工之A軸極限位置的換解問題提供兩種改善方案,一是給定初始刀具角度從而避開A軸的極限位置,二是後處理器中加入演算法,在經過A軸原點時判斷下一加工程式段落應選擇正解或是負解。基於給定扇形殘高與弦高誤差與曲面曲率計算切削步長及道次間距,提供CAM軟體流線加工工法參數設定之參考,以改善由刀尖點路徑長度不平均所導致加工表面拉絲紋的問題。 | zh_TW |
dc.description.abstract | With the widespread application of five-axis machining technology in the field of mechanical manufacturing and the development of intelligent manufacturing, current research on five-axis machining primarily aims to automate the resolution of common machining problems. This reduces manual workload and improves the controllability of the machining process. Recent studies have focused on adjusting the tool axis to optimize physical parameters, reduce machining time, and enhance workpiece surface quality. However, there is still no consensus on the criteria for determining toolpath strategies. Therefore, this study aims to discuss suitable tool path strategies for common geometric features, which can be combined with feature recognition technology in the future to automatically generate toolpaths.
This study focuses on planning common toolpath strategies for typical geometric features in five-axis machining and evaluates their effectiveness in terms of machining time. To address the phase reverse issue of the A-axis reaching its limit position in table-rotary type five-axis machining, two improvement solutions are proposed: (1) by given initial tool orientation to avoid the A-axis limit position, and (2) incorporating an algorithm into the post-processor to determine whether the next machining segment should select the positive or negative solution when passing through the A-axis zero point. Based on given scallop height, chord error and surface curvature, the cutting step length and stepover are calculated to provide reference parameters for streamline machining in CAM software. This approach aims to mitigate surface streaking issues caused by uneven cutter contact distance. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:38:51Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-27T16:38:51Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 圖次 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 表次. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 刀具路徑規劃文獻相關回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 刀具軸向優化相關文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 論文大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章相關理論介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 CAD 模型表示方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 線架構模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 表面模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 實體模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 加工特徵定義方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 特徵的明確表示. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 製造特徵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 五軸加工特徵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 刀具軸向與旋轉軸位置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 逆運動學變換. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 旋轉軸奇異性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 旋轉軸極限位置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.4 齊次座標轉換. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 加工誤差. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 扇形高度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.2 弦高誤差. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 控制器插補原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5.1 脈衝插補. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5.2 數據採樣插補. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 第三章加工模擬與實作程式規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1 圖形特徵分類. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 加工模擬設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 實作程式規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.1 加工道次分解. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.2 刀具軸向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.3 旋轉軸奇異性與刀具軸向修正. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.4 刀尖點路徑長度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 第四章 研究結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1 不同刀具路徑對加工時間之影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1.1 模擬加工時間結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.2 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 旋轉軸換解之改善策略. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.1 初始刀軸角度對於旋轉軸運動之影響. . . . . . . . . . . . . . . . . . . . . . . 44 4.3 旋轉軸奇異性修正. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 加工步長選擇程式與驗證. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4.1 程式流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4.2 程式結果與驗證. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 第五章 結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 | - |
dc.language.iso | zh_TW | - |
dc.title | 五軸加工刀具路徑選擇與加工過程優化之研究 | zh_TW |
dc.title | Study on Toolpath Selection and Process Optimization in Five-Axis Machining | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡孟勳;王世民 | zh_TW |
dc.contributor.oralexamcommittee | Meng-Shiun Tsai;Shih-Ming Wang | en |
dc.subject.keyword | 加工路徑,床台旋轉型五軸加工機,A軸極限位置,刀尖點路徑長度, | zh_TW |
dc.subject.keyword | Toolpath,Double Rotary Table Machines,A-axis Limit Position,Cutter Contact Distance, | en |
dc.relation.page | 66 | - |
dc.identifier.doi | 10.6342/NTU202500692 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-17 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
dc.date.embargo-lift | 2025-02-28 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 8.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。