請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97164
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊昀叡 | zh_TW |
dc.contributor.advisor | Ray Y. Chuang | en |
dc.contributor.author | 陳立學 | zh_TW |
dc.contributor.author | Li-Shiue Chen | en |
dc.date.accessioned | 2025-02-27T16:29:15Z | - |
dc.date.available | 2025-02-28 | - |
dc.date.copyright | 2025-02-27 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-09 | - |
dc.identifier.citation | Reference
Angelier, F., & Chastel, O. (2009). Stress, prolactin and parental investment in birds: a review. General and comparative endocrinology, 163(1-2), 142-148. Angelier, J., Barrier, E., & Chu, H. T. (1986). Plate collision and paleostress trajectories in a fold-thrust belt: the foothills of Taiwan. Tectonophysics, 125(1-3), 161-178. Barbot, S., Fialko, Y., & Bock, Y. (2009). Postseismic deformation due to the Mw 6.0 2004 Parkfield earthquake: Stress‐driven creep on a fault with spatially variable rate‐and‐state friction parameters. Journal of Geophysical Research: Solid Earth, 114(B7). Bekaert, D. P. S., Hooper, A., & Wright, T. J. (2015). A spatially variable power law tropospheric correction technique for InSAR data. Journal of Geophysical Research: Solid Earth, 120(2), 1345-1356. Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on geoscience and remote sensing, 40(11), 2375-2383. Blanpied, M. L., Lockner, D. A., & Byerlee, J. D. (1995). Frictional slip of granite at hydrothermal conditions. Journal of Geophysical Research: Solid Earth, 100(B7), 13045-13064. Bonilla, M. G. (1977). Summary of Quaternary faulting and elevation changes in Taiwan. Memoir of the Geological Society of China, 2, 43-55. Brcic, R., Parizzi, A., Eineder, M., Bamler, R., & Meyer, F. (2010, July). Estimation and compensation of ionospheric delay for SAR interferometry. In 2010 IEEE International Geoscience and Remote Sensing Symposium (pp. 2908-2911). IEEE. Bürgmann, R., Hilley, G., Ferretti, A., & Novali, F. (2006). Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. Geology, 34(3), 221-224. Carena, S., Suppe, J., & Kao, H. (2002). Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography. Geology, 30(10), 935-938. Cavalié, O., Doin, M. P., Lasserre, C., & Briole, P. (2007). Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure. Journal of Geophysical Research: Solid Earth, 112(B3). Chang, L.-S., Chow, M., & Chen, P.-Y. (1947).The Tainan Earthquake Of December 5, 1946. Bulletin of the Geological Survey of Taiwan, 1(1), 11-18. (In Chinese) Chang-Lee C. (2014). Behavior analysis of the LCNF-CHNF fault system using geodetic measurements. Master's thesis, Department of Earth Sciences, National Cheng Kung University, 110 pages. (In Chinese) Chao, C. M. (2016). Surface Creeping Analysis of the Fengshan Fault in SW Taiwan from GPS observations and PSInSAR. Master's thesis, Department of Earth Sciences, National Cheng Kung University, 89 pages. Chen, Y. G., & Liu, T. K. (2000). Holocene uplift and subsidence along an active tectonic margin southwestern Taiwan. Quaternary Science Reviews, 19(9), 923-930. Chen, W. S., & Yu, N. T. (2007). 地震地質與地變動潛勢分析計畫─斷層長期滑移速率與再現週期研究(1/4). Central Geological Survey, Ministry of Economic Affairs, Report No. 96-10, 86 pages. (In Chinese) Chen, C. W., & Zebker, H. A. (2002). Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1709-1719. Chen, W. S., Matsuda, N., Shih, R. C., Yang, C. C., Yu, N.-T., Chu, Y. G., Chen, C. H., Lin, C. W., Liu, H. C., Lu, S. T., Liu, Y. C., Lin, Y. H., & Chen, P. T. (2010). Concealed Active Structures beneath the Holocene Marine Sediments in the Western Coastal Plain Using Taiwan as an Example for the Hsiaokangshan Fault. Special Publication of the Central Geological Survey, Ministry of Economic Affairs, No. 24, pp. 75-91. (In Chinese) Chen, W. S., Yu, N. T., & Yang, H. C. (2011). Study of the Near Surface Structure of Active Fault (1/4). Central Geological Survey, Ministry of Economic Affairs, Report No. 100-9, pp. 36-74. (In Chinese) Chen, W. S., Wu, Y. M., Yang, K. M., Yeh, P. Y., Hung, C. C., Yang, C. Y., Ke, M. C., & Ke, S. S. (2024). 臺灣地震帶. National Science and Technology Center for Disaster Reduction. (In Chinese) Chen, P. T. (2005). A Study on the southern part of Chishan fault. Master's thesis, Department of Earth Sciences, National Cheng Kung University, 109 pages. (In Chinese) Chen, Y. S. (2015). Interseismic deformation of the Longchuan and Chishan faults using geodetic measurements. Master's thesis, Department of Geomatics, National Cheng Kung University, 79 pages. (In Chinese) Chen, J. Y. (2022). Using InSAR and Numerical Method to Characterize the Active Deformation and Structural Evolution in Southwestern Taiwan. Master's thesis, National Taiwan University, 101 pages. (In Chinese) Ching, K. E., Rau, R. J., Lee, J. C., & Hu, J. C. (2007). Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005. Earth and Planetary Science Letters, 262(3-4), 601-619. Ching, K. E., Johnson, K. M., Rau, R. J., Chuang, R. Y., Kuo, L. C., & Leu, P. L. (2011). Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model. Earth and Planetary Science Letters, 301(1-2), 78-86. Ching, K.E. (2017). 台灣及鄰近地區地體動力學研究 II (GOTTA II)-探討台灣西南部、菲律賓中部與印度東北部主要都會區之震間期地表變形特性及其地震潛能. MOST Research Project Grant, 24 pages. (In Chinese) Chiu, Y. W., Lin, Y. C., Huang, W. J., Yen, Y. C., Bo, M. L., Lee, Y. H. (2019). Characteristics of the Chishan Fault Zone Exposed around the North End of Zhongliao Tunnel, Southwestern Taiwan. Special Publication of the Central Geological Survey, No. 34, 83-100. (In Chinese) Chou, J. T. (1971). A Preliminary Study Of The Stratigraphy And Sedimentation Of The Mudstone Formations In The Tainan Area, Southern Taiwan. Petrol Geol Taiwan, 8, 187-219. Copley, A. (2014). Postseismic afterslip 30 years after the 1978 Tabas-e-Golshan (Iran) earthquake: observations and implications for the geological evolution of thrust belts. Geophysical Journal International, 197(2), 665-679. Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold‐and‐thrust belts and accretionary wedges. Journal of Geophysical Research: Solid Earth, 88(B2), 1153-1172. Di Toro, G., Mittempergher, S., Ferri, F., Mitchell, T. M., & Pennacchioni, G. (2012). The contribution of structural geology, experimental rock deformation and numerical modelling to an improved understanding of the seismic cycle: Preface to the Special Volume ‘Physico-chemical processes in seismic faults’. Journal of Structural Geology, 38, 3-10. Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161-2168. Dieterich, J. H. (1978). Time-dependent friction and the mechanics of stick-slip. Rock friction and earthquake prediction, 790-806. Doin, M. P., Lasserre, C., Peltzer, G., Cavalié, O., & Doubre, C. (2009). Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. Journal of Applied Geophysics, 69(1), 35-50. Dragert, H., Wang, K., & James, T. S. (2001). A silent slip event on the deeper Cascadia subduction interface. Science, 292(5521), 1525-1528. Esri. (n.d.). World Imagery [Basemap]. Retrieved from https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer Fattahi, H., Simons, M., & Agram, P. (2017). InSAR time-series estimation of the ionospheric phase delay: An extension of the split range-spectrum technique. IEEE Transactions on Geoscience and Remote Sensing, 55(10), 5984-5996. Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing, 39(1), 8-20. Floyd, M. A., Walters, R. J., Elliott, J. R., Funning, G. J., Svarc, J. L., Murray, J. R., ... & Wright, T. J. (2016). Spatial variations in fault friction related to lithology from rupture and afterslip of the 2014 South Napa, California, earthquake. Geophysical Research Letters, 43(13), 6808-6816. Franklin, K. R., & Huang, M. H. (2022). Revealing crustal deformation and strain rate in Taiwan using InSAR and GNSS. Geophysical Research Letters, 49(21), e2022GL101306. Freeman, A., & Saatchi, S. S. (2004). On the detection of Faraday rotation in linearly polarized L-band SAR backscatter signatures. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1607-1616. Fruneau, B., Pathier, E., Raymond, D., Deffontaines, B., Lee, C. T., Wang, H. T., ... & Chang, C. P. (2001). Uplift of Tainan Tableland (SW Taiwan) revealed by SAR interferometry. Geophysical Research Letters, 28(16), 3071-3074. Gomba, G., Parizzi, A., De Zan, F., Eineder, M., & Bamler, R. (2015). Toward operational compensation of ionospheric effects in SAR interferograms: The split-spectrum method. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1446-1461. Graham, L. C. (1974). Synthetic interferometer radar for topographic mapping. Proceedings of the IEEE, 62(6), 763-768. Harris, R. A. (2017). Large earthquakes and creeping faults. Reviews of Geophysics, 55(1), 169-198. Harris, R. A., & Segall, P. (1987). Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas fault. Journal of Geophysical Research: Solid Earth, 92(B8), 7945-7962. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., ... & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., ... & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23). Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(B7). Hsieh, S. H. (1972). Subsurface geology and gravity anomalies of the Tainan and Chungchou structures of the coastal plain of southwestern Taiwan. Petrol Geol Taiwan, 10, 323-338. Hsu, T. L., & Chang, H. C. (1979). Quaternary faulting in Taiwan. Memoir of the Geological Society of China, 3, 155–165. Hsu, Y. J., Yu, S. B., Kuo, L. C., Tsai, Y. C., & Chen, H. Y. (2011). Coseismic deformation of the 2010 Jiashian, Taiwan earthquake and implications for fault activities in southwestern Taiwan. Tectonophysics, 502(3-4), 328-335. Hu, J. C., Hou, C. S., Shen, L. C., Chan, Y. C., Chen, R. F., Huang, C., ... & Nien, P. F. (2007). Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan. Journal of Asian Earth Sciences, 31(3), 287-302. Hu, L. F. (2025). Reassessment of the Chungchou structure and related seismogenic structures in its vicinity in the Western Foothills, Tainan-Kaohsiung area, Taiwan. Department of Geosciences, National Taiwan University. Unpublished study. Huang, C. Y., Wu, W. Y., Chang, C. P., Tsao, S., Yuan, P. B., Lin, C. W., & Xia, K. Y. Huang, S. T., Yang, K. M., Hung, J. H., Wu, J. C., Ting, H. H., Mei, W. W., ... & Lee, M. (2004). Deformation front development at the northeast margin of the Tainan basin, Tainan–Kaohsiung area, Taiwan. Marine Geophysical Researches, 25, 139-156. Huang, M. H., Hu, J. C., Hsieh, C. S., Ching, K. E., Rau, R. J., Pathier, E., ... & Deffontaines, B. (2006). A growing structure near the deformation front in SW Taiwan as deduced from SAR interferometry and geodetic observation. Geophysical Research Letters, 33(12). Huang, M. H., Hu, J. C., Ching, K. E., Rau, R. J., Hsieh, C. S., Pathier, E., Fruneau, B. & Deffontaines, B. (2009). Active deformation of Tainan tableland of southwestern Taiwan based on geodetic measurements and SAR interferometry. Tectonophysics, 466(3-4), 322-334. Huang, M. H., Hu, J. C., Ching, K. E., Rau, R. J., Hsieh, C. S., Pathier, E., ... & Deffontaines, B. (2009). Active deformation of Tainan tableland of southwestern Taiwan based on geodetic measurements and SAR interferometry. Tectonophysics, 466(3-4), 322-334. Huang, H. H., Yih-Min, W., Ting-Li, L., Wei-An, C., Shyu, J. B. H., Chung-Han, C., & Chang, C. H. (2011). The preliminary study of the 4 March 2010 Mw 6.3 Jiasian, Taiwan earthquake sequence. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 22(3), 2. Huang, M. H., Dreger, D., Bürgmann, R., Yoo, S. H., & Hashimoto, M. (2013). Joint inversion of seismic and geodetic data for the source of the 2010 March 4, M w 6.3 Jia-Shian, SW Taiwan, earthquake. Geophysical Journal International, 193(3), 1608-1626. Huang, M. H., Dreger, D., Bürgmann, R., Yoo, S. H., & Hashimoto, M. (2013). Joint inversion of seismic and geodetic data for the source of the 2010 March 4, M w 6.3 Jia-Shian, SW Taiwan, earthquake. Geophysical Journal International, 193(3), 1608-1626. Huang, M. H., Tung, H., Fielding, E. J., Huang, H. H., Liang, C., Huang, C., & Hu, J. C. (2016). Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong Hung, J.H., Wiltschko, D.V., Lin, H.C., Hichman, J.B., Fang, P. & Bock, Y. (1999). Structure and motion of the Southwestern Taiwan Fold and Thrust Belt. Tao 10, 543–68. Jiang, Y. W. (2024). Using PSInSAR to monitor the surface deformation of critical infrastructure in SW Taiwan. Master's thesis, Department of Geography, National Taiwan University, 119 pages. Jolivet, R., Agram, P. S., Lin, N. Y., Simons, M., Doin, M. P., Peltzer, G., & Li, Z. (2014). Improving InSAR geodesy using global atmospheric models. Journal of Geophysical Research: Solid Earth, 119(3), 2324-2341. Jung, H. S., Lee, D. T., Lu, Z., & Won, J. S. (2012). Ionospheric correction of SAR interferograms by multiple-aperture interferometry. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 3191-3199. Kaneko, Y., Fialko, Y., Sandwell, D. T., Tong, X., & Furuya, M. (2013). Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate‐and‐state friction properties. Journal of Geophysical Research: Solid Earth, 118(1), 316-331. Kim, J. S. (2013). Development of ionosphere estimation techniques for the correction of SAR data (Doctoral dissertation, ETH Zurich). Kirui, P. K. E., Reinosch, E., Isya, N., Riedel, B., & Gerke, M. (2021). Mitigation of atmospheric artefacts in multi temporal InSAR: a review. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 89, 251-272. Lacombe, O., Mouthereau, F., Deffontaines, B., Angelier, J., Chu, H. T., & Lee, C. T. (1999). Geometry and Quaternary kinematics of fold‐and‐thrust units of southwestern Taiwan. Tectonics, 18(6), 1198-1223. Lacombe, O., Mouthereau, F., Angelier, J., & Deffontaines, B. (2001). Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan. Tectonophysics, 333(1-2), 323-345. Le Béon, M., Huang, M. H., Suppe, J., Huang, S. T., Pathier, E., Huang, W. J., ... & Hu, J. C. (2017). Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 28(5), 663-681. Lee, Y. H. (2024). InSAR-based Multidecadal Coastal Land Subsidence Analysis and Future Inundation Scenarios inWestern Taiwan. Master thesis, Department of Geography, National Taiwan University. 174 pages. Liang, C., & Fielding, E. J. (2017). Measuring azimuth deformation with L-band ALOS-2 ScanSAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 55(5), 2725-2738. Lin, C. W., Lu, S. T., Shih, T. S., Liu, Y. C. Lin, W. H., Lin, Y. H. (2007). Active Faults Of Southwestern Taiwan: Explanatory Text For The Strip Maps Of Active Faults SCALE 1:25,000. Special Publication of the Central Geological Survey, 17, 95-108. (In Chinese) Lin, C. W., Chen, W. S., Liu, Y. C., Chen, P. T. (2009). Active Faults of Eastern and Southern Taiwan: Explanatory Text for the Strip Maps of Active Faults SCALE 1:25000. Special Publication of the Central Geological Survey, 23, 111-132. (In Chinese) Lin, C. W.,Lu, S. T., & Chen, W. S. (2012). Active Fault Map of Taiwan: An Explanatory Text (2012 Edition). Special Publication of the Central Geological Survey, 26, 1-30. (In Chinese) Lin, K. C., Delouis, B., Hu, J. C., Nocquet, J. M., & Mozziconacci, L. (2016). Reassessing the complexity of the rupture of the 2010 Jia-Shian earthquake (Mw 6.2) in Southwestern Taiwan by inverting jointly teleseismic, strong-motion and CGPS data. Tectonophysics, 692, 278-294. Lin, Q. W., Liu, Y. C., Chou, P. S., & Lin, Y. H. (2021). Recent development of active fault investigations of Taiwan. Bulletin of the Central Geological Survey, (34), 1–40. (In Chinese). Lin, C.-C. (1957). 地形(土地志.地理篇.第一冊). Historical Records Committee of Taiwan Provincial Government, 424 pages. (In Chinese) Lin, G. P. (2012). Crustal Deformation of Tainan Region from Persistent Scatterer Interferometry. Master's thesis, Institute of Geophysics, National Central University, 81 pages. Lu, C. H., Chuang, R. C., Chiang, P. C., Yen, J. Y., Ching, K. E., & Chen, Y. G. (2025). Detecting infrastructure hazard potential change by SAR techniques on postseismic surface deformation: A case study of 2016 Meinong earthquake in southwestern Taiwan. Engineering Geology, 344, 107827. Lu, C. Y., & Malavieille, J. (1994). Oblique convergence, indentation and rotation tectonics in the Taiwan Mountain Belt: Insights from experimental modelling. Earth and Planetary Science Letters, 121(3-4), 477-494. Lu C.Y. (1994). Neotectonics in the forland thrust belt of Taiwan. Petrol. Geol. Taiwan, vol.29, p. 1-26. Malavieille, J., Dominguez, S., Lu, C. Y., Chen, C. T., & Konstantinovskaya, E. (2021). Deformation partitioning in mountain belts: insights from analogue modelling experiments and the Taiwan collisional orogen. Geological Magazine, 158(1), 84-103. Marone, C. J., Scholtz, C. H., & Bilham, R. (1991). On the mechanics of earthquake afterslip. Journal of Geophysical Research: Solid Earth, 96(B5), 8441-8452. Mattar, K., & Gray, A. (2002). Reducing ionospheric electron density errors in satellite radar interferometry applications. Canadian Journal of Remote Sensing, 28(4), 593–600. https://doi.org/10.5589/m02-051 Murray, J., & Langbein, J. (2006). Slip on the San Andreas Fault at Parkfield, California, over two earthquake cycles, and the implications for seismic hazard. Bulletin of the Seismological Society of America, 96(4B), S283-S303. Murray, J., & Segall, P. (2002). Testing time-predictable earthquake recurrence by direct measurement of strain accumulation and release. Nature, 419(6904), 287-291. Murray, J. R., Segall, P., Cervelli, P., Prescott, W., & Svarc, J. (2001). Inversion of GPS data for spatially variable slip‐rate on the San Andreas Fault near Parkfield, CA. Geophysical research letters, 28(2), 359-362. Neely, W. R., Borsa, A. A., & Silverii, F. (2019). GInSAR: A cGPS correction for enhanced InSAR time series. IEEE Transactions on Geoscience and Remote Sensing, 58(1), 136-146. Ota, Y., Chen, C. Y., & Lee, P. N. (2024). The Chaochou Active Fault in Southern Taiwan: Characteristics and Geomorphological Significance as a Reverse Fault. Journal of Structural Geology, 105191. Pan, Y. S. (1968). Interpretation and seismic cooedination of the Bouguer gravity anomalies obtained in southtern Taiwan. Petroleum Geology of Taiwan, 5, 259-311. Pelletier, B., & Stephan, J. F. (1986). Middle miocene deduction and late miocene beginning of collision registered in the hengchun peninsula: Geodynamic implications for the evolution of Taiwan. Tectonophysics, 125(1-3), 133-160. Pepe, A., & Lanari, R. (2006). On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Transactions on Geoscience and remote sensing, 44(9), 2374-2383. Perfettini, H., & Avouac, J. P. (2004). Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi‐Chi earthquake, Taiwan. Journal of Geophysical Research: Solid Earth, 109(B2). Rau, R. J., Lee, Y, H., Hu, J. C. (2010). 地震地質與地變動潛勢分析─地變動監測分析(4/4). Central Geological Survey, Ministry of Economic Affairs, Report No. 99-10, 400 pages. (In Chinese) Rau, R. J., Lee, J. C., Ching, K. E., Lee, Y. H., Byrne, T. B., & Chen, R. Y. (2012). Subduction-continent collision in southwestern Taiwan and the 2010 Jiashian earthquake sequence. Tectonophysics, 578, 107-116. Raucoules, D., & De Michele, M. (2009). Assessing ionospheric influence on L-band SAR data: Implications on coseismic displacement measurements of the 2008 Sichuan earthquake. IEEE Geoscience and Remote Sensing Letters, 7(2), 286-290. Rice, J. R., Lapusta, N., & Ranjith, K. (2001). Rate and state dependent friction and the stability of sliding between elastically deformable solids. Journal of the Mechanics and Physics of Solids, 49(9), 1865-1898. Rosen, P. A., Hensley, S., & Chen, C. (2010, May). Measurement and mitigation of the ionosphere in L-band interferometric SAR data. In 2010 IEEE radar conference (pp. 1459-1463). IEEE. Rousset, B., Jolivet, R., Simons, M., Lasserre, C., Riel, B., Milillo, P., ... & Renard, F. (2016). An aseismic slip transient on the North Anatolian Fault. Geophysical Research Letters, 43(7), 3254-3262. Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37-42. Shen, S. M., Chang, J. C., Yang, G. S. (2005). 地震地質調查及活動斷層資料庫建置計畫:活動構造地形判釋及資料庫建置分析(1/2). Central Geological Survey, Ministry of Economic Affairs, Report No. 95-13, 174 pages. (In Chinese) Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8). Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., & Cheng, C. T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 27(3). Shyu, J. B. H., Yin, Y. H., Chen, C. H., Chuang, Y. R., & Liu, S. C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr Atmos Ocean Sci, 31(4), 469. Shyu, J. B. H. (2006). A neotectonic model of Taiwan, with a focus on the Longitudinal Valley Suture (Doctoral dissertation, California Institute of Technology). Song, K. C., Chen, L., & Chen, Y. C. (2005). 有關旗山斷層的一些新觀察. Ti Chi, 23(3), 31-40. (In Chinese) Sun, S. C.(1963) The reef limestones and the geologic structures in the vicinity of Kaohsiung city, Taiwan. Petroleum Geology of Taiwan, 2, 47-64. Sun, S. C. (1964). Photogeological study of the Tainan-Kaohsiung coastal plain area, Taiwan. Petrol Geol Taiwan, 3, 39-51. Suppe, J. O. H. N., Schaer, J. P., & Rodgers, J. (1987). The active Taiwan mountain belt. The anatomy of mountain ranges, 277-293. Thatcher, W. (1983). Nonlinear strain buildup and the earthquake cycle on the San Andreas fault. Journal of Geophysical Research: Solid Earth, 88(B7), 5893-5902. Thomas, M. Y., Avouac, J. P., Champenois, J., Lee, J. C., & Kuo, L. C. (2014). Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. Journal of Geophysical Research: Solid Earth, 119(6), 5114-5139. Titus, S. J., DeMets, C., & Tikoff, B. (2006). Thirty-five-year creep rates for the creeping segment of the San Andreas fault and the effects of the 2004 Parkfield earthquake: Constraints from alignment arrays, continuous global positioning system, and creepmeters. Bulletin of the Seismological Society of America, 96(4B), S250-S268. Tizzani, P., Berardino, P., Casu, F., Euillades, P., Manzo, M., Ricciardi, G. P., ... & Lanari, R. (2007). Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sensing of Environment, 108(3), 277-289. Tolomei, C., Salvi, S., Boncori, J. M., & Pezzo, G. (2015). InSAR measurement of crustal deformation transients during the earthquake preparation processes: A review. Boll. Geofis. Teor. Appl, 56, 151-166. Torii, K. (1932). 台南州新化油田調查報告. Bureau of Productive Industries, Government-General of Taiwan, No. 609, 29 pages. (In Japanese) Torii, K. (1932). 高雄州旗山油田調查報告及旗山油田地質圖(三萬分之一). Bureau of Productive Industries, Government-General of Taiwan, No. 633, 36 pages. (In Japanese) Tse, S. T., & Rice, J. R. (1986). Crustal earthquake instability in relation to the depth variation of frictional slip properties. Journal of Geophysical Research: Solid Earth, 91(B9), 9452-9472. Tsukahara, K., & Takada, Y. (2018). Aseismic fold growth in southwestern Taiwan detected by InSAR and GNSS. Earth, Planets and Space, 70, 1-7. Tung, H. (2008). Analysis of surface deformation based on PS-InSAR technique: Case studies in coastal plain, SW Taiwan. Master's thesis, National Taiwan University, 112 pages. Tung, C. M. (2021). Morphotectonics of the Houjing Tableland Area, Kaohsiung, Taiwan. Master's thesis, Department of Geosciences, National Taiwan University, 99 pages. (In Chinese) Wang, K. (2007). Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles. In The seismogenic zone of subduction thrust faults (pp. 540-575). Columbia University Press. Wen, S., Hsu, H. J., Chang, W. Y., & Chen, C. H. (2012). A study of the seismogenic process beneath the south-western foothills in Taiwan in relation with the 2010 Jiasian earthquake. Tectonophysics, 570, 57-64. Wu, Y. Y., Hu, J. C., Lin, G. P., Chang, C. P., Tung, H., & Lu, C. H. (2013). Transient active deformation in Tainan tableland using persistent scatterers SAR interferometry. Bulletin de la Société Géologique de France, 184(4-5), 441-450. Yang, M., Ching, K. E., Chang-Lee, C., Chen, Y. S., & Cheng, S. C. (2015, April). Monitoring and predicting the behavior of the Lungchuan and Chishan faults with GNSS. In Proceedings of the ION 2015 Pacific PNT Meeting (pp. 536-541). Yang, C. Y. (2024). GPS Time Series Analysis via Kalman Filter. Master's thesis, Institute of Geophysics, National Central University, 94 pages. Yi, D. C., Chuang, R. Y., Chung, L. H., Lin, C. W., & Rau, R. J. (2023). Surface deformation induced by the 2016 Meinong earthquake and its implications to active folds. Terrestrial, Atmospheric and Oceanic Sciences, 34(1), 21. Yoshida, K. (1932). 高雄州旗山南西部油田調查報告及旗山南西部油田地質圖(三萬分之一). Bureau of Productive Industries, Government-General of Taiwan, 610, 162. (In Japanese) Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59. Yu, C., Li, Z., Penna, N. T., & Crippa, P. (2018). Generic atmospheric correction model for interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 123(10), 9202-9222. Yu, C., Li, Z., Penna, N. T., & Crippa, P. (2018). Generic atmospheric correction model for interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 123(10), 9202-9222. Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers & Geosciences, 133, 104331. Zhang, B., Zhu, W., Ding, X., Wang, C., Wu, S., & Zhang, Q. (2022). A review of methods for mitigating ionospheric artifacts in differential SAR interferometry. Geodesy and Geodynamics, 13(2), 160-169. Zhou, Y., Thomas, M. Y., Parsons, B., & Walker, R. T. (2018). Time-dependent postseismic slip following the 1978 Mw 7.3 Tabas-e-Golshan, Iran earthquake revealed by over 20 years of ESA InSAR observations. Earth and Planetary Science Letters, 483, 64-75. Zhu, W., Zhang, W. T., He, Y. F., & Qu, W. (2017). Performance evaluation of azimuth offset method for mitigating the ionospheric effect on SAR interferometry. Journal of Sensors, 2017(1), 4587475. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97164 | - |
dc.description.abstract | 活動構造在地震周期中透過潛移釋放應力,其變形速率可能會因為地震觸發或泥貫入體的活動而有所改變。這樣的潛移斷層可能對基礎建設造成破壞,也會影響區域地震災害潛勢的評估。台灣西南部位於歐亞板塊和菲律賓海板塊之間的碰撞帶造山前緣,構造活動頻繁,對包括台南與高雄在內的數百萬居民構成威脅。該地區擁有眾多活動斷層,其中有些在2010年Mw 6.3的甲仙地震和2016年Mw 6.4的美濃地震中受到了顯著影響。這些地震觸發了一些先前未充分瞭解的淺層構造活動,分析這些構造在不同時期的滑移速率是一個相當重要的研究課題。
合成孔徑雷達干涉測量技術(InSAR)具有高空間解析度的優勢,近年來在測地領域中相當具有影響力。在本研究中,我使用ALOS與ALOS-2兩組L波段合成孔徑雷達衛星影像,產製台灣西南部的地表變形速度場,這些波長較長的雷達影像即使在植被茂密的台灣南部丘陵地區也能得到良好的成果。本研究建立了2007-2010年和2015-2022年兩個時段的地表間震變形速度場,以及2016美濃地震的同震地表變形場,這些結果都與連續GNSS測站的觀察成果有良好的相關性。 研究結果顯示,在新化斷層與屏東平原之間存在15條具有顯著變形量差異的速率邊界,其中部分與後甲里斷層、小崗山斷層、右昌斷層、龍船背斜等前人熟知的淺部活動構造相符;此外,還在過去研究較少涉及的區域發現了一些新的線狀構造,顯示台灣西南部的淺層活動構造仍有許多尚未充分瞭解之處。透過InSAR和水準測量資料的剖面分析,本研究成功辨識出一些構造在不同的觀測時間段內潛移速率有明顯變化,本研究取得的成果不僅有助於評估台灣西南部的地震災害潛勢,還為研究活動構造在地震週期中的潛移變形現象提供了重要線索,突顯了持續監測與深入研究的必要性。 | zh_TW |
dc.description.abstract | The creeping behavior of active faults play a critical role in stress release during the seismic cycle, with their deformation rates potentially influenced by earthquake triggering or the activity of mud diapir. Such creeping faults not only pose a risk to infrastructure but also significantly impact the assessment of regional seismic hazard potential. Southwestern Taiwan is located at the orogenic front formed by the arc-continent collision between the Eurasian Plate and the Philippine Sea Plate, many active structures in this area pose significant threats to the lives and property of millions of residents in Tainan and Kaohsiung. Two large earthquakes, the 2010 Mw 6.3 Jiashian earthquake, and the 2016 Mw 6.4 Meinong earthquake, occurred in Southwestern Taiwan. These earthquakes triggered shallow fault activity and some of them was not well understood in the previous studies. One important question is how surface deformation changes in response to the earthquakes during the interseismic period.
Recently, the Interferometric Synthetic Aperture Radar (InSAR) technique has become a more influential geodetic method for accessing high spatial resolution deformation patterns. In this study, I used L-band SAR images from the ALOS and ALOS-2 satellites to generate ground deformation velocity fields for Southwestern Taiwan. The longer wavelength of these radar images enabled effective monitoring even in the densely vegetated hill regions of southern Taiwan. I constructed interseismic surface deformation velocity fields for the periods of 2007-2010 and 2015-2022, as well as coseismic deformation fields for the 2016 Meinong earthquake, all of which showed strong correlation with continuous GNSS station data. The results revealed 15 velocity boundaries with clear deformation gradient in the region between the Hsinhua Fault and the Pingtung Plain. Some of which correspond to previously known shallow active structures such as the Houchiali Fault, Hsiaokangshan Fault, Youchang Fault, and Lungchuan Anticline, while other linear features identified in regions with less addressed in previous studies, highlighting that many shallow active structures in Southwestern Taiwan remain poorly understood. Through the profile analysis of InSAR and leveling data, this study successfully identified variations in interseismic slip rates across different time periods. The findings not only contribute to the assessment of seismic hazard potential in Southwestern Taiwan, but also provide critical insights into the creeping behavior of active structures throughout the seismic cycle, emphasizing the need for continuous monitoring and further investigation. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:29:15Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-27T16:29:15Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
摘要 ii Abstract iii 致謝 v List of Contents vi List of Figures ix Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Research Questions 5 Chapter 2 Literature Review 6 2.1. Seismic Cycle 6 2.2. Interseismic Creep and Transient Deformation 8 2.3. Multi-Temporal InSAR 11 2.3.1. Synthetic Aperture Radar 11 2.3.2. Differential SAR Interferometry 12 2.4. MT-InSAR in Southwestern Taiwan 14 2.5. Atmospheric Phase Mitigation 18 2.5.1. Ionopheric Phase Delay 18 2.5.2. Tropospheric Phase Correction 23 Chapter 3 Study Region 25 3.1. Tectonic Background of Southwestern Taiwan 25 3.2. Active Structures in Southwestern Taiwan 28 3.2.1. Tainan Subregion 30 3.2.2. Gangshan Subregion 33 3.2.3. Chishan Subregion 35 3.2.4. Kaohsiung Subregion 37 3.2.5. Pingtung Subregioin 38 3.3. Jiashian Earthquake and Meinong Earthquake 40 Chapter 4 Material and Methods 42 4.1. SAR Imagery 42 4.2. GNSS and Leveling Datasets 44 4.3. SAR Interferometry 47 4.3.1. ISCE 47 4.3.2. Ionospheric Phase Mitigation 49 4.4. SAR Time Series Processing 51 4.4.1. Mintpy 51 4.4.2. Troposhpheric Phase Mitigation 52 4.5. Error Estimation 54 Chapter 5 Results 56 5.1. SAR Time Series and Result Validation 56 5.1.1. Temporal Coherence Map 56 5.1.2. Coseismic and Interseismic Deformation 58 5.1.3. Error Distribution 60 5.1.4. Validation with GNSS 62 5.2. Velocity Difference between Two InSAR Datasets 64 5.3. Mapping the Velocity Boundaries 66 5.4. Profiles of InSAR, Leveling, and Topography 67 5.4.1. The Shanhua – Guanmiao Profile 67 5.4.2. The Anping – Longpi Profile 68 5.4.3. The Luzhu – Maolin Profile 69 5.4.4. The Gangshan – Anpo Profile 70 5.4.5. The Jiadong – Qijia Profile 71 Chapter 6 Discussion 72 6.1. Data Limitations and Processing Challenge 72 6.2. Toward 3D Surface Deformation Mapping 75 6.3. Comparison of Observed and Previous Fault Structures 80 6.3.1. The Fault Trace of The Chungchou Fault 80 6.3.2. Chekualin, Youchang, and Fengshan Faults 82 6.3.3. Shallow Active Structures on the Pingtung Plain 85 6.4. Temporal Evolution of Fault Activity 89 6.5. Contributions to Hazard Assessment 92 Chapter 7 Conclusion 94 Reference 95 | - |
dc.language.iso | en | - |
dc.title | 台灣西南部淺層活動斷層潛移速率變化:利用InSAR與GNSS進行分析 | zh_TW |
dc.title | Creep Rate Changes of Shallow Active Faults in Southwestern Taiwan: Insights from InSAR and GNSS Analysis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張午龍;景國恩;林玉儂 | zh_TW |
dc.contributor.oralexamcommittee | Wu-Lung Chang;Kuo-En Ching;Yunung Lin | en |
dc.subject.keyword | 斷層潛移,合成孔徑雷達,活動構造,斷層,台灣西南部, | zh_TW |
dc.subject.keyword | fault creep,synthetic aperture radar,active structure,fault,Southwestern Taiwan, | en |
dc.relation.page | 112 | - |
dc.identifier.doi | 10.6342/NTU202500538 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-10 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地理環境資源學系 | - |
dc.date.embargo-lift | 2026-02-09 | - |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 此日期後於網路公開 2026-02-09 | 10.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。