請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97163完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林學庸 | zh_TW |
| dc.contributor.advisor | Hsueh-Yung Lin | en |
| dc.contributor.author | 黃建順 | zh_TW |
| dc.contributor.author | Jian-Shun Huang | en |
| dc.date.accessioned | 2025-02-27T16:28:59Z | - |
| dc.date.available | 2025-02-28 | - |
| dc.date.copyright | 2025-02-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-12 | - |
| dc.identifier.citation | Lev Borisov and Andrei Căldăraru. “The Pfaffian-Grassmannian derived equivalence”. In: J. Algebraic Geom. 18.2 (2009), pp. 201–222. ISSN: 1056-3911,1534-7486. DOI: 10.1090/S1056-3911-08-00496-7. URL: https: //doi.org/10.1090/S1056-3911-08-00496-7.
Lev A. Borisov. “The class of the affine line is a zero divisor in the Grothendieck ring”. In: J. Algebraic Geom. 27.2 (2018), pp. 203–209. ISSN: 1056-3911,1534-7486. DOI: 10.1090/jag/701. URL: https://doi.org/10.1090/ jag/701. Armand Borel. “Linear algebraic groups”. In: Algebraic Groups and Discontinuous Subgroups (P Amer. Math. Soc., Providence, RI, 1966, pp. 3–19. Alexander I. Efimov. “Some remarks on L-equivalence of algebraic varieties”. In: Selecta Math. (N.S.) 24.4 (2018), pp. 3753–3762. ISSN: 1022-1824,1420-9020. DOI: 10.1007/s00029-017-0374-y. URL: https://doi.org/10.1007/s00029-017-0374-y. David Eisenbud and Joe Harris. 3264 and all that—a second course in algebraic geometry. Cambridge University Press, Cambridge, 2016, pp. xiv+616. ISBN: 978-1-107-60272-4; 978-1-107-01708-5. DOI: 10.1017/CBO9781139062046. URL: https://doi.org/10.1017/CBO9781139062046. William Fulton. Intersection theory. Second. Vol. 2. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1998, pp. xiv+470. ISBN: 3-540-62046-X; 0-387-98549-2. DOI: 10.1007/978-1-4612- 1700-8. URL: https://doi.org/10.1007/978-1-4612-1700- 8. Robin Hartshorne. Algebraic geometry. Vol. No. 52. Graduate Texts in Math- ematics. Springer-Verlag, New York-Heidelberg, 1977, pp. xvi+496. ISBN: 0-387-90244-9. Daisuke Inoue, Atsushi Ito, and Makoto Miura. “Complete intersection Calabi-Yau manifolds with respect to homogeneous vector bundles on Grassmannians”. In: Math. Z. 292.1-2 (2019), pp. 677–703. ISSN:0025-5874,1432-1823. DOI: 10.1007/s00209-018-2163-5. URL: https://doi.org/10. 1007/s00209-018-2163-5. Atsushi Ito et al. “The class of the affine line is a zero divisor in the Grothendieck ring: via G2-Grassmannians”. In: J. Algebraic Geom. 28.2 (2019), pp. 245– 250. ISSN: 1056-3911,1534-7486. DOI: 10.1090/jag/731. URL: https: //doi.org/10.1090/jag/731. Akihiro Kanemitsu. “Mukai pairs and simple K-equivalence”. In: Math. Z. 302.4 (2022), pp. 2037–2057. ISSN: 0025-5874,1432-1823. DOI: 10.1007/s00209-022-03126-0. URL: https://doi.org/10.1007/s00209-022-03126-0. Grzegorz Kapustka and Michał Kapustka. “Calabi-Yau threefolds in P6”. In: Ann. Mat. Pura Appl. (4) 195.2 (2016), pp. 529–556. ISSN: 0373-3114,1618- 1891. DOI: 10.1007/s10231-015-0476-0. URL: https://doi.org/10.1007/s10231-015-0476-0. Alexander Kuznetsov and Evgeny Shinder. “Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics”. In: Selecta Math. (N.S.) 24.4 (2018), pp. 3475–3500. ISSN: 1022-1824,1420-9020. DOI: 10.1007/s00029-017-0344-4. URL: https://doi.org/10.1007/s00029-017-0344-4. A. G. Kuznetsov. “Hyperplane sections and derived categories”. In: Izv. Ross. Akad. Nauk Ser. M 70.3 (2006), pp. 23–128. ISSN: 1607-0046,2587-5906. DOI: 10.1070/ IM2006v070n03ABEH002318. URL: https://doi.org/10.1070/ IM2006v070n03ABEH002318. Alexander Kuznetsov. “Derived equivalence of Ito-Miura-Okawa-Ueda Calabi-Yau 3-folds”. In: J. Math. Soc. Japan 70.3 (2018), pp. 1007–1013. ISSN: 0025- 5645,1881-1167. DOI: 10.2969/jmsj/76827682. URL: https:// doi.org/10.2969/jmsj/76827682. Hsueh-Yung Lin and Evgeny Shinder. “Motivic invariants of birational maps”. In: Ann. of Math. (2) 199.1 (2024), pp. 445–478. ISSN: 0003-486X,1939-8980. DOI: 10.4007/annals.2024.199.1.6. URL: https://doi.org/ 10.4007/annals.2024.199.1.6. Nicolas Martin. “The class of the affine line is a zero divisor in the Grothendieck ring: an improvement”. In: C. R. Math. Acad. Sci. Paris 354.9 (2016), pp. 936–939. ISSN: 1631-073X,1778-3569. DOI: 10.1016/j.crma.2016.05. 016. URL: https://doi.org/10.1016/j.crma.2016.05.016. Shigefumi Mori and Shigeru Mukai. “On Fano 3-folds with B2 ≥ 2”. In: Algebraic varieties and analytic varieties (Tokyo, 1981). Vol. 1. Adv. Stud. Pure Math. North-Holland, Amsterdam, 1983, pp. 101–129. ISBN: 0-444-86612-4. DOI: 10.2969/aspm/00110101. URL: https://doi.org/10.2969/aspm/00110101. Shigeru Mukai. “Polarized K3 surfaces of genus 18 and 20”. In: Complex projective geometry (T Vol. 179. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 1992, pp. 264–276. ISBN: 0-521-43352-5. DOI: 10.1017/CBO9780511662652. 019. URL: https://doi.org/10.1017/CBO9780511662652.019. Giorgio Ottaviani. “Spinor bundles on quadrics”. In: Trans. Amer. Math. Soc. 307.1 (1988), pp. 301–316. ISSN: 0002-9947,1088-6850. DOI: 10.2307/2000764. URL: https://doi.org/10.2307/2000764. Giorgio Ottaviani. “Rational homogeneous varieties”. In: Lecture notes for the summer school in (1995). Marco Rampazzo. Calabi-Yau fibrations, simple K-equivalence and mutations. 2021. arXiv: 2006.06330 [math.AG]. URL: https://arxiv.org/ abs/2006.06330. Marco Rampazzo. “New counterexamples to the birational Torelli theorem for Calabi-Yau manifolds”. In: Proc. Amer. Math. Soc. 152.6 (2024), pp. 2317–2331. ISSN: 0002-9939,1088-6826. DOI: 10.1090/proc/16745. URL: https://doi.org/10.1090/proc/16745. Evgeny Shinder and Ziyu Zhang. “L-equivalence for degree five elliptic curves, elliptic fibrations and K3 surfaces”. In: Bull. Lond. Math. Soc. 52.2 (2020), pp. 395–409. ISSN: 0024-6093,1469-2120. DOI: 10.1112/blms.12339. URL: https://doi.org/10.1112/blms.12339. Ravi Vakil. The Rising Sea: Foundations of Algebraic Geometry. URL: https://math.stanford.edu/~vakil/216blog/FOAGsep0824public.pdf. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97163 | - |
| dc.description.abstract | 這篇論文的主要目標是研究射影對偶的退化。我們證明在特定條件下,一個 向量叢截面的零點集構成的光滑族的平坦極限可以描述為額外法叢截面的零點 集。作為應用,我們探討 Shinder-Zhang 的五次橢圓曲線,並證明它們會退化為 Mori-Mukai 連結中,三維二次曲面中的一條橢圓曲線。 | zh_TW |
| dc.description.abstract | The primary aim of this note is to initiate the study of the degenerations of projective dualities. We prove that, under certain conditions, the flat limit of a smooth family of zero loci of general sections of a vector bundle can be described as the zero locus of a section of the excess normal bundle. As an application, we examine the case of Shinder-Zhang’s degree-five elliptic curves and show that they degenerate to the elliptic curve on the quadric 3-fold, appearing in the Mori-Mukai link of Fano 3-fold. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:28:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-27T16:28:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 iii
摘要 v Abstract vii Contents ix Chapter 1 Introduction 1 Chapter 2 Preliminaries 5 2.1 Algebraic Groups 5 2.2 Homogeneous Varieties 6 2.3 Flat Limit 7 2.4 Zero Locus of a General Section. 9 Chapter 3 Main Result 11 3.1 Setup for the Main Theorem 11 3.2 Main Theorem 12 Chapter 4 Application 17 4.1 Canonical bundle of Gr(k, n) 17 4.2 Shinder-Zhang’s Elliptic Curves of Degree 5 18 4.3 Non-transverse Intersection 19 4.3.1 Isotropic Grassmannian 19 4.3.2 Non-transverse intersection 20 4.4 Calabi-Yau pair of Homogeneous Roof of Type C2 22 4.4.1 Quadric 3-folds and spinor bundles 22 4.4.2 Degeneration 23 References 29 | - |
| dc.language.iso | en | - |
| dc.subject | 齊性多樣體 | zh_TW |
| dc.subject | 相交 | zh_TW |
| dc.subject | 退化 | zh_TW |
| dc.subject | 額外法叢 | zh_TW |
| dc.subject | 代數幾何 | zh_TW |
| dc.subject | Algebraic Geometry | en |
| dc.subject | Degeneration | en |
| dc.subject | Excess Normal Bundle | en |
| dc.subject | Intersection | en |
| dc.subject | Homogeneous Variety | en |
| dc.title | 關於射影對偶的退化 | zh_TW |
| dc.title | On Degenerations of Projective Dualities | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王賜聖;賴冠文 | zh_TW |
| dc.contributor.oralexamcommittee | Sz-Sheng Wang;Kuan-Wen Lai | en |
| dc.subject.keyword | 退化,額外法叢,相交,齊性多樣體,代數幾何, | zh_TW |
| dc.subject.keyword | Degeneration,Excess Normal Bundle,Intersection,Homogeneous Variety,Algebraic Geometry, | en |
| dc.relation.page | 33 | - |
| dc.identifier.doi | 10.6342/NTU202500514 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-02-13 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 數學系 | - |
| dc.date.embargo-lift | 2025-02-28 | - |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 433.09 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
