請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97160
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 卡艾瑋 | zh_TW |
dc.contributor.advisor | Hervé Capart | en |
dc.contributor.author | 謝東燊 | zh_TW |
dc.contributor.author | Tung-Shen Hsieh | en |
dc.date.accessioned | 2025-02-27T16:28:06Z | - |
dc.date.available | 2025-02-28 | - |
dc.date.copyright | 2025-02-27 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-13 | - |
dc.identifier.citation | Capart, H., Young,D.,andZech,Y.(2002). Voronoïimagingmethodsforthemeasurement of granular flows. Experiments in fluids, 32(1):121–135.
Chen, T.-Y. K. and Capart, H. (2022). Computational morphology of debris and alluvial fans on irregular terrain using the visibility polygon. Computers & Geosciences, 169:105228. Chen, Y.-L. (2018). Morphodynamics of the Pu-Tun-Pu-Nas Tributary Fan: Comparison of Field Survey, Theory and Lab Experiments. Master’s thesis, National Taiwan University. Chiu, Y.-H. D. and Capart, H. (2025). Inverse computational morphology of debris and alluvial fans. Computers & Geosciences. Chiu, Y.-H. D., Hung, C.-Y., and Capart, H. (2024). 薩拉阿塢橋洪水及河床變動風水評估. Technical report, 林同棪工程顧問有限公司. Clarke, L., Quine, T. A., and Nicholas, A. (2010). An experimental investigation of autogenic behaviour during alluvial fan evolution. Geomorphology, 115(3-4):278–285. Harten, A., Lax, P. D., and Leer, B. v. (1983). On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM review, 25(1):35–61. Huang, C.-L. (2014). Photogrammetry, Morphology of debris fan,Laonong River,Pu-Tun-Pu-Nas River,UAV,Mirror array,Digital surface model. Master’s thesis, National Taiwan University. Huang, M. Y., Huang, A. Y., and Capart, H. (2010). Joint mapping of bed elevation and flow depth in microscale morphodynamics experiments. Experiments in Fluids, 49:1121–1134. Hung, Y.-F. (2023). Experimental dynamics of suddenly and gradually triggered granular avalanches. Master’s thesis, National Taiwan University. Leenman, A. and Eaton, B. (2021). Mechanisms for avulsion on alluvial fans: Insights from high-frequency topographic data. Earth Surface Processes and Landforms, 46(6):1111–1127. Leenman, A. and Tunnicliffe, J. (2020). Tributary-junction fans as buffers in the sediment cascade: a multi-decadal study. Earth Surface Processes and Landforms, 45(2):265-279. Lin, R. P. (2024). Small-scale undistorted deposit fan experiments with plastic sand and carboxymethyl cellulose. Master’s thesis, National Taiwan University. Ni, W.-J. (2005). Groundwater drainage and recharge by geomorphically active gullies. Master’s thesis, National Taiwan University. Savi, S., Tofelde, S., Wickert, A. D., Bufe, A., Schildgen, T. F., and Strecker, M. R. (2020). Interactions betweenmainchannelsandtributaryalluvialfans: channeladjustmentsand sediment-signal propagation. Earth Surface Dynamics, 8(2):303–322. Soares-Frazao, S., Canelas, R., Cao, Z., Cea, L., Chaudhry, H. M., DieMoran, A., ElKadi, K., Ferreira, R., Cadórniga, I. F., Gonzalez-Ramirez, N., et al. (2012). Dam-break flows over mobile beds: experiments and benchmark tests for numerical models. Journal of Hydraulic Research, 50(4):364–375. Soares-Frazão, S. and Zech, Y. (2011). Hllc scheme with novel wave-speed estimators appropriate for two-dimensional shallow-water flowonerodiblebed. Internationaljournal for numerical methods in fluids, 66(8):1019–1036. Toro, E. F., Spruce, M., and Speares, W. (1994). Restoration of the contact surface in the hll-riemann solver. Shock waves, 4:25–34. Tu, Y.-C. (2019). Trunk river erosion of a tributary fan margin: theory, experiment and field observation. Master’s thesis, National Taiwan University. VanRijn, L. C. (1984). Sediment transport, part i: bed load transport. Journal of hydraulic engineering, 110(10):1431–1456. Wu, Y.-C. (2020). Route optimization subject to debris fan risk: field, experiment and modeling study. Master’s thesis, National Taiwan University. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97160 | - |
dc.description.abstract | 支流土石流沖積扇與主流之間的相互作用在許多地區引發自然災害方面扮演著關鍵角色。然而,目前關於兩條支流土石流扇與主流之間相互作用的研究仍然相對有限。本研究針對單一支流的受限土石流沖積扇及兩條支流的受限土石流扇,重點探討它們在形成階段的特性、對主流流態的影響,以及主流流動對土石流扇緣侵蝕模式的後續影響。
由於影響土石流扇形成與主流岸蝕的因素十分複雜,本研究採用類比實驗以簡化相關影響變數。實驗中使用塑脂砂以在縮小比例下提升其流動性並模擬輸砂;除此之外也採用Na-CMC溶液作為增稠劑,以模擬土石流的流變特性。本研究探討了單一支流及兩條支流土石流沖積扇的情境,土石流扇的形成皆在無主流流水條件下進行,隨後在無沉積物供給條件下,進行主流驅動的扇緣侵蝕實驗。地形通過雷射掃描進行測量,而水深與流速則透過高速攝影機進行記錄。 此外,研究採用了視域多邊形模擬技術分析土石流沖積扇形成階段,並結合淺水模擬以預測主流的流動模式,將實驗結果與理論模型進行比對。研究結果顯示,攝影測量技術在地形、水深及流速測量方面具有高度的準確性。值得注意的是,在兩條支流土石流扇的情境中,下游支流土石流扇較上游支流土石流扇更容易受到主流引發的侵蝕,這與2024年颱風「凱米」期間洪水事件的野外觀測結果相符。 | zh_TW |
dc.description.abstract | The interaction between tributary debris fans and the mainstream plays a critical role in triggering natural hazards in many regions. Research on the interaction between two opposing tributary fans and the mainstream, however, remains limited. This study investigates single tributary confined debris fan and two opposing tributary confined fans, focusing on their properties during the build-up phase, their influence on mainstream flow, and the subsequent impact of mainstream flow on fan bank erosion patterns. Due to the complex factors influencing debris fan formation and mainstream bank erosion, this study employs analog experiments to simplify the influencing variables. Plastic sand was used to enhance mobility and transport at a reduced scale, while a Na-CMC solution served as a thickening agent to mimic the rheology of debris flow slurry. Single and two tributary debris fan scenarios were investigated, with debris fans constructed under no mainstream flow conditions and subsequently subjected to mainstream-induced bank erosion under conditions of no sediment supply. Terrain was measured using laser scanning, while water depth and flow velocity were documented using high-speed camera methods. Visibility polygon simulations for fan build-up and shallow water simulations for mainstream flow patterns were employed to compare experimental results with theoretical predictions. The findings demonstrate the effectiveness of photogrammetry in measuring terrain, depth, and flow velocity. Notably, in the two-tributary fans scenario, the downstream tributary fan proved highly susceptible to mainstream-induced erosion compared to the upstream fan, consistent with field observations during the flood event triggered by Typhoon Gaemi (2024). | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:28:06Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-27T16:28:06Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xxi Chapter 1 Introduction 1 Chapter 2 Experimental materials, physical set-up, and imaging methods 7 2.1 Experimental materials . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Plastic sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Water solution of sodium carboxymethyl cellulose(CMC) . . . . . . 9 2.1.3 Fluorescent dye . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.4 Floating particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Flume, UV light and conveyor . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Mainstream water supply system . . . . . . . . . . . . . . . . . . . 12 2.2.3 Tributary river supply system . . . . . . . . . . . . . . . . . . . . . 14 2.2.4 Cameras, mirror and laser scan system . . . . . . . . . . . . . . . . 15 2.3 Imaging methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Cameras calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Topography from laser scan method . . . . . . . . . . . . . . . . . 18 2.3.3 Depth from luminance method . . . . . . . . . . . . . . . . . . . . 19 2.3.4 Particle tracking velocimetry method (PTV) . . . . . . . . . . . . . 24 Chapter 3 Experimental results and discussion 27 3.1 Uniform flow experiments . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.1 Experimental condition . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 Depth-discharge relationship . . . . . . . . . . . . . . . . . . . . . 28 3.1.3 Average surface flow velocity . . . . . . . . . . . . . . . . . . . . 28 3.1.4 The relationship between average surface flow velocity and mean flow velocity . . 31 3.1.5 Empirical shear stress formula . . . . . . . . . . . . . . . . . . . . 32 3.2 Single-fan experiments . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 Experimental condition . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.2 Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.3 Surface flow velocity with corresponding erosion area . . . . . . . . 36 3.2.4 Water depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.5 Discharge per unit width . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Two-fan experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3.1 Experimental condition . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3.2 Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3.3 Surface flow velocity with corresponding erosion area . . . . . . . . 44 3.3.4 Water depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.5 Discharge per unit width . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.1 Bank line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.2 Sediment volume . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.3 Discharge along x-axis . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.4 Depth-PR95 and surface velocity-max along x-axis . . . . . . . . . 53 Chapter 4 Fangrowth simulation and comparison 55 4.1 Simulation theory and workflow . . . . . . . . . . . . . . . . . . . . 55 4.1.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.3 Topographic input data determination . . . . . . . . . . . . . . . . 57 4.2 Simulation results and comparison . . . . . . . . . . . . . . . . . . . 59 4.2.1 Elevation-distance relationships . . . . . . . . . . . . . . . . . . . 59 4.2.2 Topography, volume, and DoD . . . . . . . . . . . . . . . . . . . . 60 4.2.3 Longitudinal profiles along the x-axis . . . . . . . . . . . . . . . . 67 Chapter 5 Waterflow simulation and comparison 71 5.1 Simulation theory and workflow . . . . . . . . . . . . . . . . . . . . 71 5.1.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1.2 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1.3 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1.4 Initial and boundary condition . . . . . . . . . . . . . . . . . . . . 73 5.1.5 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.6 Convergence to steady state . . . . . . . . . . . . . . . . . . . . . . 76 5.1.7 Mesh convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Simulation results and comparison . . . . . . . . . . . . . . . . . . . 77 5.2.1 Depth and water surface elevation . . . . . . . . . . . . . . . . . . 77 5.2.2 Mean flow velocity and Discharge per unit width . . . . . . . . . . 78 5.2.3 Froude number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.2.4 Transversal profile . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2.5 Longitudinal profile . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2.6 Shield diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Chapter 6 Comparison with field 103 6.1 Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2 Water flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Chapter 7 Conclusion and recommendations for future work 111 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.2 Recommendations for future work . . . . . . . . . . . . . . . . . . . 112 References 115 Appendix A — 119 A.1 Additional photos for field . . . . . . . . . . . . . . . . . . . . . . . 119 | - |
dc.language.iso | en | - |
dc.title | 主流和支流土石流沖積扇交互作用:小尺度實驗和水流模擬 | zh_TW |
dc.title | Interaction between Main Stream and Tributary Debris Fans: Small Scale Experiments and Flow Simulation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 賴悅仁;陳慈愔;吳富春 | zh_TW |
dc.contributor.oralexamcommittee | Steven Yueh Jen Lai;Tzu-Yin Chen;Fu-Chun Wu | en |
dc.subject.keyword | 沖積扇,類比實驗,土石流,形貌學,攝影測量,淺水波, | zh_TW |
dc.subject.keyword | debris fan,analogue experiment,debris flow,morphology,photogrammetry,shallow flow, | en |
dc.relation.page | 121 | - |
dc.identifier.doi | 10.6342/NTU202500672 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
dc.date.embargo-lift | 2025-02-28 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 153.04 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。