Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97158
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許輔zh_TW
dc.contributor.advisorFuu Sheuen
dc.contributor.author吳映柔zh_TW
dc.contributor.authorYing-Jou Wuen
dc.date.accessioned2025-02-27T16:27:34Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-13-
dc.identifier.citationAprotosoaie, A. C., Hăncianu, M., Costache, I. I., & Miron, A. (2014). Linalool: a review on a key odorant molecule with valuable biological properties. Flavour and Fragrance Journal, 29(4), 193–219.
Baba, S. A., Vishwakarma, R. A., & Ashraf, N. (2017). Functional characterization of CsBGlu12, a β-glucosidase from Crocus sativus, provides insights into its role in abiotic stress through accumulation of antioxidant flavonols. Journal of Biological Chemistry, 292(11), 4700–4713.
Baldermann, S., Yang, Z., Katsuno, T., Tu, V. A., Mase, N., Nakamura, Y., & Watanabe, N. (2014). Discrimination of green, oolong, and black teas by GC-MS analysis of characteristic volatile flavor compounds. American Journal of Analytical Chemistry, 5(9), 620–632.
Bhuyan, L. P., Tamuly, P., & Mahanta, P. K. (1991). Lipid content and fatty acid composition of tea shoot and manufactured tea. Journal of Agricultural and Food Chemistry, 39(6), 1159–1162.
Chaturvedula, V. S. P., & Prakash, I. (2011). The aroma, taste, color and bioactive constituents of tea. Journal of Medicinal Plants Research, 5(11), 2110–2124.
Chen, F., Tholl, D., Bohlmann, J., and Pichersky, E. (2011). The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal, 66, 212–229.
Chen, Q., Zhu, Y., Dai, W., Lv, H., Mu, B., Li, P., Tan, J., Ni, D., & Lin, Z. (2019). Aroma formation and dynamic changes during white tea processing. Food Chemistry, 274, 915–924.
Chen, S., Liu, H., Zhao, X., Li, X., Shan, W., Wang, X., Wang, S., Yu, W., Yang, Z., & Yu, X. (2020). Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture. Food Research International, 128, Article 108778.
Chen, S., Xie, P., Li, Y., Wang, X., Liu, H., Wang, S., Han, W., Wu, R., Li, X., Guan, Y., Yang, Z., & Yu, X. (2021). New insights into stress-induced β-Ocimene biosynthesis in tea (Camellia sinensis) leaves during oolong tea processing. Journal of Agricultural and Food Chemistry, 69(39), 11656–11664.
Chen, Y. L., Duan, J.; Jiang, Y. M., Shi, J., Peng, L., Xue, S., & Kakuda, Y. (2011). Production, quality, and biological effects of oolong tea (Camellia sinensis). Food Reviews International, 27(1), 1–15.
Cui, J., Katsuno, T., Totsuka, K., Ohnishi, T., Takemoto, H., Mase, N., Toda, M., Narumi, T., Sato, K., Matsuo, T., Mizutani, K., Yang, Z., Watanabe, N., & Tong, H. (2016). Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives. Journal of Agricultural and Food Chemistry, 64(5), 1151–1157.
da Silva Pinto, M. (2013). Tea: A new perspective on health benefits. Food Research International, 53(2), 558–567.
Davis, E. M. & Croteau, R. (2000). Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Topics in Current Chemistry, 209, 53–95.
Degenhardt, J., Köllner, T. G., & Gershenzon, J. (2009). Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 70(15-16), 1621–1637.
Deng, H., Chen, S., Zhou, Z., Li, X., Chen, S., Hu, J., Lai, Z., & Sun, Y. (2020). Transcriptome analysis reveals the effect of short-term sunlight on aroma metabolism in postharvest leaves of oolong tea (Camellia sinensis). Food Research International, 137, Article 109347.
Dudareva, N., Klempien, A., Muhlemann, J. K., & Kaplan, I. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198(1), 16–32.
Falara, V., Alba, J.M., Kant, M.R., Schuurink, R.C., & Pichersky, E. (2014). Geranyllinalool synthases in Solanaceae and other angiosperms constitute an ancient branch of diterpene synthases involved in the synthesis of defensive compounds. Plant Physiology, 166, 428–441.
Feng, Z., Li, Y., Li, M., Wang, Y., Zhang, L., Wan, X., & Yang, X. (2019). Tea aroma formation from six model manufacturing processes. Food Chemistry, 285, 347–354.
Fu, J. (2013). Molecular cloning and expression analysis of a putative sesquiterpene synthase gene from tea plant (Camellia sinensis). Acta Physiologiae Plantarum, 35, 289–293.
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., ... Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652.
Gui, J., Fu, X., Zhou, Y., Katsuno, T., Mei, X., Deng, R., Xu, X., Zhang, L., Dong, F., Watanabe, N., & Yang, Z. (2015). Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? Journal of Agricultural and Food Chemistry, 63(31), 6905–6914.
Guo, X. Y., Schwab, W., Ho, C. T., Song, C. K., & Wan, X. C. (2022). Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS. Food Chemistry, 376, Article 131933.
He, C., Li, Y. C., Zhou, J. T., Yu, X. L., Zhang, D., Chen, Y. Q., Ni, D. J., & Yu, Z. (2022). Study on the suitability of tea cultivars for processing oolong tea from the perspective of aroma based on olfactory sensory, electronic nose, and GC-MS data correlation analysis. Foods, 11(18), 2880.
Herde, M., Gartner, K., Kollner, T.G., Fode, B., Boland, W., Gershenzon, J., Gatz, C., & Tholl, D. (2008). Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Plant cell, 20, 1152–1168.
Hu, C. J., Li, D. A., Ma, Y. X., Zhang, W., Lin, C., Zheng, X. Q., Liang, Y. R., & Lu, J. L. (2018). Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment. Food Chemistry, 269, 202–211.
Hu, J. L., Feng, X. Y., Song, H. Z., Hao, Z. L., Ma, S. C., Hu, H., Yang, Y. Y., Zhou, S., Pan, Y. N., Fan, F. Y., Gong, S. Y., Chen, P., & Chu, Q. (2024). Enzymatic reactions throughout cultivation, processing, storage and post-processing: Progressive sculpture of tea quality. Trends in Food Science & Technology, 143, Article 104294.
Kobayashi, A., Tachiyama, K., Kawakami, M., Yamanishi, T., Juan, I. M., & Chiu, W. T. F. (1985). Effects of solar-withering and turn over treatment during indoor-withering on the formation of pouchong tea aroma. Agricultural and Biological Chemistry, 49(6), 1655–1660.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology & Evolution, 33, 1870–1974.
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359.
Leng, N., Dawson, J. A., Thomson, J. A., Ruotti, V., Rissman, A. I., Smits, B. M. G., Haag, J. D., Gould, M. N., Stewart, R. M., & Kendziorski, C. (2013). EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics, 29(16), 2073–2073.
Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, Article 323.
Li, Y., He, C., Yu, X., Zhou, J., Ntezimana, B., Yu, Z., Chen, Y., & Ni, D. (2022). Study on improving aroma quality of summer-autumn black tea by red-light irradiation during withering. LWT Food Science and Technology, 154, Article 112597.
Liao, Y., Zeng, L., Tan, H., Cheng, S., Dong, F., & Yang, Z. (2020). Biochemical pathway of benzyl nitrile derived from L-phenylalanine in tea (Camellia sinensis) and its formation in response to postharvest stresses. Journal of Agricultural and Food Chemistry, 68(5), 1397–1404.
Lin, S. Y., Chen, Y. L., Lee, C. L., Cheng, C. Y., Roan, S. F., & Chen, I. Z. (2013). Monitoring volatile compound profiles and chemical compositions during the process of manufacturing semi-fermented oolong tea. The Journal of Horticultural Science and Biotechnology, 88(2), 159–164.
Lin, S. Y., Hsiao, Y. H., & Chen, P. A. (2022). Revealing the profound meaning of pan-firing of oolong tea - A decisive point in odor fate. Food Chemistry, 375, Article 131649.
Lin, S. Y., Lo, L. C., Chen, I. Z., & Chen, P. A. (2016). Effect of shaking process on correlations between catechins and volatiles in oolong tea. Journal of Food and Drug Analysis, 24(3), 500–507.
Liu, G. F., Liu, J. J., He, Z. R., Wang, F. M., Yang, H., Yan, Y. F., Gao, M. J., Gruber, M. Y., Wan, X. C., and Wei, S. (2018). Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Plant, Cell & Environment, 41, 176–186.
Liu, P. P., Yin, J. F., Chen, G. S., Wang, F., & Xu, Y. Q. (2018). Flavor characteristics and chemical compositions of oolong tea processed using different semi-fermentation times. Journal of Food Science and Technology, 55(3), 1185–1195.
Mizutani, M., Nakanishi, H., Ema, J., Ma, S. J., Noguchi, E., Inohara-Ochiai, M., Fukuchi-Mizutani, M., Nakao, M., & Sakata, K. (2002). Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiology, 130(4), 2164–2176.
Ohgami, S., Ono, E., Horikawa, M., Murata, J., Totsuka, K., Toyonaga, H., Ohba, Y., Dohra, H., Asai, T., Matsui, K., Mizutani, M., Watanabe, N., & Ohnishi, T. (2015). Volatile glycosylation in tea plants: Sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two glycosyltransferases. Plant Physiology, 168(2), 464–477.
Ozdemir, F., Tontul, I., Balci-Torun, F., & Topuz, A. (2017). Effect of rolling methods and storage on volatile constituents of Turkish black tea. Flavour and Fragrance Journal, 32, 362–375.
Qiao, D., Mi, X., An, Y., Xie, H., Cao, K., Chen, H., Chen, M., Liu, S., Chen, J., & Wei, C. (2021). Integrated metabolic phenotypes and gene expression profiles revealed the effect of spreading on aroma volatiles formation in postharvest leaves of green tea. Food Research International, 149, Article 110680.
Shamala, L. F., Zhou, H. C., Han, Z. X., & Wei, S. (2020). UV-B induces distinct transcriptional re-programing in UVR8-signal transduction, flavonoid, and terpenoids pathways in Camellia sinensis. Frontiers in Plant Science, 11, Article 234.
Shao, C., Zhang, C., Lv, Z., & Shen, C. (2021). Pre- and post-harvest exposure to stress influence quality-related metabolites in fresh tea leaves (Camellia sinensis). Scientia Horticulturae, 281, Article 109984.
Sheibani, E., Duncan, S. E., Kuhn, D. D., Dietrich, A. M., Newkirk, J. J., & O’Keefe, S. F. (2016). Changes in flavor volatile composition of oolong tea after panning during tea processing. Food Science & Nutrition, 4(3), 456–468.
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539.
Singh, P., Arif, Y., Miszczuk, E., Bajguz, A., & Hayat, S. (2022). Specific roles of lipoxygenases in development and responses to stress in plants. Plants, 11(7), Article 979.
Song, J., Smart, R., Wang, H., Dambergs, B., Sparrow, A., & Qian, M. C. (2015). Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine. Food Chemistry, 173, 424–431.
Su, T. C., Yang, M. J., Huang, H. H., Kuo, C. C., & Chen, L.Y. (2021). Using sensory wheels to characterize consumers' perception for authentication of Taiwan specialty teas. Foods, 10(4), Article 836.
Wang, D., Kubota, K., Kobayashi, A., & Juan, I. M. (2001). Analysis of glycosidically bound aroma precursors in tea leaves. 3. Change in the glycoside content of tea leaves during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 49(11), 5391–5396.
Wang, D., Kurasawa, E., Yamaguchi, Y., Kubota, K., & Kobayashi, A. (2001). Analysis of glycosidically bound aroma precursors in tea leaves. 2. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. Journal of Agricultural and Food Chemistry, 49(4), 1900–1903.
Wang, D., Yoshimura, T., Kubota, K., & Kobayashi, A. (2000). Analysis of glycosidically bound aroma precursors in tea leaves. 1. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. Journal of Agricultural and Food Chemistry, 48(11), 5411–5418.
Wang, P. J., Yu, J. X., Jin, S., Chen, S., Yue, C., Wang, W. L., Gao, S. L., Cao, H. L., Zheng, Y. C., Gu, M. Y., Chen, X. J., Sun, Y., Guo, Y. Q., Yang, J. F., Zhang, X. T., & Ye, N. X. (2021). Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research, 8(1), 107.
Wang, P. T., Liu, H., Hua, H. J., Wang, L., & Song, C. P. (2011). A vacuole localized β-glucosidase contributes to drought tolerance in Arabidopsis. Chinese Science Bulletin, 56(33), 3538–3546.
Wang, S. Z., Zeng, T., Zhao, S., Zhu, Y., Feng, C. C., Zhan, J. F., Li, S. M., Ho, C. T., & Gosslau, A. (2022). Multifunctional health-promoting effects of oolong tea and its products. Food Science and Human Wellness, 11(3), 512–523.
Wang, X., Cao, J., Cheng, X., Liu, X., Zhu, W., Li, Y., Wan, X., Chen, S., & Liu, L. (2024). UV-B application during the aeration process improves the aroma characteristics of oolong tea. Food chemistry, 435, Article 137585.
Wang, X., Zeng, L., Liao, Y., Zhou, Y., Xu, X., Dong, F., & Yang, Z. (2019). An alternative pathway for the formation of aromatic aroma compounds derived from L-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves. Food Chemistry, 270, 17–24.
Wang, Y., Li, C., Lin, J., Sun, Y., Wei, S., & Wu, L. (2022). The impact of different withering approaches on the metabolism of flavor compounds in oolong tea leaves. Foods, 11(22), Article 3601.
Wei, C., Yang, H., Wang, S., Zhao, J., Liu, C., Gao, L., Xia, E., Lu, Y., Tai, Y., She, G., Sun, J., Cao, H., Tong, W., Gao, Q., Li, Y., Deng, W., Jiang, X., Wang, W., Chen, Q., ... Wan, X. (2018). Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America, 15(18), E4151–E4158.
Wu, L., Wang, Y., Liu, S., Sun, Y., Li, C., Lin, J., & Wei, S. (2022). The stress-induced metabolites changes in the flavor formation of oolong tea during enzymatic-catalyzed process: A case study of Zhangping Shuixian tea. Food Chemistry, 391, Article 133192.
Wu, S., Gu, D., Chen, Y., Wang, F., Qian, J., Zeng, L., Tang, J., Yan, Y., Chen, C., & Li, J. (2023). Variations in oolong tea key characteristic floral aroma compound contents among tea germplasms exposed to postharvest stress. Postharvest Biology and Technology, 197, Article 112201.
Wu, Y. J. (2015). Transcriptome study on biosynthesis of volatile organic compounds during manufacturing process of semi-fermented tea. Department of Horticulture and Landscape Architecture at National Taiwan University. Master Thesis.
Wu, Y. J., Kuan, Y. C., & Sheu, F. (2025). Revealing the roles of solar withering and shaking processes on oolong tea manufacturing from transcriptome and volatile profile analysis. Food Research International, 201, 115586.
Yang, Z., Baldermann, S., & Watanabe, N. (2013). Recent studies of the volatile compounds in tea. Food Research International, 53(2), 585–599.
Zeng, L., Jin, S., Xu, Y. Q., Granato, D., Fu, Y. Q., Sun, W. J., Yin, J. F., & Xu, Y. Q. (2022). Exogenous stimulation-induced biosynthesis of volatile compounds: Aroma formation of oolong tea at postharvest stage. Critical Reviews in Food Science and Nutrition, 64(1), 76–86.
Zeng, L., Wang, X., Liao, Y., Gu, D., Dong, F., & Yang, Z. (2019). Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea (Camellia sinensis). Postharvest Biology and Technology, 157, Article 110974.
Zeng, L., Watanabe, N., & Yang, Z. (2019). Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition, 59(14), 2321–2334.
Zeng, L., Zhou, Y., Fu, X., Liao, Y., Yuan, Y., Jia, Y., Dong, F., & Yang, Z. (2018). Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry, 66(15), 3899–3909.
Zeng, L., Zhou, Y., Gui, J., Fu, X., Mei, X., Zhen, Y., Ye, T., Du, B., Dong, F., Watanabe, N., & Yang, Z. (2016). Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 64(24), 5011–5019.
Zeng, L. T., Zhou, X. C., Su, X. G., & Yang, Z. Y. (2020). Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends in Food Science & Technology, 106, 242-253.
Zhai, X. T., Zhang, L., Granvogl, M., Ho, C. T., & Wan, X. C. (2022). Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Comprehensive Reviews in Food Science and Food Safety, 21(5), 3867–3909.
Zhang, J., Jia, H. Y., Zhu, B. Y., Li, J. Y., Yang, T. Y., Zhang, Z. Z., & Deng, W. W. (2021). Molecular and biochemical characterization of jasmonic acid carboxyl methyltransferase involved in aroma compound production of methyl jasmonate during black tea processing. Journal of Agricultural and Food Chemistry, 69(10), 3154–3164.
Zheng, Y., Hu, Q., Yang, Y., Wu, Z., Wu, L., Wang, P., Deng, H., Ye, N., & Sun, Y. (2022). Architecture and dynamics of the wounding-induced gene regulatory network during the oolong tea manufacturing process (Camellia sinensis). Frontiers in Plant Science, 12, Article 788469.
Zhou, Y., Deng, R., Xu, X., & Yang, Z. (2020). Enzyme catalytic efficiencies and relative gene expression levels of (R)-linalool synthase and (S)-linalool synthase determine the proportion of linalool enantiomers in Camellia sinensis var. sinensis. Journal of Agricultural and Food Chemistry, 68(37), 10109–10117.
Zhou, Y., Zeng, L., Gui, J., Liao, Y., Li, J., Tang, J., Meng, Q., Dong, F., & Yang, Z. (2017). Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis). Food Research International, 96, 206–214.
Zhou, Y., Zeng, L., Liu, X., Gui, J., Mei, X., Fu, X., Dong, F., Tang, J., Zhang, L., & Yang, Z. (2017). Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chemistry, 231, 78–86.
Zhou, Z. W., Wu, Q. Y., Yao, Z. L., Deng, H. L., Liu, B. B., Yue, C., Deng, T. T., Lai, Z. X., & Sun, Y., (2020). Dynamics of ADH and related genes responsible for the transformation of C6-aldehydes to C6-alcohols during the postharvest process of oolong tea. Food Science & Nutrition, 8(1), 104–113.
Zhu, C., Zhang, S., Fu, H., Zhou, C., Chen, L., Li, X., Lin, Y., Lai, Z., & Guo, Y.Q. (2019). Transcriptome and phytochemical analyses provide new insights into long non-coding RNAs modulating characteristic secondary metabolites of oolong Tea (Camellia sinensis) in solar-withering. Frontiers in Plant Science, 10, Article 1638.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97158-
dc.description.abstract部分發酵之包種茶以其細膩香氣、獨特風味與健康效益聞名。製茶過程各步驟皆會影響包種茶最終的香氣與風味,特別是日光萎凋及室內萎凋與攪拌對香氣的形成至關重要。傳統製茶工藝透過長期經驗的積累與實踐逐步建立,但製茶過程關鍵步驟對香氣形成的科學意義與其分子機制大多仍不明確。因此,本研究鑑定與分析茶菁中揮發性化合物成分,並比較三種不同包種茶製程,以探討日光萎凋及攪拌對揮發性化合物組成與含量之影響,接著進一步分析標準製程中香氣成分與其生合成基因的關聯性,得到與揮發性化合物增加密切相關的基因,並比較未成熟與成熟鮮採茶菁揮發性化合物生合成基因的表現,以了解採收時間可能帶來的差異,最後分析並選殖 geranyllinalool 合成酶 TPS11。
本研究首先全面鑑定並分析茶菁中的揮發性有機化合物 (volatile organic compounds) 在三種不同製程中的含量變化,分別是包含日光萎凋與攪拌的標準製程 (normal procedure, NP)、無日光萎凋但包含攪拌的製程 (non-solar withering procedure, NSW) 和無攪拌但包含日光萎凋的製程 (non-shaking procedure, NSH)。總共鑑定出 80 種揮發性化合物,根據其生合成途徑可分為脂肪酸衍生揮發性化合物 (fatty acid derived volatile, FADV)、揮發性萜類 (volatile terpene, VT)、類胡蘿蔔素衍生揮發性化合物 (carotenoid derived volatile, CDV) 及胺基酸衍生揮發性化合物 (amino acid derived volatiles, AADV)。在標準製程 NP 中,揮發性化合物總含量波動性上升,最終 VT 與 AADV 顯著增加,而 FADV含量相對持平。在 NSW 製程中,揮發性化合物同樣波動性上升,但最終 FADV 含量高於 NP,VT 與 AADV 含量則低於 NP。NSH 製程揮發性化合物總含量波動,但上升幅度顯著低於 NP 與 NSW。此結果顯示日光萎凋與攪拌步驟對於茶菁中揮發性化合物組成的重要性,是包種茶製程中的關鍵步驟。在標準製程中,FADV 類別的茉莉內酯 (jasmine lactone)、VT 類別的橙花叔醇 (nerolidol)、β-羅勒烯 (β-ocimene),與 AADV 類別的吲哚 (indole)、苯乙腈 (benzyl nitrile) 含量顯著提升,顯示這些揮發性化合物在包種茶香氣中具有重要角色。
進一步分析標準製程中,在日光萎凋與第一次攪拌期間,揮發性化合物含量與其生合成基因表現量之關聯性,以探討揮發性化合物生合成可能的分子機制。顯著相關的基因與揮發性化合物配對包括 FADV 類別的脂氧合酶8 (lipoxygenase 8, LOX8) 與 3-hexenyl iso-butyrate (r=0.99);VT 類別的萜類合成酶2 (terpene synthase 2, TPS2) 與 β-羅勒烯 (r=0.94) 及芳樟醇 (linalool) (r=0.89);及 AADV 類別的 tryptophan synthase β-subunit 2 (TSB2) 與吲哚 (r=0.98)。顯示不同類別的揮發性化合物生合成基因,皆會受到日光萎凋與攪拌過程的逆境誘導而表現量提升,進而促進相關揮發性化合物的生合成與累積,這些基因對於包種茶製程香氣的形成可能扮演關鍵角色。
此外,兩個 β-葡萄糖苷酶 (β-glucosidases),β-GH3_1 和 β-GH1_1,在日光萎凋與攪拌期間基因表現量提升超過 30 倍,顯示其可能於包種茶製程中參與揮發性化合物的釋放。而 β-葡萄糖苷酶 GH5 家族之基因在未成熟茶菁中表現量較高,是否作用於未成熟或新鮮採收茶菁中揮發性化合物的釋放仍需未來深入研究。
最後,TPS11 為雙萜類 geranyllinalool 合成酶,其在日光萎凋期間表現量顯著增加,室內萎凋與攪拌階段波動性上升,顯示 TPS11 可能參與了包種茶製程 VT 的生合成,但其功能仍不明確。本研究進一步發現 TPS11 之表現量於室內萎凋後期達到高峰,並成功選殖及於大腸桿菌異體表現 TPS11。
綜合本研究結果,揭示了日光萎凋與室內萎凋過程中的逆境誘導之揮發性化合物生合成與相關分子調控機制,以及製茶步驟對於包種茶特徵香氣形成的關鍵作用。本研究的發現提供了傳統包種茶製程更深層的理解,以及包種茶香氣組成及其生合成的科學基礎,有助於進一步提升茶葉品質,並為茶葉生產技術的開發提供理論支持。
zh_TW
dc.description.abstractSemi-fermented oolong tea is renowned for its delicate aroma, unique flavor, and health benefits. Among its manufacturing processes, solar and indoor withering play critical roles in aroma formation. While the traditional practices of the processes have been established through accumulated experience and empirical knowledge, the scientific basis and underlying mechanisms remain largely unexplored. This study identified 80 volatile organic compounds (VOCs) in tea shoots and categorized them into fatty acid derived volatiles (FADVs), volatile terpenes (VTs), carotenoid derived volatiles (CDVs), and amino acid derived volatiles (AADVs) according to their biosynthetic pathways. Three manufacturing procedures were compared and revealed that indole, nerolidol, β-ocimene, benzyl nitrile, and jasmine lactone were accumulated predominantly only in the normal process, where both solar withering and shaking were incorporated. Key gene and VOC pairs with significant correlations and up-regulated during solar withering and the first shaking were identified, such as lipoxygenase 8 (LOX8) with 3-hexenyl iso-butyrate, terpene synthase 2 (TPS2) with β-ocimene and linalool, as well as tryptophan synthase β-subunit 2 (TSB2) with indole. Besides, two β-glucosidase, β-glucosidase3_1 (β-GH3_1) and β-glucosidase1_1 (β-GH1_1), were up-regulated by more than 30-fold during these stages. Additionally, three β-glucosidase5 (β-GH5), β-GH5_1, β-GH5_2, and β-GH5_3, were found to be highly expressed in immature tea shoots. Furthermore, TPS11, a geranyllinalool synthase, was cloned and expressed. TPS11 was up-regulated during solar withering, fluctuated during indoor withering and shaking, and peaked at late withering stage, suggesting the potential role to participate in VT biosynthesis during paochung tea manufacturing process. These findings provide insights into the regulation of VOC accumulation under stresses during withering, and emphasize the pivotal role of specific manufacturing processes in the formation of paochung tea characteristic aroma. This study offers a deeper understanding of the scientific basis behind traditional oolong tea manufacturing, and may contribute to the enhancement of tea quality.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:27:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:27:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ii
摘要 iii
ABSTRACT v
CONTENT vii
LIST OF TABLES x
LIST OF FIGURES xi
CHAPTER 1 INTRODUCTION 1
1.1 Introductory of Camellia sinensis and paochung tea 1
1.2 Aroma compounds in oolong tea 2
1.2.1 Fatty acid derived volatiles 2
1.2.2 Volatile terpenes and carotenoid derived volatiles 3
1.2.3 Amino acid derived volatiles 4
1.2.4 Glycosidically bound volatiles 4
1.2.5 Characteristic oolong tea aroma 5
1.3 Factors affecting aroma compounds in oolong tea 5
1.3.1 Tea cultivar and plantation position 5
1.3.2 Postharvest treatments 6
1.4 Recent studies of VOC biosynthesis during oolong tea processing 7
1.5 Scientific rationale of empirical-based oolong tea processing 7
1.6 The aim of this study 8
CHAPTER 2 MATERIALS AND METHODS 10
2.1 Chemicals and reagents 10
2.2 Plant materials and tea manufacturing process 10
2.3 VOC analysis 12
2.4 Transcriptome profiling 13
2.5 Hierarchical heatmap and correlation analysis of gene expression and VOC accumulation 14
2.6 Expression analysis with quantitative RT-PCR 14
2.7 Cloning and sequence analysis of TPS11 15
2.8 Heterologous expression of TPS11 15
2.9 Electrophoresis and western blotting 16
CHAPTER 3 VOLATILE PROFILE DURING ENZYME ACTIVE STAGE OF PAOCHUNG TEA PROCESSING 17
3.1 VOC composition and content in fresh tea shoots of TTES No.12 17
3.2 VOC profile of three paochung tea manufacturing procedures 18
3.3 Selected VOCs with specific profiles during paochung tea manufacturing procedures 19
CHAPTER 4 CORRELATION BETWEEN VOLATILE CONTENT AND GENE EXPRESSION DURING EARLY STAGE PAOCHUNG TEA PROCESSING 21
4.1 VOCs and related gene expression in FADV biosynthetic pathway 21
4.2 VOCs and related gene expression in VT biosynthetic pathway 22
4.3 VOCs and related gene expression in AADV biosynthetic pathway 24
4.4 GBV related gene expression and VOCs 25
4.5 Validation of transcriptome profiling with qPCR 26
CHAPTER 5 VOLATILE BIOSYNTHETIC GENE EXPRESSION IN FRESH TEA SHOOTS WITH DIFFERENT MATURITY 28
CHAPTER 6 MOLECULAR CLONING AND EXPRESSION ANALYSIS OF TEA GERANYLLINALOOL SYNTHASE 30
CHAPTER 7 DISCUSSION 33
7.1 Stress responses during solar withering trigger transcriptome reprogramming and volatile biosynthesis in tea shoots 33
7.2 Stress responses during indoor withering and shaking trigger transcriptome reprogramming and volatile biosynthesis in tea shoots 35
7.3 The potential role of GBV hydrolysis in releasing free VOCs during paochung tea processing 37
7.4 The biosynthesis of linalool, a representative VT during paochung tea postharvest manufacturing 39
CHAPTER 8 CONCLUSION 41
REFERENCES 43
TABLES 52
FIGURES 59
APPENDIX 98
-
dc.language.isoen-
dc.subject機械性傷害逆境zh_TW
dc.subject萜類合成酶zh_TW
dc.subject萎凋zh_TW
dc.subject揮發性化合物zh_TW
dc.subject部分發酵茶zh_TW
dc.subjectterpene synthaseen
dc.subjectsemi-fermented teaen
dc.subjectvolatile organic compounden
dc.subjectwitheringen
dc.subjectwounding stressen
dc.title探討包種茶製程於香氣化合物組成及其生合成之角色zh_TW
dc.titleInvestigating the Roles of Paochung Tea Manufacturing Processes in Aroma Compound Composition and Biosynthesisen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee蘇南維;陳右人;謝淑貞;官彥州zh_TW
dc.contributor.oralexamcommitteeNan-Wei Su;Iou-Zen Chen;Shu-Chen Hsieh;Yen-Chou Kuanen
dc.subject.keyword部分發酵茶,揮發性化合物,萎凋,機械性傷害逆境,萜類合成酶,zh_TW
dc.subject.keywordsemi-fermented tea,volatile organic compound,withering,wounding stress,terpene synthase,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202500449-
dc.rights.note未授權-
dc.date.accepted2025-02-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-liftN/A-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
11.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved