Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97151
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃良得zh_TW
dc.contributor.advisorLean-Teik Ngen
dc.contributor.author董倫鈞zh_TW
dc.contributor.authorLun-Jun Dongen
dc.date.accessioned2025-02-27T16:25:42Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2024-
dc.date.submitted2025-02-13-
dc.identifier.citation陳進分、張繼中、許育慈。2013。洛神葵臺東1號、臺東2號、臺東3號有機栽培技術。臺東區農業專訊,76:13-17。
陳進分。2013。洛神葵新品種臺東4號之育成。臺東區農業改良場102年試驗研究推廣成果研討會專刊67-75。
蔣佩珊、陳進分。2014。洛神葵新品種臺東5號之育成。臺東區農業改良場103年試驗研究推廣成果研討會專刊69-78。
蔣佩珊、陳進分。2015。洛神葵臺東四號-紅斑馬之育成。臺東區農業改良場研究彙報,25:1-12。
陳敬文、陳盈芳。2019。洛神葵採收、採後處理及乾燥技術。臺東區農業改良場農技報導,第64期。
陳敬文。2022。洛神葵臺東六號-黑晶之育成。臺東區農業改良場研究彙報,32:1-14。
Ahiduzzaman, M., Jamini, T. S., & Islam, A. K. M. A. (2021). Chapter 4 - Roselle (Hibiscus sabdariffa L.): Processing for Value Addition. In: S. M. Sapuan, R. Nadlene, A. M. Radzi, & R. A. Ilyas (Eds.), Roselle (pp. 53-65). Academic Press, Malaysia.
Akim, A. M., Ling, L. C., Rahmat, A., & Zakaria, Z. A. (2011). Antioxidant and anti-proliferative activities of roselle juice on Caov-3, MCF-7, MDA-MB-231 and Hela cancer cell lines. African Journal of Pharmacy and Pharmacology, 5(7), 957-965.
Akther, F., Alim, M. A., Nasrin, N. A., Khan, M., Gomes, D. N., Suhan, M., Islam, M., & Begum, R. (2023). Effects of different drying methods on the proximate composition, antioxidant activity, and phytochemical content of Hibiscus sabdariffa L. Calyx. Food Chemistry Advances, 3, 100553.
Ali, B., Al-Wabel, P. D. N., & Blunden, G. (2005). Phytochemical, pharmacological and toxicological aspects of Hibiscus Sabdariffa L.: A review. Phytotherapy Research, 19, 369-375.
Amaya-Cruz, D., Peréz-Ramírez, I. F., Pérez-Jiménez, J., Nava, G. M., & Reynoso-Camacho, R. (2019). Comparison of the bioactive potential of Roselle (Hibiscus sabdariffa L.) calyx and its by-product: Phenolic characterization by UPLC-QTOF MSE and their anti-obesity effect in vivo. Food Research International, 126, 108589.
Armutcu, F., Akyol, S., Ustunsoy, S., & Turan, F. F. (2015). Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects. Experimental Therapeutic Medicine, 9(5), 1582-1588.
Arslan, A., Çeliktaş, N., Soysal, Y., & Keskin, M. (2024). Comparison of total phenolic content in organic and conventional carrot under different drying conditions using non-destructive analysis techniques. Microchemical Journal, 208, 112279.
Aziz, N., Khan, M. N., Ali, A., Khadim, A., Muhsinah, A. B., Uddin, J., & Musharraf, S. G. (2022). Rapid analysis of flavonoids based on spectral library development in positive ionization mode using LC-HR-ESI-MS/MS. Arabian Journal of Chemistry, 15(4), 103734.
Beltrán-Debón, R., Alonso-Villaverde, C., Aragonès, G., Rodríguez-Medina, I., Rull, A., Micol, V., Segura-Carretero, A., Fernández-Gutiérrez, A., Camps, J., & Joven, J. (2010). The aqueous extract of Hibiscus sabdariffa calices modulates the production of monocyte chemoattractant protein-1 in humans. Phytomedicine, 17(3), 186-191.
Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859-871.
Chahardoli, A., Jalilian, F., Memariani, Z., Farzaei, M. H., & Shokoohinia, Y. (2020). Chapter 26 - Analysis of organic acids. In: A. Sanches Silva, S. F. Nabavi, M. Saeedi, & S. M. Nabavi (Eds.), Recent Advances in Natural Products Analysis (pp. 767-823). Elsevier.
Chatatikun, M., Yamauchi, T., Yamasaki, K., Aiba, S., & Chiabchalard, A. (2019). Anti melanogenic effect of Croton roxburghii and Croton sublyratus leaves in α-MSH stimulated B16F10 cells. Journal of Traditional and Complementary Medicine, 9(1), 66-72.
Chen, S.H., Huang, T.C., Ho, C.T., & Tsai, P.J. (1998). Extraction, analysis, and study on the volatiles in roselle tea. Journal of Agricultural and Food Chemistry, 46(3), 1101-1105.
Choi, M. H., & Shin, H. J. (2016). Anti-melanogenesis effect of quercetin. cosmetics, 3(2).
Chou, S. T., Lo, H. Y., Li, C. C., Cheng, L. C., Chou, P. C., Lee, Y. C., Ho, T. Y., & Hsiang, C. Y. (2016). Exploring the effect and mechanism of Hibiscus sabdariffa on urinary tract infection and experimental renal inflammation. Journal of Ethnopharmacology, 194, 617-625.
Da-Costa-Rocha, I., Bonnlaender, B., Sievers, H., Pischel, I., & Heinrich, M. (2014). Hibiscus sabdariffa L. – A phytochemical and pharmacological review. Food Chemistry, 165, 424-443.
da Silva, A. P. G., Zia, S., John, O. D., de Souza, M. C., da Silva, L. C., & Sganzela, W. G. (2023). Delphinidin: Sources, Biosynthesis, Bioavailability, Bioactivity, and Pharmacology. In: J. Xiao (Ed.), Handbook of Dietary Flavonoids (pp. 1-31). Springer International Publishing.
Devi, K. P., Malar, D. S., Nabavi, S. F., Sureda, A., Xiao, J., Nabavi, S. M., & Daglia, M. (2015). Kaempferol and inflammation: From chemistry to medicine. Pharmacological Research, 99, 1-10.
Ersoy, E., Eroglu Ozkan, E., Boga, M., Yilmaz, M. A., & Mat, A. (2019). Anti-aging potential and anti-tyrosinase activity of three Hypericum species with focus on phytochemical composition by LC–MS/MS. Industrial Crops and Products, 141, 111735.
Ezzat, S. M., Salama, M. M., Seif El-Din, S. H., Saleh, S., El-Lakkany, N. M., Hammam, O. A., Salem, M. B., & Botros, S. S. (2016). Metabolic profile and hepatoprotective activity of the anthocyanin-rich extract of Hibiscus sabdariffa calyces. Pharmaceutival Biology, 54(12), 3172-3181.
Fernández-Arroyo, S., Rodríguez-Medina, I. C., Beltrán-Debón, R., Pasini, F., Joven, J., Micol, V., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2011). Quantification of the polyphenolic fraction and in vitro antioxidant and in vivo anti-hyperlipemic activities of Hibiscus sabdariffa aqueous extract. Food Research International, 44(5), 1490-1495.
Geum, N. G., Yu, J. H., Yeo, J. H., Choi, M. Y., Lee, J. W., Beak, J. K., & Jeong, J. B. (2021). Immunostimulatory activity and anti-obesity activity of Hibiscus manihot leaves in mouse macrophages, RAW264.7 cells and mouse adipocytes, 3T3-L1 cells. Journal of Functional Foods, 87, 104803.
Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. Current Protocols in Food Analytical Chemistry, 00(1), F1.2.1-F1.2.13.
Gonçalves, F., Heyraud, A., de Pinho, M. N., & Rinaudo, M. (2002). Characterization of white wine mannoproteins. Journal of Agricultural and Food Chemistry, 50(21), 6097-6101.
Grela, E., Kozłowska, J., & Grabowiecka, A. (2018). Current methodology of MTT assay in bacteria – A review. Acta Histochemica, 120(4), 303-311.
Hadidi, M., Liñán-Atero, R., Tarahi, M., Christodoulou, M. C., & Aghababaei, F. (2024). The potential health benefits of gallic acid: Therapeutic and food applications. Antioxidants (Basel), 13(8).
Haji Faraji, M., & Haji Tarkhani, A. (1999). The effect of sour tea (Hibiscus sabdariffa) on essential hypertension. Journal of Ethnopharmacology, 65(3), 231-236.
Han, Y., Zhou, M., Wang, L., Ying, X., Peng, J., Jiang, M., Bai, G., & Luo, G. (2015). Comparative evaluation of different cultivars of Flos Chrysanthemi by an anti-inflammatory-based NF-κB reporter gene assay coupled to UPLC-Q/TOF MS with PCA and ANN. Journal of Ethnopharmacology, 174, 387-395.
Hardinsyah, H., Gunawan, W. B., Nurkolis, F., Alisaputra, D., Kurniawan, R., Mayulu, N., Taslim, N. A., & Tallei, T. E. (2023). Antiobesity potential of major metabolites from Clitoria ternatea kombucha: Untargeted metabolomic profiling and molecular docking simulations. Current Research in Food Science, 6, 100464.
Hassan, M., Shahzadi, S., & Kloczkowski, A. (2023). Tyrosinase inhibitors naturally present in plants and synthetic modifications of these natural products as anti-melanogenic agents: A review. Molecules, 28(1), 378.
Herranz-López, M., Olivares-Vicente, M., Encinar, J. A., Barrajón-Catalán, E., Segura-Carretero, A., Joven, J., & Micol, V. (2017). Multi-targeted molecular effects of Hibiscus sabdariffa polyphenols: An opportunity for a global approach to obesity. Nutrients, 9(8), 907.
Hou, D. X., Tong, X., Terahara, N., Luo, D., & Fujii, M. (2005). Delphinidin 3-sambubioside, a Hibiscus anthocyanin, induces apoptosis in human leukemia cells through reactive oxygen species-mediated mitochondrial pathway. Archives Biochemistry Biophysics, 440(1), 101-109.
Husain, A., Chanana, H., Khan, S. A., Dhanalekshmi, U. M., Ali, M., Alghamdi, A. A., & Ahmad, A. (2022). Chemistry and pharmacological actions of delphinidin, a dietary purple pigment in anthocyanidin and anthocyanin forms. Frontiers in Nutrition, 9, 746881.
Ioannou, I., Kriznik, A., Chekir, L., & Ghoul, M. (2019). Effect of the processing temperature on the degradation of food flavonoids: Kinetic and calorimetric studies on model solutions. Journal of Food Engineering and Technology, 8(2):91-102.
Ismail, A., Ikram, E. H. K., & Nazri, H. S. M. (2008). Roselle (Hibiscus sabdariffa L.) seeds nutritional composition protein quality and health benefits. Food, 2(1), 1-16.
Italiani, P., & Boraschi, D. (2014). From Monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Frontiers in Immunology, 5, 541.
Izquierdo-Vega, J. A., Arteaga-Badillo, D. A., Sánchez-Gutiérrez, M., Morales-González, J. A., Vargas-Mendoza, N., Gómez-Aldapa, C. A., Castro-Rosas, J., Delgado-Olivares, L., Madrigal-Bujaidar, E., & Madrigal-Santillán, E. (2020). Organic acids from roselle (Hibiscus sabdariffa L.)-A brief review of its pharmacological effects. Biomedicines, 8(5), 100.
Jacobo-Velázquez, D. A., & Cisneros-Zevallos, L. (2009). Correlations of antioxidant activity against phenolic content revisited: a new approach in data analysis for food and medicinal plants. Joural of Food Science, 74(9), R107-113.
Janson, B., Prasomthong, J., Malakul, W., Boonsong, T., & Tunsophon, S. (2021). Hibiscus sabdariffa L. calyx extract prevents the adipogenesis of 3T3-L1 adipocytes, and obesity-related insulin resistance in high-fat diet-induced obese rats. Biomedicine & Pharmacotherapy, 138, 111438.
Juhari, N. H., Martens, H. J., & Petersen, M. A. (2021). Changes in Physicochemical properties and volatile compounds of roselle (Hibiscus sabdariffa L.) calyx during different drying methods. Molecules, 26(20).
Kao, E.-S., Yang, M.-Y., Hung, C.-H., Huang, C.-N., & Wang, C.-J. (2016). Polyphenolic extract from Hibiscus sabdariffa reduces body fat by inhibiting hepatic lipogenesis and preadipocyte adipogenesis. Food & Function, 7(1), 171-182.
Kim, J. K., So, H., Youn, M. J., Kim, H. J., Kim, Y., Park, C., Kim, S. J., Ha, Y. A., Chai, K. Y., & Kim, S. M. (2007). Hibiscus sabdariffa L. water extract inhibits the adipocyte differentiation through the PI3-K and MAPK pathway. Journal of Ethnopharmacology, 114(2), 260-267.
Kouakou, T., Konkon, N., Obouayeba, A., & Abeda, Z. (2015). Anthocyanin production in calyx and callus of Roselle (Hibiscus sabdariffa L.) and its impact on antioxidant activity. Journal of Pharmacognosy and Phytochemistry, 4(3), 9-15.
Kuo, C. Y., Kao, E. S., Chan, K. C., Lee, H. J., Huang, T. F., & Wang, C. J. (2012). Hibiscus sabdariffa L. extracts reduce serum uric acid levels in oxonate-induced rats. Journal of Functional Foods, 4(1), 375-381.
Kuriyan, R., Kumar, D. R., R, R., & Kurpad, A. V. (2010). An evaluation of the hypolipidemic effect of an extract of Hibiscus Sabdariffa leaves in hyperlipidemic Indians: a double blind, placebo controlled trial. BMC Complementary and Alternative Medicine, 10, 27.
Laskar, Y. B., & Mazumder, P. B. (2020). Insight into the molecular evidence supporting the remarkable chemotherapeutic potential of Hibiscus sabdariffa L. Biomedicine & Pharmacotherapy, 127, 110153.
Lin, S., & Xiao, J. (2024). Chapter one - Impact of thermal processing on dietary flavonoids. In: F. Toldrá (Ed.), Advances in Food and Nutrition Research (Vol. 108, pp. 1-34). Academic Press, Spain.
Long, Q., Chen, H., Yang, W., Yang, L., & Zhang, L. (2021). Delphinidin-3-sambubioside from Hibiscus sabdariffa. L attenuates hyperlipidemia in high fat diet-induced obese rats and oleic acid-induced steatosis in HepG2 cells. Bioengineered, 12(1), 3837-3849.
Loypimai, P., Moongngarm, A., & Chottanom, P. (2016). Thermal and pH degradation kinetics of anthocyanins in natural food colorant prepared from black rice bran. Journal of Food Science and Technology, 53(1), 461-470.
Lu, Y., Wang, Y., Liu, Y., Wang, Y., Guo, S., Sun, K., & Qi, H. (2024). The influence of drying methods on extract content, tyrosinase activity inhibition, and mechanism in Ascophyllum nodosum: A combined microstructural and kinetic study. Food Chemistry, 458, 140230.
Mandal, S. K., Kumar, B. K., Sharma, P. K., Murugesan, S., & Deepa, P. R. (2022). In silico and in vitro analysis of PPAR – α/γ dual agonists: Comparative evaluation of potential phytochemicals with anti-obesity drug orlistat. Computers in Biology and Medicine, 147, 105796.
Martínez-Navarrete, N., Salvador, A., Oliva, C., & Camacho, M. M. (2019). Influence of biopolymers and freeze-drying shelf temperature on the quality of a mandarin snack. LWT Food Science and Techology, 99, 57-61.
McKay, D. L., Chen, C. Y. O., Saltzman, E., & Blumberg, J. B. (2010). Hibiscus Sabdariffa L. Tea (Tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. The Journal of Nutrition, 140(2), 298-303.
Mercado-Mercado, G., Blancas-Benitez, F. J., Velderrain-Rodríguez, G. R., Montalvo-González, E., González-Aguilar, G. A., Alvarez-Parrilla, E., & Sáyago-Ayerdi, S. G. (2015). Bioaccessibility of polyphenols released and associated to dietary fibre in calyces and decoction residues of Roselle (Hibiscus sabdariffa L.). Journal of Functional Foods, 18, 171-181.
Merecz-Sadowska, A., Sitarek, P., Kowalczyk, T., Zajdel, K., Jęcek, M., Nowak, P., & Zajdel, R. (2023). Food anthocyanins: Malvidin and its glycosides as promising antioxidant and anti-inflammatory agents with potential health benefits. Nutrients, 15(13).
Minh, N. (2020). Various variables in production of dried roselle (Hibiscus sabdariffa L.) calyx herbal tea. Bioscience Research, 17(2), 941-947.
Montalvo-González, E., Villagrán, Z., González-Torres, S., Iñiguez-Muñoz, L. E., Isiordia-Espinoza, M. A., Ruvalcaba-Gómez, J. M., Arteaga-Garibay, R. I., Acosta, J. L., González-Silva, N., & Anaya-Esparza, L. M. (2022). Physiological effects and human health benefits of Hibiscus sabdariffa: A review of clinical trials. Pharmaceuticals, 15(4).
Morales-Luna, E., Pérez-Ramírez, I. F., Salgado, L. M., Castaño-Tostado, E., Gómez-Aldapa, C. A., & Reynoso-Camacho, R. (2019). The main beneficial effect of roselle (Hibiscus sabdariffa) on obesity is not only related to its anthocyanin content. Journal of the Science of Food and Agriculture, 99(2), 596-605.
Musa, A., Tahir, H. E., Gasmalla, M. A. A., Mahunu, G. K., & Mariod, A. A. (2021). Chapter 7 - Volatile compounds and phytochemicals of Hibiscus sabdariffa. In: A. A. Mariod, H. E. Tahir, & G. K. Mahunu (Eds.), Roselle (Hibiscus sabdariffa) (pp. 91-111). Academic Press, Elsevier.
Ngoc Nhon, H. T., Diem My, N. T., Tuong Vi, V. N., Kim Lien, P. T., Thao Minh, N. T., Doan Duy, L. N., Hong Anh, L. T., & Anh Dao, D. T. (2022). Enhancement of extraction effectiveness and stability of anthocyanin from Hibiscus sabdariffa L. Journal of Agriculture and Food Research, 10, 100408.
Nguyen, Q. V., & Chuyen, H. V. (2020). Processing of herbal tea from roselle (Hibiscus sabdariffa L.): Effects of drying temperature and brewing conditions on total soluble solid, phenolic content, antioxidant capacity and sensory quality. Beverages, 6(1), 2.
Ning, X., Su, J., Zhang, X., Wang, H., Guan, Z., Fang, W., Chen, F., Zhao, S., & Zhang, F. (2023). Evaluation of volatile compounds in tea chrysanthemum cultivars and elite hybrids. Scientia Horticulturae, 320, 112218.
Oancea, S. (2021). A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants, 10(9), 1337.
Ojeda, D., Jiménez-Ferrer, E., Zamilpa, A., Herrera-Arellano, A., Tortoriello, J., & Alvarez, L. (2010). Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. Journal of Ethnopharmacology, 127(1), 7-10.
Posadino, A. M., Giordo, R., Ramli, I., Zayed, H., Nasrallah, G. K., Wehbe, Z., Eid, A. H., Gürer, E. S., Kennedy, J. F., Aldahish, A. A., Calina, D., Razis, A. F. A., Modu, B., Habtemariam, S., Sharifi-Rad, J., Pintus, G., & Cho, W. C. (2023). An updated overview of cyanidins for chemoprevention and cancer therapy. Biomedicine & Pharmacotherapy, 163, 114783.
Rabelo, T. K., Guimarães, A. G., Oliveira, M. A., Gasparotto, J., Serafini, M. R., de Souza Araújo, A. A., Quintans-Júnior, L. J., Moreira, J. C. F., & Gelain, D. P. (2016). Shikimic acid inhibits LPS-induced cellular pro-inflammatory cytokines and attenuates mechanical hyperalgesia in mice. International Immunopharmacology, 39, 97-105.
Rauter, A. P., Ennis, M., Hellwich, K. H., Herold, B. J., Horton, D., Moss, G. P., & Schomburg, I. (2018). Nomenclature of flavonoids (IUPAC Recommendations 2017). 90(9), 1429-1486.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231-1237.
Riaz, G., & Chopra, R. (2018). A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomedicine & Pharmacotherapy, 102, 575-586.
Samota, M. K., Sharma, M., Kaur, K., Sarita, Yadav, D. K., Pandey, A. K., Tak, Y., Rawat, M., Thakur, J., & Rani, H. (2022). Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications. Frontiers in Nutrition, 9, 917617.
Semaming, Y., Pannengpetch, P., Chattipakorn, S. C., & Chattipakorn, N. (2015). Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine. Evidence Based Complementary Alternative Medicine, 2015, 593902.
Sim, Y. Y., & Nyam, K. L. (2021). Application of Hibiscus cannabinus L. (kenaf) leaves extract as skin whitening and anti-aging agents in natural cosmetic prototype. Industrial Crops and Products, 167, 113491.
Sinela, A., Rawat, N., Mertz, C., Achir, N., Fulcrand, H., & Dornier, M. (2017). Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products. Food Chemistry, 214, 234-241.
Singh, M., Thrimawithana, T., Shukla, R., & Adhikari, B. (2021). Extraction and characterization of polyphenolic compounds and potassium hydroxycitrate from Hibiscus sabdariffa. Future Foods, 4, 100087.
Sáyago-Ayerdi, S. G., Venema, K., Tabernero, M., Sarriá, B., Bravo, L., & Mateos, R. (2021). Bioconversion of polyphenols and organic acids by gut microbiota of predigested Hibiscus sabdariffa L. calyces and Agave (Agave tequilana Weber) fructans assessed in a dynamic in vitro model (TIM-2) of the human colon. Food Research International, 143, 110301.
Sogo, T., Terahara, N., Hisanaga, A., Kumamoto, T., Yamashiro, T., Wu, S., Sakao, K., & Hou, D. X. (2015). Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin. BioFactors, 41(1), 58-65.
Solano, F., Briganti, S., Picardo, M., & Ghanem, G. (2006). Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Research, 19(6), 550-571.
Srinivasulu, C., Ramgopal, M., Ramanjaneyulu, G., Anuradha, C. M., & Suresh Kumar, C. (2018). Syringic acid (SA) ‒ A review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomedicine & Pharmacotherapy, 108, 547-557.
Sui, X., Dong, X., & Zhou, W. (2014). Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution. Food Chemistry, 163, 163-170.
Toyama, D. O., Ferreira, M. J. P., Romoff, P., Fávero, O. A., Gaeta, H. H., & Toyama, M. H. (2014). Effect of chlorogenic acid (5-caffeoylquinic acid) isolated from Baccharis oxyodonta on the structure and pharmacological activities of secretory phospholipase A2 from Crotalus durissus terrificus. BioMed Research International, 2014(1), 726585.
Tseng, T. H., Wang, C. J., & Kao, E. S. (1996). Hibiscus protocatechuic acid protects against oxidative damage induced by tert-butylhydroperoxide in rat primary hepatocytes. Chemico-Biological Interactions, 101(2), 137-148.
Wallace, T. C., & Giusti, M. M. (2019). Anthocyanins-nature's bold, beautiful, and health-promoting colors. Foods, 8(11), 550.
Wang, M., Chen, R., Wang, S., Cui, J., Lian, D., & Li, L. (2024). Comparative study of binding bvehaviors of cyanidin, cyanidin-3-galactoside, peonidin with tyrosinase. Journal of Fluorescence, 34(4), 1747-1760.
Wang, W., Sun, C., Mao, L., Ma, P., Liu, F., Yang, J., & Gao, Y. (2016). The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science & Technology, 56, 21-38.
Wong, P. K., Yusof, S., Ghazali, H. M., & Che Man, Y. B. (2002). Physico‐chemical characteristics of roselle (Hibiscus sabdariffa L.). Nutrition & Food Science, 32(2), 68-73.
Xu, Z., He, W. Q., Liu, C. S., & Kong, J. Q. (2020). Enzymatic synthesis of myricetin 3-O-galactoside through a whole-cell biocatalyst. Chinese Herbal Medicines, 12(4), 384-389.
Yin, G., Cao, L., Xu, P., Jeney, G., & Nakao, M. (2011). Hepatoprotective and antioxidant effects of Hibiscus sabdariffa extract against carbon tetrachloride-induced hepatocyte damage in Cyprinus carpio. In Vitro Cellular & Developmental Biology Animal, 47(1), 10-15.
Zakaria, F. R., Prangdimurti, E., & Damanik, R. (2015). Anti-inflammatory of purple roselle extract in diabetic rats induced by streptozotocin. Procedia Food Science, 3, 182-189.
Zeng, K., Thompson, K. E., Yates, C. R., & Miller, D. D. (2009). Synthesis and biological evaluation of quinic acid derivatives as anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters, 19(18), 5458-5460.
Zhen, J., Villani, T. S., Guo, Y., Qi, Y., Chin, K., Pan, M. H., Ho, C. T., Simon, J. E., & Wu, Q. (2016). Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves. Food Chemistry, 190, 673-680.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97151-
dc.description.abstract洛神花作為臺灣常見的天然食材,廣泛種植於花東地區,民間常用其鮮紅色果萼調節血壓、治療肝臟疾病、抗發炎和控制血糖等。臺東農改場透過雜交育種技術,培育出富含花青素的洛神花新品種臺東6號。目前仍缺乏其化學組成分及功能性方面的報告,因此本研究目的為探討不同乾燥條件對新品種洛神花的化學成分及生物活性影響。本實驗採用三種乾燥方法,包括冷凍乾燥、50°C熱風乾燥 (48小時) 及60°C熱風乾燥 (24小時),並對樣品中酚類、黃酮類、花青素等活性成分的含量及其抗氧化、抗發炎、抗肥胖和美白等生物活性進行系統性分析,且以傳統種植的臺東3號作為對照組。洛神花經清洗、去籽、乾燥和均質化處理後,以高極性溶劑 (甲醇和丙酮) 和中極性溶劑 (乙酸乙酯) 分別進行萃取,並採用HPLC-ESI-QTOF MS/MS和GC-MS方法鑑定樣品中的成分。生物活性評估利用DPPH、ABTS和FRAP三種方法測試樣品的抗氧化能力,並透過細胞實驗測定抗發炎、美白和抗肥胖效果。結果顯示,臺東6號的總酚類和總黃酮類含量顯著高於臺東3號,然而不同乾燥方法對其影響並不顯著,說明酚類化合物和黃酮類具有較強的熱穩定性。相較之下,花青素含量則顯著受到乾燥溫度的影響;冷凍乾燥方法能保留最多的花青素,而50°C熱風乾燥樣品中的花青素含量最低,這可能是由於高溫長時間處理導致花青素分解或氧化所致。生物活性的分析結果顯示,處理條件對洛神花萃取物的DPPH、ABTS自由基清除能力和FRAP還原力的影響不明顯,各處理組間的差異不顯著,顯示乾燥方法對洛神花的抗氧化效果影響較小;此結果與總酚類含量的結果相符,表明總酚類含量是抗氧化能力的重要指標。洛神花萃取物能顯著抑制脂多醣活化之RAW264.7巨噬細胞的一氧化氮、TNF-α及IL-6生成,並呈現良好的劑量效應,而臺東6號的抗發炎效果優於臺東3號,此與臺東6號有較高的總酚類和總黃酮類的含量有關,較多的酚類及黃酮類化合物為臺東6號提供良好的抗發炎能力,其中臺東6號經長時間較低溫熱風乾燥 (50°C) 的抗發炎效果最佳。美白活性顯示臺東6號對黑色素生成具有顯著抑制效果,並能降低黑色素瘤細胞B16F10中的酪胺酸酶活性,說明具有良好的美白潛力。臺東6號也能有效抑制脂肪細胞中的油滴累積,顯示其在控制體脂生成方面的潛在應用價值。LC-MS/MS正離子模式與負離子模式分析共鑑定出30種化合物,主要為酚酸、黃酮類及花青素。主成分分析結果發現,新品種的臺東6號與傳統栽培的臺東3號代謝物輪廓有明顯差異,且乾燥方式對兩品種洛神花的化學組成影響顯著。成分熱圖結果顯示,抗發炎活性成分含量在較低溫 (50°C) 的熱風乾燥下會有所提升,進而促進抗發炎的效果。氣相質譜儀共鑑定出27種化合物,主要可分為醇類、醛類、酮類、酯類、有機酸類及烷烴。成分熱圖顯示不同乾燥處理方法對洛神花揮發性成分的含量影響顯著,其中冷凍乾燥能保留較多的揮發性成分。綜上所述,臺東6號洛神花具有豐富的機能性成分及良好的生物活性,尤其在抗氧化、抗發炎、美白和抗肥胖等方面表現突出。而不同的乾燥方法在生物活性上具有不同的優勢,冷凍乾燥可以保有最多的花青素,熱風乾燥可以提高抗發炎及抗肥胖的功效。本研究成果不僅說明臺東6號作為保健產品的價值,也為洛神花加工產業提供較佳乾燥方法的選擇依據。zh_TW
dc.description.abstractRoselle (Hibiscus sabdariffa L.), a common natural ingredient in Taiwan, is widely cultivated in the Hualien and Taitung regions. Its bright red calyces are traditionally used for regulating blood pressure, treating liver diseases, reducing inflammation, and controlling blood glucose levels. The Taitung Agricultural Research and Extension Station has developed a new anthocyanin-rich cultivar, Taitung No. 6, through hybrid breeding. However, there is a lack of reports on its chemical composition and functional properties. Therefore, this study aimed to investigate the impact of various drying conditions on the chemical composition and bioactivities of this novel cultivar, Taitung No. 6.Three drying methods were employed in this study: freeze-drying, hot air drying at 50°C for 48 hours, and hot air drying at 60°C for 24 hours. The contents of active compounds such as polyphenols, flavonoids, and anthocyanins, as well as their antioxidant, anti-inflammatory, whitening, and anti-obesity activities, were systematically analyzed. The traditional cultivar, Taitung No. 3, was used as the control group. After washing, deseeding, drying, and homogenizing the roselle samples, extraction was carried out with high-polarity solvents (methanol, acetone) and medium-polarity solvent (ethyl acetate). The chemical composition of the extracts was identified using HPLC-ESI-QTOF MS/MS and GC-MS. Biological activities were assessed by testing antioxidant capacity using the DPPH, ABTS, and FRAP methods, and by evaluating anti-inflammatory, whitening, and anti-obesity effects through cell assays. Results revealed that Taitung No. 6 had significantly higher total phenolics and total flavonoids contents than Taitung No. 3. However, different drying methods did not significantly affect these compounds, indicating that phenolics and flavonoids have strong thermal stability. In contrast, anthocyanin content was significantly affected by drying temperature; freeze-drying preserved the most anthocyanins, while hot air drying at 50°C resulted in the lowest level, likely due to prolonged high-temperature treatment leading to anthocyanin degradation or oxidation. The results of the bioactivity analysis showed that the drying methods had minimal effect on the DPPH and ABTS radical scavenging capacity and the FRAP reducing power of roselle extracts, with no significant differences between the groups. This indicates that drying methods have a limited impact on the antioxidant effects of roselle. These results are consistent with the total phenolic content findings, suggesting that total phenolic content is an important indicator of antioxidant capacity. The roselle extract significantly inhibited nitric oxide production in lipopolysaccharide-activated RAW264.7 macrophages, displaying a good dose-response effect, and Taitung No. 6 exhibited superior anti-inflammatory activity compared to Taitung No. 3. This was related to the higher total phenolics and total flavonoid contents of Taitung No. 6, as these compounds provide excellent anti-inflammatory capabilities. Among the different drying methods, the anti-inflammatory effect of Taitung No. 6 was most pronounced when subjected to prolonged low-temperature hot air drying (50°C). Whitening activity demonstrated that Taitung No. 6 effectively inhibited melanin production and reduced tyrosinase activity in B16F10 melanoma cells, showing its strong whitening potential. Taitung No. 6 also effectively suppressed lipid droplet accumulation in adipocytes, highlighting its potential in controlling adipogenesis. LC-MS/MS analysis identified 30 compounds in both positive and negative ion modes, which were primarily phenolic acids, flavonoids, and anthocyanins. Principal component analysis revealed distinct differences in the metabolic profiles of Taitung No. 6 and Taitung No. 3, with drying methods significantly affecting the chemical composition of both cultivars. Heatmap results indicated that the content of anti-inflammatory active compounds increased under lower-temperature (50°C) hot air drying, thus promoting anti-inflammatory effects. GC-MS analysis identified 27 compounds, primarily including alcohols, aldehydes, ketones, esters, organic acids, and alkanes. The heatmap results showed that different drying methods significantly influenced the volatile compound content of roselle, with freeze-drying preserving more volatile compounds. In conclusion, Taitung No. 6 roselle was rich in functional compounds and possessed remarkable bioactivities, particularly in antioxidant, anti-inflammatory, whitening, and anti-obesity properties. Different drying methods offered distinct advantages: freeze-drying preserved the most anthocyanins, while hot air drying enhanced anti-inflammatory and anti-obesity effects. This research not only highlighted the value of Taitung No. 6 as an ingredient for functional product development but also provided valuable guidance for an optimal drying method in the roselle processing industry.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:25:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:25:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iv
目次 vii
圖次 x
表次 xii
附錄 xiii
縮寫 xiv
第一章 前言 1
第二章 文獻回顧 2
一、 洛神花簡介 2
二、 臺灣常見的洛神花品種 2
三、 洛神花之藥理功效 3
四、 洛神花之化學成分 4
五、 常見的乾燥方法對洛神花之影響 10
六、 乾燥方法對多酚類化合物之影響 11
第三章 材料與方法 13
一、 實驗材料 13
(一) 試驗時間與地點 13
(二) 樣品處理 14
二、 洛神花萃取液製備 14
(一) 水溶性成分萃取 14
(二) 揮發性成分萃取 14
三、 多酚類含量分析 14
(一) 藥品配製 14
(二) 總酚類含量測定 15
(三) 總黃酮類含量測定 15
(四) 總花青素含量測定 15
四、 代謝體學 16
(一) 水溶性成分—LC-MS分析條件 16
(二) 揮發性成分—GC-MS分析條件 18
五、 抗氧化活性分析 19
(一) 藥品配製 19
(二) DPPH自由基清除力分析 19
(三) ABTS自由基清除力分析 19
(四) FRAP鐵離子還原力活性分析 20
六、 細胞實驗 20
(一) 細胞培養 20
(二) 細胞存活率分析 20
(三) 抗發炎活性分析 21
(四) 美白活性分析 23
(五) 抗肥胖活性分析 24
七、 統計方法 25
第四章 結果與討論 26
一、 不同乾燥處理條件對洛神花多酚類含量的影響 26
(一) 洛神花水溶性萃取物之產率 26
(二) 總酚類含量 27
(三) 總黃酮類含量 28
(四) 總花青素含量 29
二、 不同乾燥處理條件之洛神花萃取物的抗氧化活性 30
三、 不同乾燥處理條件之洛神花萃取物對生物活性影響 32
(一) 抗發炎活性 32
(二) 美白活性 41
(三) 抗肥胖活性 47
四、 不同乾燥處理條件對洛神花化學成分的影響 52
(一) LC-MS/MS負離子模式 52
(二) LC-MS/MS正離子模式 62
(三) GC-MS分析—揮發性成分 69
第五章 結論 74
參考文獻 76
附錄 87
-
dc.language.isozh_TW-
dc.title乾燥方法對新品種洛神花的化學成分及生物活性影響研究zh_TW
dc.titleStudies on the Effects of Drying Methods on the Chemical Composition and Biological Activities of a Novel Roselle Cultivar (Hibiscus sabdariffa L.)en
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭光成;蘇俊翰;鍾仁賜zh_TW
dc.contributor.oralexamcommitteeKuan-Chen Cheng;Chun-Han Su;Ren-Shih Chungen
dc.subject.keyword洛神花,乾燥,化學組成,抗氧化,抗發炎,抗肥胖,美白,zh_TW
dc.subject.keywordHibiscus sabdariffa,Drying,Chemical composition,Antioxidant activity,Anti-inflammatory activity,Anti-obesity activity,Whitening,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202500687-
dc.rights.note未授權-
dc.date.accepted2025-02-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
dc.date.embargo-liftN/A-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
4.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved