Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97149
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王尚禮zh_TW
dc.contributor.advisorShan-Li Wangen
dc.contributor.author李明霞zh_TW
dc.contributor.authorMing-Hsia Leeen
dc.date.accessioned2025-02-27T16:25:09Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-13-
dc.identifier.citation高雄區農業改良場112年度年報.(2023).行政院農業部
高雄區農業改良場111年度年報.(2022).行政院農業部
高雄區農業改良場110年度年報.(2021).行政院農業部
高雄區農業改良場109年度年報.(2020).行政院農業部
高雄區農業改良場108年度年報.(2019).行政院農業部
陳仁炫, & 鄒裕民. (2009). 土壤與肥料分析手册: 土壤物理及生物性質分析. 二.中華土壤肥料學會.
魏偉勝, 戴順發, & 鍾仁賜. (2015). 不同之輪作制度與施肥管理經二十年後對土壤化學性質與碳與氮之累積與轉變之影響 [Effects of Three Different Fertilization Managements on Soil Chemical Properties and the Accumulation and Transformation of Soil Carbon and Nitrogen Under Two Different Cropping Systems for Twenty Years]. 臺灣農業化學與食品科學, 53(1&2), 53-54.
Abbasi, A., Sajid, A., Haq, N., Rahman, S., Misbah, Z.-t., Sanober, G., Ashraf, M., & Kazi, A. G. (2014). Agricultural Pollution: An Emerging Issue. In P. Ahmad, M. R. Wani, M. M. Azooz, & L.-S. P. Tran (Eds.), Improvement of Crops in the Era of Climatic Changes: Volume 1 (pp. 347-387). Springer New York.
Abdala, D. B., Ghosh, A. K., da Silva, I. R., de Novais, R. F., & Alvarez Venegas, V. H. (2012). Phosphorus saturation of a tropical soil and related P leaching caused by poultry litter addition. Agriculture, Ecosystems & Environment, 162, 15-23.
Abdel Salam, M. A., Sabet, S. A., & Hashish, S. (1964). Patterns of fixation of P32-labelled phosphate by some soil minerals. Plant and Soil, 20(2), 241-250.
Afsar, M. Z., Yan, J., Vasilas, B., & Jin, Y. (2023). Redox oscillations destabilize and mobilize colloidal soil organic carbon. Science of The Total Environment, 864, 161153.
Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture [Review]. Frontiers in Microbiology, 8.
Anderson, G. (1980). Assessing Organic Phosphorus in Soils. In The Role of Phosphorus in Agriculture (pp. 411-431).
Anderson, G., Williams, E. G., & Moir, J. O. (1974). A Comparison Of The Sorption Of Inorganic Orthophosphate And Inositol Hexaphosphate By Six Acid Soils. Journal of Soil Science, 25(1), 51-62.
Ando, K., Yamaguchi, N., Kasuya, M., Oga, T., Ohashi, Y., & Taki, K. (2022). Long-term (nearly a century) effects of fertilizer, lime and rice straw compost application on active aluminum and iron and available phosphorus in paddy fields. Geoderma, 424, 115992.
Anthonio, C. K., Jing, H., Jin, C., Khan, M. N., Jiangxue, D., Garba, H. N., Dongchu, L., Guangrong, L., Shujun, L., Lisheng, L., & Huimin, Z. (2023). Impact of long-term fertilization on phosphorus fractions and manganese oxide with their interactions in paddy soil aggregates. Journal of Environmental Management, 333, 117440.
Anthonio, C. K., Jing, H., Tianfu, H., Qaswar, M., Kailou, L., Jiangxue, D., Khan, M. N., Abbas, M., Ali, S., Matelele, L. A., Shujun, L., Guangrong, L., Huimin, Z., & Jin, C. (2020). Depth Distribution of Bulk and Aggregate-Associated Manganese Oxides Mediated by Soil Chemical Properties in a Long-Term Fertilized Paddy Soil. Journal of Soil Science and Plant Nutrition, 20(4), 2631-2642.
Arai, M., & Wagai, R. (2024). Does rice paddy management increase soil organic carbon in the warm temperate and tropical regions? Geoderma Regional, 36, e00738.
Arai, Y., & Sparks, D. L. (2007). Phosphate Reaction Dynamics in Soils and Soil Components: A Multiscale Approach. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 94, pp. 135-179). Academic Press.
Audette, Y., Smith, D. S., Parsons, C. T., Chen, W., Rezanezhad, F., & Van Cappellen, P. (2020). Phosphorus binding to soil organic matter via ternary complexes with calcium. Chemosphere, 260, 127624.
Azevedo, R. P., Salcedo, I. H., Lima, P. A., da Silva Fraga, V., & Lana, R. M. Q. (2018). Mobility of phosphorus from organic and inorganic source materials in a sandy soil. International Journal of Recycling of Organic Waste in Agriculture, 7(2), 153-163.
Baken, S., Moens, C., van der Grift, B., & Smolders, E. (2016). Phosphate binding by natural iron-rich colloids in streams. Water Research, 98, 326-333.
Baldwin, D. S. (1996). Effects of exposure to air and subsequent drying on the phosphate sorption characteristics of sediments from a eutrophic reservoir. Limnology and Oceanography, 41(8), 1725-1732.
Balo, S., & Mahata, D. (2022). Studies on Phosphorous Dynamics in Soils. International Journal of Plant & Soil Science, 34(23), 1308-1319.
Barrow, N. J., Sen, A., Roy, N., & Debnath, A. (2021). The soil phosphate fractionation fallacy. Plant and Soil, 459(1), 1-11.
Baskar, M., Solaimalai, A., Sivakumar, C., & Suresh, R. (2000). Phosphorus management in rice: A review. Agricultural Reviews, 21, 168-177.
Bertrand, I., Holloway, R., Armstrong, R., & McLaughlin, M. (2003). Chemical characteristics of phosphorus in alkaline soils from southern Australia. Soil Research, 41(1), 61-76.
Bhokare, P. R., & Wankhade, R. R. (2024). IMPACTS OF CHEMICAL FERTILIZER ON AGRICULTURAL SOIL OF DIGRAS REGION, YAVATMAL DISTRICT, MAHARASHTRA (INDIA): A CASE STUDY. International Education and Research Journal (IERJ), 10(5).
Bieleski, R. L. (1973). Phosphate Pools, Phosphate Transport, and Phosphate Availability. Annual Review of Plant Biology, 24(Volume 24, 1973), 225-252.
Borggaard, O. K. (1986). Iron oxides in relation to phosphate adsorption by soils. Acta Agriculturae Scandinavica, 36(1), 107-118.
Borggaard, O. K., Jdrgensen, S. S., Moberg, J. P., & Raben-Lange, B. (1990). Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils. Journal of Soil Science, 41(3), 443-449.
Bortolon, L., Gianello, C., & Kovar, J. L. (2010). Phosphorus Availability to Corn and Soybean Evaluated by Three Soil-Test Methods for Southern Brazilian Soils. Communications in Soil Science and Plant Analysis, 42(1), 39-49.
Bouray, M., Moir, J. L., Condron, L. M., & Lehto, N. J. (2021). Lime-Induced pH Elevation Influences Phosphorus Biochemical Processes and Dynamics in the Rhizosphere of Lupinus polyphyllus and Lupinus angustifolius. Journal of Soil Science and Plant Nutrition, 21(3), 1978-1992.
Bromfield, S. (1967). An examination of the use of ammonium fluride as a selective extractant for aluminium-bound phosphate in partially phosphated systems. Soil Research, 5(2), 225-234.
Brust, G. E. (2019). Chapter 9 - Management Strategies for Organic Vegetable Fertility. In D. Biswas & S. A. Micallef (Eds.), Safety and Practice for Organic Food (pp. 193-212). Academic Press.
Bunn, R. A., Magelky, R. D., Ryan, J. N., & Elimelech, M. (2002). Mobilization of Natural Colloids from an Iron Oxide-Coated Sand Aquifer:  Effect of pH and Ionic Strength. Environmental Science & Technology, 36(3), 314-322.
Burd, J. S. (1948). Chemistry of the phosphate ion in soil systems. Soil Science, 65(3), 227-248.
Cai KunZheng, C. K., Luo ShiMing, L. S., & Duan ShunShan, D. S. (2003). The relationship between spatial distribution of rice root system and yield.
Cao, X., Han, X., Chen, Y., Li, J., & Zhai, Y. (2024). Flood irrigation increases the release of phosphorus from aquifer sediments into groundwater. Journal of Contaminant Hydrology, 261, 104297.
Celi, L., Lamacchia, S., Marsan, F. A., & Barberis, E. (1999). Interaction Of Inositol Hexaphosphate On Clays: Adsorption And Charging Phenomena. Soil Science, 164(8), 574-585.
Chang, S. C., & Jackson, M. L. (1958). SOIL PHOSPHORUS FRACTIONS IN SOME REPRESENTATIVE SOILS. Journal of Soil Science, 9(1), 109-119.
Chassé, A. W., & Ohno, T. (2016). Higher Molecular Mass Organic Matter Molecules Compete with Orthophosphate for Adsorption to Iron (Oxy)hydroxide. Environmental Science & Technology, 50(14), 7461-7469.
Chatterjee, D., Nayak, A. K., Mishra, A., Swain, C. K., Kumar, U., Bhaduri, D., Panneerselvam, P., Lal, B., Gautam, P., & Pathak, H. (2021). Effect of Long-Term Organic Fertilization in Flooded Rice Soil on Phosphorus Transformation and Phosphate Solubilizing Microorganisms. Journal of Soil Science and Plant Nutrition, 21(2), 1368-1381.
Chaunan, B. S., STEWART, J. W. B., & PAUL, E. A. (1981). EFFECT OF LABILE INORGANIC PHOSPHATE STATUS AND ORGANIC CARBON ADDITIONS ON THE MICROBIAL UPTAKE OF PHOSPHORUS IN SOILS. Canadian Journal of Soil Science, 61(2), 373-385.
Chen, C., Dong, Y., & Thompson, A. (2023). Electron Transfer, Atom Exchange, and Transformation of Iron Minerals in Soils: The Influence of Soil Organic Matter. Environmental Science & Technology, 57(29), 10696-10707.
Chen, C., Hall, S. J., Coward, E., & Thompson, A. (2020). Iron-mediated organic matter decomposition in humid soils can counteract protection. Nature Communications, 11(1), 2255.
Chen, M., Zhang, S., Liu, L., Chang, B., Li, Y., & Ding, X. (2024). Organo-mineral complexes in soil colloids: Implications for carbon storage in saline-alkaline paddy soils from an eight-year field experiment. Pedosphere, 34(1), 97-109.
Chen, M., Zhang, S., Liu, L., & Ding, X. (2023). Influence of organic fertilization on clay mineral transformation and soil phosphorous retention: Evidence from an 8-year fertilization experiment. Soil and Tillage Research, 230, 105702.
Chen, X., Hu, Y., Xia, Y., Zheng, S., Ma, C., Rui, Y., He, H., Huang, D., Zhang, Z., Ge, T., Wu, J., Guggenberger, G., Kuzyakov, Y., & Su, Y. (2021). Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology, 27(11), 2478-2490.
Chen, Y.-S. R., Butler, J. N., & Stumm, W. (1973). Adsorption of phosphate on alumina and kaolinite from dilute aqueous solutions. Journal of Colloid and Interface Science, 43(2), 421-436.
Cheng, Y., Ishimoto, K., Kuriyama, Y., Osaki, M., & Ezawa, T. (2013). Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities. Plant and Soil, 365(1), 397-407.
Chenu, C., Le Bissonnais, Y., & Arrouays, D. (2000). Organic Matter Influence on Clay Wettability and Soil Aggregate Stability. Soil Science Society of America Journal, 64(4), 1479-1486.
Coleman, R. (1945). The Mechanism of Phosphate Fixation by Montmorillonitic and Kaolinitic Clays. Soil Science Society of America Journal, 9(C), 72-78.
Cordell, D., & White, S. (2014). Life's Bottleneck: Sustaining the World's Phosphorus for a Food Secure Future. Annual Review of Environment and Resources, 39(1), 161-188.
Curtin, D., Selles, F., & Steppuhn, H. (1998). Estimating Calcium-Magnesium Selectivity in Smectitic Soils from Organic Matter and Texture. Soil Science Society of America Journal, 62(5), 1280-1285.
Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. In J. J. Adu-Gyamfi (Ed.), Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities (pp. 201-213). Springer Netherlands.
Darke, A. K., & Walbridge, M. R. (2000). Al and Fe Biogeochemistry in a floodplain forest: Implications for P retention. Biogeochemistry, 51(1), 1-32.
de Jonge, L. W., Kjaergaard, C., & Moldrup, P. (2004). Colloids and Colloid-Facilitated Transport of Contaminants in Soils: An Introduction. Vadose Zone Journal, 3(2), 321-325.
Delgado, A., & Torrent, J. (2000). Phosphorus Forms and Desorption Patterns in Heavily Fertilized Calcareous and Limed Acid Soils. Soil Science Society of America Journal, 64(6), 2031-2037.
Demay, J., Ringeval, B., Pellerin, S., & Nesme, T. (2022). Anthropogenic signature of global agricultural soil phosphorus.
Deubel, A., & Merbach, W. (2005). Influence of Microorganisms on Phosphorus Bioavailability in Soils. In A. Varma & F. Buscot (Eds.), Microorganisms in Soils: Roles in Genesis and Functions (pp. 177-191). Springer Berlin Heidelberg.
Ding, S., Zhang, S., Wang, Y., Chen, S., & Chen, Q. (2024). Restricted colloidal-bound phosphorus release controlled by alternating flooding and drying cycles in an alkaline calcareous soil. Environmental Pollution, 343, 123204.
Ding, S., Zhang, S., Wang, Y., Chen, S., & Chen, Q. (2024). Restricted colloidal-bound phosphorus release controlled by alternating flooding and drying cycles in an alkaline calcareous soil. Environ Pollut, 343, 123204.
Duan, L., Li, M., Liu, J., & Chen, W. (2025). Soil colloids can significantly enhance spreading of polybromodiphenyl ethers in groundwater by serving as an effective carrier. Journal of Environmental Sciences, 147, 93-100.
Duan, X., Yu, X., Li, Z., Wang, Q., Liu, Z., & Zou, Y. (2020). Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands. Soil Biology and Biochemistry, 149, 107949.
Edzwald, J. K., Toensing, D. C., & Leung, M. C.-Y. (1976). Phosphate adsorption reactions with clay minerals. Environmental Science & Technology, 10(5), 485-490.
Eisa, E., & Mohammad Reza, O. (2024). Phosphorus Dynamics in Soil-Water-Sediment Environment. In A. A. Naser, M. Asim, U. Shahid, & A. K. Nafees (Eds.), Phosphorus in Soils and Plants (pp. Ch. 2). IntechOpen.
El Bamiki, R., Raji, O., Ouabid, M., Elghali, A., Khadiri Yazami, O., & Bodinier, J.-L. (2021). Phosphate Rocks: A Review of Sedimentary and Igneous Occurrences in Morocco. Minerals, 11(10), 1137.
Eltohamy, K. M., Khan, S., He, S., Li, J., Liu, C., & Liang, X. (2023). Prediction of nano, fine, and medium colloidal phosphorus in agricultural soils with machine learning. Environmental Research, 220, 115222.
Fang, D., Zhao, Z., Chang, E., Xu, R., Hong, Z., Zhou, L., & Jiang, J. (2019). Paddy Cultivation Significantly Alters Phosphorus Sorption Characteristics and Loss Risk in a Calcareous Paddy Soil Chronosequence. Soil Science Society of America Journal, 83(3), 575-583.
Fekri, M., & Kaveh, S. (2013). Heavy metal accumulation in soil after application of organic wastes. Arabian Journal of Geosciences, 6(2), 463-467.
Fitriatin, B. N., Kamaluddin, N. N., Herdiyantoro, D., & Adila, L. (2023). The Effect of Organic Acids Produced by Phosphate Solubilizing Microbes on Phosphorus Solubilization. Novel Aspects on Chemistry and Biochemistry Vol. 1, 52-64.
Fogat, S., Kumar, R., Dhankar, A., Jyoti, & Kavita. (2023). Release Behaviour of Phosphorus and Its Fractions in Different Phosphorus Status Soils. International Journal of Plant & Soil Science, 35(8), 19-25.
Gardner, L. R. (1990). The role of rock weathering in the phosphorus budget of terrestrial watersheds. Biogeochemistry, 11(2), 97-110.
Gebrim, F., Novais, R., Silva, I., Schulthais, F., Vergutz, L., Procópio, L., Moreira, F., & Jesus, G. (2010). Mobility of inorganic and organic phosphorus forms under different levels of phosphate and poultry litter fertilization in soils. Revista Brasileira de Ciência do Solo, 34, 1195-1205.
Geisseler, D., & Scow, K. M. (2014). Long-term effects of mineral fertilizers on soil microorganisms – A review. Soil Biology and Biochemistry, 75, 54-63.
George, T. S., Fransson, A.-M., Hammond, J. P., & White, P. J. (2011). Phosphorus Nutrition: Rhizosphere Processes, Plant Response and Adaptations. In E. Bünemann, A. Oberson, & E. Frossard (Eds.), Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling (pp. 245-271). Springer Berlin Heidelberg.
Gerke, J. (2018). Concepts and Misconceptions of Humic Substances as the Stable Part of Soil Organic Matter: A Review. Agronomy, 8(5), 76.
Gu, C., Dam, T., Hart, S. C., Turner, B. L., Chadwick, O. A., Berhe, A. A., Hu, Y., & Zhu, M. (2020). Quantifying Uncertainties in Sequential Chemical Extraction of Soil Phosphorus Using XANES Spectroscopy. Environmental Science & Technology, 54(4), 2257-2267.
Gu, C., & Margenot, A. J. (2021). Navigating limitations and opportunities of soil phosphorus fractionation. Plant and Soil, 459(1), 13-17.
Haefele, S. M., Mossa, A. W., Gashu, D., Nalivata, P. C., Broadley, M. R., McGrath, S. P., & Thomas, C. L. (2024). Mehlich 3 as an indicator of grain nutrient concentration for five cereals in sub-Saharan Africa. Field Crops Research, 307, 109243.
Hall, W. L., & Robarge, W. P. (2004). Environmental impact of fertilizer on soil and water. American Chemical Society.
Han, R., Wang, Z., Lv, J., Zhu, Z., Yu, G.-H., Li, G., & Zhu, Y.-G. (2022). Multiple Effects of Humic Components on Microbially Mediated Iron Redox Processes and Production of Hydroxyl Radicals. Environmental Science & Technology, 56(22), 16419-16427.
Han Wei, H. W., Liang ChengHua, L. C., Du LiYu, D. L., Liu Li, L. L., Wu YuMei, W. Y., & An Ning, A. N. (2010). Phosphorus adsorption property onto synthetic iron oxides under different pH conditions. Acta Agriculturae Zhejiangensis, 22(1), 77–80.
Hawkesford, M. J., Cakmak, I., Coskun, D., De Kok, L. J., Lambers, H., Schjoerring, J. K., & White, P. J. (2023). Chapter 6 - Functions of macronutrients☆☆This chapter is a revision of the third edition chapter by M. Hawkesford, W. Horst, T. Kichey, H. Lambers, J. Schjoerring, I. Skrumsager Møller, and P. White, pp. 135–189. DOI: Elsevier Ltd. In Z. Rengel, I. Cakmak, & P. J. White (Eds.), Marschner's Mineral Nutrition of Plants (Fourth Edition) (pp. 201-281). Academic Press.
Hayatu, N. G., Liu, Y., Zhang, S., Huang, J., Han, T., Khan, M. N., Daba, N. A., Noma, S. S., Lv, Z., Hou, H., Lan, X., Ji, J., & Zhang, H. (2023). Long-Term Organic Manure Substitution Increases Yield and Phosphorus Use Efficiency in a Double-Rice System by Altering Soil Phosphorus Uptake and Apparent Balance. Agronomy, 13(6), 1440.
Haygarth, P. M., Jarvie, H. P., Powers, S. M., Sharpley, A. N., Elser, J. J., Shen, J., Peterson, H. M., Chan, N. I., Howden, N. J., Burt, T., Worrall, F., Zhang, F., & Liu, X. (2014). Sustainable phosphorus management and the need for a long-term perspective: the legacy hypothesis. Environ Sci Technol, 48(15), 8417-8419.
He, K., He, G., Wang, C., Zhang, H., Xu, Y., Wang, S., Kong, Y., Zhou, G., & Hu, R. (2020). Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Applied Soil Ecology, 155, 103674.
Hemwall, J. B. (1957). The Fixation of Phosphorus by Soils. In (pp. 95-112).
Henderson, R., Kabengi, N., Mantripragada, N., Cabrera, M., Hassan, S., & Thompson, A. (2012). Anoxia-Induced Release of Colloid- and Nanoparticle-Bound Phosphorus in Grassland Soils. Environmental Science & Technology, 46(21), 11727-11734.
Holtan, H., Kamp-Nielsen, L., & Stuanes, A. (1988). Phosphorus in soil, water and sediment: an overview. Phosphorus in Freshwater Ecosystems: Proceedings of a Symposium held in Uppsala, Sweden, 25–28 September 1985,
Hossain, M. E., Mei, X., Zhang, W., Dong, W., Yan, Z., Liu, X., Rachit, S., Gopalakrishnan, S., & Liu, E. (2021). Substitution of Chemical Fertilizer with Organic Fertilizer Affects Soil Total Nitrogen and Its Fractions in Northern China. International Journal of Environmental Research and Public Health, 18(23), 12848.
Hosseini, S. H., Liang, X., Niyungeko, C., Miaomiao, H., Li, F., Khan, S., & Eltohamy, K. M. (2019). Effect of sheep manure-derived biochar on colloidal phosphorus release in soils from various land uses. Environ Sci Pollut Res Int, 26(36), 36367-36379.
Hu, J., Wang, Z., Williams, G. D. Z., Dwyer, G. S., Gatiboni, L., Duckworth, O. W., & Vengosh, A. (2024). Evidence for the accumulation of toxic metal(loid)s in agricultural soils impacted from long-term application of phosphate fertilizer. Science of The Total Environment, 907, 167863.
Hu, R., Leytem, A. B., Moore, A. D., & Strawn, D. G. (2024). Long-term dairy manure amendment promotes legacy phosphorus buildup and mobility in calcareous soils. Journal of Environmental Quality, 53(3), 365-377.
Huang, X., Feng, C., Zhao, G., Ding, M., Kang, W., Yu, G., Ran, W., & Shen, Q. (2017). Carbon Sequestration Potential Promoted by Oxalate Extractable Iron Oxides through Organic Fertilization. Soil Science Society of America Journal, 81(6), 1359-1370.
Huang, X., Kang, W., Guo, J., Wang, L., Tang, H., Li, T., Yu, G., Ran, W., Hong, J., & Shen, Q. (2020). Highly reactive nanomineral assembly in soil colloids: Implications for paddy soil carbon storage. Science of The Total Environment, 703, 134728.
Hue, N. V., Vega, S., & Silva, J. A. (2001). Manganese Toxicity in a Hawaiian Oxisol Affected by Soil pH and Organic Amendments. Soil Science Society of America Journal, 65(1), 153-160.
Hupfer, M., Zak, D., Roβberg, R., Herzog, C., & Pöthig, R. (2009). Evaluation of a well-established sequential phosphorus fractionation technique for use in calcite-rich lake sediments: identification and prevention of artifacts due to apatite formation. Limnology and Oceanography: Methods, 7(6), 399-410.
Ilg, K., Dominik, P., Kaupenjohann, M., & Siemens, J. (2008). Phosphorus-induced mobilization of colloids: model systems and soils. European Journal of Soil Science, 59(2), 233-246.
Ilg, K., Siemens, J., & Kaupenjohann, M. (2005). Colloidal and dissolved phosphorus in sandy soils as affected by phosphorus saturation. J Environ Qual, 34(3), 926-935.
Imran. (2024). Integration of organic, inorganic and bio fertilizer, improve maize-wheat system productivity and soil nutrients. Journal of Plant Nutrition, 47(15), 2494-2510.
Iyamuremye, F., & Dick, R. P. (1996). Organic Amendments and Phosphorus Sorption by Soils. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 56, pp. 139-185). Academic Press.
Jackman, R. H., & Black, C. A. (1951). Solubility of iron, aluminum, calcium, and magnesium inositol phosphates at different ph values. Soil Science, 72(3), 179-186.
Jaïry, A., Garban, B., Blanchard, M., & Chesterikoff, A. (1999). Speciation of organic carbon, Cu and Mn in the River Marne (France): the role of colloids. Hydrological Processes, 13(2), 223-237.
Japenga, J., Dalenberg, J. W., Wiersma, D., Scheltens, S. D., Hesterberg, D., & Salomons, W. (1992). Effect of Liquid Animal Manure Application on the Solubilization of Heavy Metals from Soil. International Journal of Environmental Analytical Chemistry, 46(1-3), 25-39.
Jin, Y., Zhang, N., Chen, Y., Wang, Q., Qin, Z., Sun, Z., & Zhang, S. (2023). Quantitative Evaluation of the Crop Yield, Soil-Available Phosphorus, and Total Phosphorus Leaching Caused by Phosphorus Fertilization: A Meta-Analysis. Agronomy, 13(9), 2436.
Jindo, K., Audette, Y., Olivares, F. L., Canellas, L. P., Smith, D. S., & Paul Voroney, R. (2023). Biotic and abiotic effects of soil organic matter on the phytoavailable phosphorus in soils: a review. Chemical and Biological Technologies in Agriculture, 10(1), 29.
Jindo, K., Moreno, J. L., Hernández, T., & García, C. (2008). Thermostability of Selected Enzymes in Organic Wastes and in their Humic Extract. Applied Biochemistry and Biotechnology, 149(3), 277-286.
Johan, P. D., Ahmed, O. H., Omar, L., & Hasbullah, N. A. (2021). Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy, 11(10), 2010.
K P, L. K., Ravi, K., U K, S., M, R. S., & Lakshmi, A. C. (2024). Enhancing Fruit Crop Performance: The Role of Phosphate-Solubilizing Bacteria in Growth, Yield and Quality Improvement. International Journal of Plant & Soil Science, 36(7), 670-684.
Kaiser, K., Guggenberger, G., & Haumaier, L. (2003). Organic phosphorus in soil water under a European beech (Fagus sylvatica L.) stand in northeastern Bavaria, Germany: seasonal variability and changes with soil depth. Biogeochemistry, 66(3), 287-310.
Kaiser, M., & Asefaw Berhe, A. (2014). How does sonication affect the mineral and organic constituents of soil aggregates?—A review. Journal of Plant Nutrition and Soil Science, 177(4), 479-495.
Kalmykova, Y., Rauch, S., Strömvall, A.-M., Morrison, G., Stolpe, B., & Hassellöv, M. (2010). Colloid-Facilitated Metal Transport in Peat Filters. Water Environment Research, 82(6), 506-511.
Karathanasis, A. D., Johnson, D. M. C., & Matocha, C. J. (2005). Biosolid Colloid-Mediated Transport of Copper, Zinc, and Lead in Waste-Amended Soils. Journal of Environmental Quality, 34(4), 1153-1164.
Katyal, J. C. (1977). Influence of organic matter on the chemical and electrochemical properties of some flooded soils. Soil Biology and Biochemistry, 9(4), 259-266.
Khan, S., Gao, H., Milham, P., Eltohamy, K. M., Ullah, H., Mu, H., Gao, M., Yang, X., Hamid, Y., Hooda, P. S., Shaheen, S. M., & Wu, N. (2024). Predicting the governing factors for the release of colloidal phosphorus using machine learning. Chemosphere, 362, 142699.
Killham, K. (1994). The ecology of soil nutrient cycling. In K. Killham (Ed.), Soil Ecology (pp. 89-150). Cambridge University Press.
Kleber, M., Sollins, P., & Sutton, R. (2007). A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 85(1), 9-24.
Klotzbücher, A., Kaiser, K., Klotzbücher, T., Wolff, M., & Mikutta, R. (2019). Testing mechanisms underlying the Hedley sequential phosphorus extraction of soils. Journal of Plant Nutrition and Soil Science, 182(4), 570-577.
Kopittke, P. M., Hernandez-Soriano, M. C., Dalal, R. C., Finn, D., Menzies, N. W., Hoeschen, C., & Mueller, C. W. (2018). Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter. Global Change Biology, 24(4), 1762-1770.
Kovar, J. L., & Pierzynski, G. M. (2009). Methods of phosphorus analysis for soils, sediments, residuals, and waters second edition. Southern cooperative series bulletin, 408.
Krairapanond, A., Jugsujinda, A., & Patrick, W. H. (1993). Phosphorus sorption characteristics in acid sulfate soils of Thailand: Effect of uncontrolled and controlled soil redox potential (Eh) and pH. Plant and Soil, 157(2), 227-237.
Kristoffersen, A. Ø., Krogstad, T., & Øgaard, A. F. (2020). Prediction of available phosphorus in soil: Combined use for crop production and water quality protection. Journal of Environmental Quality, 49(6), 1575-1584.
Lalonde, K., Mucci, A., Ouellet, A., & Gélinas, Y. (2012). Preservation of organic matter in sediments promoted by iron. Nature, 483(7388), 198-200.
Li, F., Zhang, Q., Klumpp, E., Bol, R., Nischwitz, V., Ge, Z., & Liang, X. (2021). Organic Carbon Linkage with Soil Colloidal Phosphorus at Regional and Field Scales: Insights from Size Fractionation of Fine Particles. Environ Sci Technol, 55(9), 5815-5825.
Li, H., Santos, F., Butler, K., & Herndon, E. (2021). A Critical Review on the Multiple Roles of Manganese in Stabilizing and Destabilizing Soil Organic Matter. Environmental Science & Technology, 55(18), 12136-12152.
Li, W., Yan, J., Afsar, M. Z., & Jin, Y. (2024). Size-dependent mobility of soil colloids and associated organic carbon loading capacity following stepwise decreases in redox potential. Geoderma, 448, 116955.
Liang, X., Liu, J., Chen, Y., Li, H., Ye, Y., Nie, Z., Su, M., & Xu, Z. (2010). Effect of pH on the release of soil colloidal phosphorus. Journal of Soils and Sediments, 10(8), 1548-1556.
Lijklema, L. (1980). Interaction of orthophosphate with iron(III) and aluminum hydroxides. Environmental Science & Technology, 14(5), 537-541.
Liu, H., Yang, L., Guo, J., Yang, J., Li, N., Dai, J., Feng, H., Liu, N., & Han, X. (2023). Contrasting Effects of Nitrogen and Organic Fertilizers on Iron Dynamics in Soil after 38–Year Fertilization Practice. Agronomy, 13(2), 371.
Liu, J., Zhang, Q., Chen, M., Dai, J., Gu, W., Wen, S., & Du, Y. (2023). Composition of organic matter‑iron‑phosphorus associations in sediments of algae- and macrophyte-dominated zones in Lake Taihu. Chemical Geology, 622, 121375.
Liu, X., Zhang, Y., Wang, Z., & Chen, Z. (2024). The contribution of organic and chemical fertilizers on the pools and availability of phosphorus in agricultural soils based on a meta-analysis. European Journal of Agronomy, 156, 127144.
Lu, P., Zhang, Y., Ji, B., Yan, Y., Wang, Z., Yang, M., Zhang, S., & Yang, X. (2023). PhoD Harboring Microbial Community and Alkaline Phosphatase as Affected by Long Term Fertilization Regimes on a Calcareous Soil. Agronomy, 13(2), 363.
Lu, X., Mahdi, A.-K., Han, X.-z., Chen, X., Yan, J., Biswas, A., & Zou, W.-x. (2020). Long-term application of fertilizer and manures affect P fractions in Mollisol. Scientific Reports, 10(1), 14793.
Mª García-López, A., Delgado, A., & Plassard, C. (2024). Kinetics of phytate adsorption and response of phosphorus forms initially present in alkaline soils. Geoderma, 443.
Ma, J., Li, J., Weng, L., Ouyang, X., Chen, Y., & Li, Y. (2023). Phosphorus-Enhanced and Calcium-Retarded Transport of Ferrihydrite Colloid: Mechanism of Electrostatic Potential Changes Regulated via Adsorption Speciation. Environmental Science & Technology, 57(10), 4219-4230.
Maguire, R. O., & Sims, J. T. (2002). Measuring Agronomic and Environmental Soil Phosphorus Saturation and Predicting Phosphorus Leaching with Mehlich 3. Soil Science Society of America Journal, 66(6), 2033-2039.
Mamun, S. A., Saha, S., Ferdush, J., Tusher, T. R., & Islam, M. S. (2022). Organic amendments for crop production, phosphorus bioavailability and heavy metal immobilisation: a review. Crop and Pasture Science, 73(8), 896-916.
Manimel Wadu, M. C. W., Michaelis, V. K., Kroeker, S., & Akinremi, O. O. (2013). Exchangeable Calcium/Magnesium Ratio Affects Phosphorus Behavior in Calcareous Soils. Soil Science Society of America Journal, 77(6), 2004-2013.
Maranguit, D., Guillaume, T., & Kuzyakov, Y. (2017). Effects of flooding on phosphorus and iron mobilization in highly weathered soils under different land-use types: Short-term effects and mechanisms. Catena, 158, 161-170.
Marra, L. M., de Oliveira-Longatti, S. M., Soares, C. R. F. S., Olivares, F. L., & Moreira, F. M. d. S. (2019). The Amount of Phosphate Solubilization Depends on the Strain, C-Source, Organic Acids and Type of Phosphate. Geomicrobiology Journal, 36(3), 232-242.
Martin Blackwell, T. D., Richard HASLAM. (2019). Phosphorus use efficiency and fertilizers: future opportunities for improvements. Front. Agr. Sci. Eng., 6(4), 332-340.
Mazzei, P., Oschkinat, H., & Piccolo, A. (2013). Reduced activity of alkaline phosphatase due to host–guest interactions with humic superstructures. Chemosphere, 93(9), 1972-1979.
McLaughlin, M. J., McBeath, T. M., Smernik, R., Stacey, S. P., Ajiboye, B., & Guppy, C. (2011). The chemical nature of P accumulation in agricultural soils—implications for fertiliser management and design: an Australian perspective. Plant and Soil, 349(1-2), 69-87.
Mehlhorn, J., Besold, J., Lezama Pacheco, J. S., Gustafsson, J. P., Kretzschmar, R., & Planer-Friedrich, B. (2018). Copper Mobilization and Immobilization along an Organic Matter and Redox Gradient—Insights from a Mofette Site. Environmental Science & Technology, 52(23), 13698-13707.
Mehlich, A. (1984). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15(12), 1409-1416.
Messant, M., Hani, U., Hennebelle, T., Guérard, F., Gakière, B., Gall, A., Thomine, S., & Krieger-Liszkay, A. (2023). Manganese concentration affects chloroplast structure and the photosynthetic apparatus in Marchantia polymorpha. PLANT PHYSIOLOGY, 192(1), 356-369.
Mikutta, C., Niegisch, M., Thompson, A., Behrens, R., Schnee, L. S., Hoppe, M., & Dohrmann, R. (2024). Redox cycling of straw-amended soil simultaneously increases iron oxide crystallinity and the content of highly disordered organo-iron(III) solids. Geochimica et Cosmochimica Acta, 371, 126-143.
Moens, C., Montalvo, D., & Smolders, E. (2021). The concentration and size distribution of iron-rich colloids in pore waters are related to soil organic matter content and pore water calcium concentration. European Journal of Soil Science, 72(5), 2199-2214.
Moens, C., & Smolders, E. (2021). Suwannee River Natural Organic Matter concentrations affect the size and phosphate uptake of colloids formed by iron oxidation. Geochimica et Cosmochimica Acta, 312, 375-391.
Mohammadi, S., Kalbasi, M., & Shariatmadari, H. (2009). Cumulative and Residual Effects of Organic Fertilizer Application on Selected Soil Properties, Water Soluble P, Olsen-p and P Sorption Index. J. Agr. Sci. Tech, 11, 487-497.
Montgomery, A., Herndon, E., Sams, C., & Jagadamma, S. (2023). Manganese sources and rates impact plant Mn concentrations and soil Mn fractions. Soil Science Society of America Journal, 87(5), 1120-1135.
Motaghian, H. R., & Hosseinpur, A. R. (2017). The Effects of Cow Manure and Vermicompost on Availability and Desorption Characteristics of Zinc in a Loamy Calcareous Soil. Communications in Soil Science and Plant Analysis, 48(18), 2126-2136.
Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36.
N N, A., Murthy, R. K., N, B., K, G., & S. N, U. K. (2024). Soil Phosphorus Distribution across Diverse Land Use Systems: A Comprehensive Review. Journal of Scientific Research and Reports, 30(6), 352-364.
Nair, P. K. R. (2002). The Nature and Properties of Soils, 13th Edition.By N. C. Brady and R. R. Weil. Agroforestry Systems, 54(3), 249-249.
Négrel, P., Ladenberger, A., Reimann, C., Birke, M., Demetriades, A., & Sadeghi, M. (2024). GEMAS: Phosphorus in European agricultural soil - sources versus sinks at the continental-scale - the geological perspective. Science of The Total Environment, 930, 172524.
Novak, J. M., & Chan, A. S. K. (2002). Development of P-Hyperaccumulator Plant Strategies to Remediate Soils with Excess P Concentrations. Critical Reviews in Plant Sciences, 21(5), 493-509.
Nziguheba, G., & Smolders, E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of The Total Environment, 390(1), 53-57.
Oberson, A., Friesen, D. K., Rao, I. M., Bühler, S., & Frossard, E. (2001). Phosphorus Transformations in an Oxisol under contrasting land-use systems: The role of the soil microbial biomass. Plant and Soil, 237(2), 197-210.
Ognalaga, M., Frossard, E., & Thomas, F. (1994). Glucose‐1‐phosphate and Myo‐inositol Hexaphosphate Adsorption Mechanisms on Goethite. Soil Science Society of America Journal, 58(2), 332-337.
Olila, O. G., & Reddy, K. R. (1997). Influence of redox potential on phosphate-uptake by sediments in two sub-tropical eutrophic lakes. Hydrobiologia, 345(1), 45-57.
Osman, K. T. (2013). Soil Organic Matter. In Soils: Principles, Properties and Management (pp. 89-96). Springer Netherlands.
Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Chemical Fertilizers and Their Impact on Soil Health. In G. H. Dar, R. A. Bhat, M. A. Mehmood, & K. R. Hakeem (Eds.), Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs (pp. 1-20). Springer International Publishing.
Parfitt, R. L. (1989). Phosphate reactions with natural allophane, ferrihydrite and goethite. Journal of Soil Science, 40(2), 359-369.
Patrick, W. H. (1981, 1981//). The Role of Inorganic Redox Systems in Controlling Reduction in Paddy Soils. Proceedings of Symposium on Paddy Soils, Berlin, Heidelberg.
Patrick, W. H., & Turner, F. T. (1968). Effect of Redox Potential on Manganese Transformation in Waterlogged Soil. Nature, 220(5166), 476-478.
Pedas, P., Husted, S., Skytte, K., & Schjoerring, J. K. (2011). Elevated phosphorus impedes manganese acquisition by barley plants [Original Research]. Frontiers in Plant Science, 2.
Penn, C. J., Rutter, E. B., Arnall, D. B., Camberato, J., Williams, M., & Watkins, P. (2018). A Discussion on Mehlich-3 Phosphorus Extraction from the Perspective of Governing Chemical Reactions and Phases: Impact of Soil pH. Agriculture, 8(7).
Petruzzelli, L., Celi, L., & Ajmone-Marsan, F. (2005). EFFECTS OF SOIL ORGANIC FRACTIONS ON IRON OXIDE BIODISSOLUTION UNDER ANAEROBIC CONDITIONS. Soil Science, 170(2), 102-109.
Pizarro, C., Escudey, M., & Fabris, J. D. (2003). Influence of Organic Matter on the Iron Oxide Mineralogy of Volcanic Soils. Hyperfine Interactions, 148(1), 53-59.
Ponnamperuma, F. N. (1972). The Chemistry of Submerged Soils. In N. C. Brady (Ed.), Advances in Agronomy (Vol. 24, pp. 29-96). Academic Press.
Prüter, J., Hu, Y., & Leinweber, P. (2022). Influence of Sample Pretreatment on P Speciation in Sediments Evaluated with Sequential Fractionation and P K-edge XANES Spectroscopy. Communications in Soil Science and Plant Analysis, 53(14), 1712-1730.
Qiu, J., Zhi, R., Boughton, E. H., Li, H., Henderson, C. R. B., Petticord, D. F., Sparks, J. P., Saha, A., & Reddy, K. R. (2024). Unraveling spatial heterogeneity of soil legacy phosphorus in subtropical grasslands. Ecological Applications, 34(6), e3007.
Raghothama, K. G. (1999). PHOSPHATE ACQUISITION. Annu Rev Plant Physiol Plant Mol Biol, 50, 665-693.
Rakotoson, T., Rabeharisoa, L., & Smolders, E. (2016). Effects of soil flooding and organic matter addition on plant accessible phosphorus in a tropical paddy soil: an isotope dilution study. Journal of Plant Nutrition and Soil Science, 179(6), 765-774.
Sahrawat, K. L. (2004). Organic matter accumulation in submerged soils. Advances in Agronomy, 81, 169-201.
Said-Pullicino, D., Giannetta, B., Demeglio, B., Missong, A., Gottselig, N., Romani, M., Bol, R., Klumpp, E., & Celi, L. (2021). Redox-driven changes in water-dispersible colloids and their role in carbon cycling in hydromorphic soils. Geoderma, 385.
Sajwan, K. S., & Lindsay, W. L. (1988). Effect of redox, zinc fertilization and incubation time on DTPA‐extractable zinc, iron and manganese. Communications in Soil Science and Plant Analysis, 19(1), 1-11.
Samreen, S., & Kausar, S. (2019). Phosphorus fertilizer: The original and commercial sources. Phosphorus-recovery and Recycling(6), 81-94.
Samuel Kwesi, A. (2020). Processes and Factors Affecting Phosphorus Sorption in Soils. In K. George & L. Nikolaos (Eds.), Sorption in 2020s (pp. Ch. 3). IntechOpen.
Sánchez-Calderón, L., Chacón-López, A., Alatorre-Cobos, F., Leyva-González, M. A., & Herrera-Estrella, L. (2011). Sensing and Signaling of PO43−. In M. Geisler & K. Venema (Eds.), Transporters and Pumps in Plant Signaling (pp. 191-224). Springer Berlin Heidelberg.
Sanchez, P. A., & Uehara, G. (1980). Management Considerations for Acid Soils with High Phosphorus Fixation Capacity. In The Role of Phosphorus in Agriculture (pp. 471-514).
Sandhu, A. K., Sharma, A., Kaur, N., Zotarelli, L., Morgan, K., & Sharma, L. K. (2023). Evaluate the use of Mehlich-III compared to Mehlich-I as a soil test in Northeast Florida. Farming System, 1(3), 100056.
Sanni, K., & Ewulo, B. (2015). Effects of Phosphorus and Organic fertilizers on the Yield and Proximate nutrient composition of lettuce (Lectuca sativa) in Southwestern nigeria. International Journal of Horticulture, 5, 1-7.
Satawathananont, S., Patrick, W. H., & Moore, P. A. (1991). Effect of controlled redox conditions on metal solubility in acid sulfate soils. Plant and Soil, 133(2), 281-290.
Schmidt, H., Eickhorst, T., & Tippkötter, R. (2011). Monitoring of root growth and redox conditions in paddy soil rhizotrons by redox electrodes and image analysis. Plant and Soil, 341(1), 221-232.
Schwertmann, U. (1991). Solubility and dissolution of iron oxides. Plant and Soil, 130(1), 1-25.
Seta, A. K., & Karathanasis, A. D. (1996). Water dispersible colloids and factors influencing their dispersibility from soil aggregates. Geoderma, 74(3), 255-266.
Shabtai, I. A., Wilhelm, R. C., Schweizer, S. A., Höschen, C., Buckley, D. H., & Lehmann, J. (2023). Calcium promotes persistent soil organic matter by altering microbial transformation of plant litter. Nature Communications, 14(1), 6609.
Shang, C., Huang, P. M., & Stewart, J. W. B. (1990). Kinetics Of Adsorption Of Organic And Inorganic Phosphates By Short-range Ordered Precipitate Of Aluminum. Canadian Journal of Soil Science, 70(3), 461-470.
Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang, F. (2011). Phosphorus Dynamics: From Soil to Plant. PLANT PHYSIOLOGY, 156(3), 997-1005.
Shuman, L. M. (1988). EFFECT OF ORGANIC MATTER ON THE DISTRIBUTION OF MANGANESE, COPPER, IRON, AND ZINC IN SOIL FRACTIONS. Soil Science, 146(3), 192-198.
Sims, J. T., Maguire, R. O., Leytem, A. B., Gartley, K. L., & Pautler, M. C. (2002). Evaluation of Mehlich 3 as an Agri‐Environmental Soil Phosphorus Test for the Mid‐Atlantic United States of America. Soil Science Society of America Journal, 66(6), 2016-2032.
Singson, L., Ghosh, S., & Patra, P. (2012). Distribution of Different Forms of Phosphorus in Surface Soils of Rice Growing Areas of Red and Laterite Zone of West Bengal. Journal of the Indian Society of Soil Science, 60, 204-207.
Smith, K. A., Chalmers, A. G., Chambers, B. J., & Christie, P. (1998). Organic manure phosphorus accumulation, mobility and management. Soil Use and Management, 14(s4), 154-159.
Sollins, P., Swanston, C., Kleber, M., Filley, T., Kramer, M., Crow, S., Caldwell, B. A., Lajtha, K., & Bowden, R. (2006). Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation. Soil Biology and Biochemistry, 38(11), 3313-3324.
Sparks, D. L. (1995). Environmental soil chemistry. . Academic Press.
Sposito, G. (2008). The chemistry of soils. Oxford university press.
Ström, L. (1997). Root Exudation of Organic Acids: Importance to Nutrient Availability and the Calcifuge and Calcicole Behaviour of Plants. Oikos, 80(3), 459-466.
Stutter, M. I., Shand, C. A., George, T. S., Blackwell, M. S. A., Dixon, L., Bol, R., MacKay, R. L., Richardson, A. E., Condron, L. M., & Haygarth, P. M. (2015). Land use and soil factors affecting accumulation of phosphorus species in temperate soils. Geoderma, 257-258, 29-39.
Sukitprapanon, T.-S., Jantamenchai, M., Tulaphitak, D., Prakongkep, N., Gilkes, R. J., & Vityakon, P. (2021). Influence of Application of Organic Residues of Different Biochemical Quality on Phosphorus Fractions in a Tropical Sandy Soil. Agronomy, 11(2), 248.
Sun, X.-L., Wang, Y., Xiong, H.-Q., Wu, F., Lv, T.-X., Fang, Y.-C., & Xiang, H. (2023). The Role of Surface Functional Groups of Iron Oxide, Organic Matter, and Clay Mineral Complexes in Sediments on the Adsorption of Copper Ions. Sustainability, 15(8), 6711.
Sun, X., Bol, R., Klumpp, E., & Li, M. (2022). Organic phosphorus leaching risk from agricultural soils across China. Chemical and Biological Technologies in Agriculture, 9(1), 35.
Sun, Y., Amelung, W., Wu, B., Haneklaus, S., Schnug, E., & Bol, R. (2022). Fertilizer P-derived uranium continues to accumulate at Rothamsted long-term experiments. Science of The Total Environment, 820, 153118.
Tang, N., Dultz, S., Gerth, D., & Klumpp, E. (2024). Soil colloids as binding agents in the formation of soil microaggregates in wet-dry cycles: A case study for arable Luvisols under different management. Geoderma, 443, 116830.
Tang, N., Siebers, N., Leinweber, P., Eckhardt, K.-U., Dultz, S., Nischwitz, V., & Klumpp, E. (2022). Implications of Free and Occluded Fine Colloids for Organic Matter Preservation in Arable Soils. Environmental Science & Technology, 56(19), 14133-14145.
Tarkalson, D. D., & Leytem, A. B. (2009). Phosphorus Mobility in Soil Columns Treated With Dairy Manures and Commercial Fertilizer. Soil Science, 174(2), 73-80.
Temminghoff, E. J. M., Van der Zee, S. E. A. T. M., & de Haan, F. A. M. (1997). Copper Mobility in a Copper-Contaminated Sandy Soil as Affected by pH and Solid and Dissolved Organic Matter. Environmental Science & Technology, 31(4), 1109-1115.
Thiyagarajan, C. (2022). Organo Zinc Chelates for Improving the Yield and Zinc Nutrition of Hybrid Tomato on Calcareous Soil Under Drip Fertigation. Journal of Soil Science and Plant Nutrition, 22(1), 140-149.
Thomas Sims, J., & Pierzynski, G. M. (2005). Chemistry of Phosphorus in Soils. In Chemical Processes in Soils (pp. 151-192).
Tian, D., Wang, L., Hu, J., Zhang, L., Zhou, N., Xia, J., Xu, M., Yusef, K. K., Wang, S., Li, Z., & Gao, H. (2021). A study of P release from Fe-P and Ca-P via the organic acids secreted by Aspergillus niger. Journal of Microbiology, 59(9), 819-826.
Tian, J., Liu, L., Ding, H. S., & Chen, T. (2008). [Mobilization and transformation of phosphorus from water-soil interface of flooded soil]. Huan Jing Ke Xue, 29(7), 1818-1823.
Tiessen, H. (2011). Phosphorus Availability in the Environment. In eLS.
Toth, S. J. (1937). Anion adsorption by soil colloids in relation to change in free iron oxides. Soil Science, 44, 299-314.
van der Heijden, G., Legout, A., Midwood, A. J., Craig, C.-A., Pollier, B., Ranger, J., & Dambrine, E. (2013). Mg and Ca root uptake and vertical transfer in soils assessed by an in situ ecosystem-scale multi-isotopic (26Mg & 44Ca) tracing experiment in a beech stand (Breuil-Chenue, France). Plant and Soil, 369(1), 33-45.
Van Laer, L., Degryse, F., Leynen, K., & Smolders, E. (2010). Mobilization of Zn upon waterlogging riparian Spodosols is related to reductive dissolution of Fe minerals. European Journal of Soil Science, 61(6), 1014-1024.
Verma, S., Subehia, S. K., & Sharma, S. P. (2005). Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers. Biology and Fertility of Soils, 41(4), 295-300.
Vogel, C., Mueller, C. W., Höschen, C., Buegger, F., Heister, K., Schulz, S., Schloter, M., & Kögel-Knabner, I. (2014). Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nature Communications, 5(1), 2947.
Wan, D., Ma, M., Peng, N., Luo, X., Chen, W., Cai, P., Wu, L., Pan, H., Chen, J., Yu, G., & Huang, Q. (2021). Effects of long-term fertilization on calcium-associated soil organic carbon: Implications for C sequestration in agricultural soils. Science of The Total Environment, 772, 145037.
Wang, C., Yao, S., Liao, R., & Šimůnek, J. (2024). Humic acid enhances the co-transport of colloids and phosphorus in saturated porous media. Chemosphere, 364, 143300.
Wang, C., Zhang, Y., Li, H., & Morrison, R. J. (2013). Sequential extraction procedures for the determination of phosphorus forms in sediment. Limnology, 14(2), 147-157.
Wang, L., Missong, A., Amelung, W., Willbold, S., Prietzel, J., & Klumpp, E. (2020). Dissolved and colloidal phosphorus affect P cycling in calcareous forest soils. Geoderma, 375.
Wang, Q., Guo, D., Xu, Y., & Ma, Y. (2022). Transformation of soil phosphorus fractions: the role of time and fertilisation. Soil Research, 60(8), 792-803.
Wang, Q., Qin, Z.-h., Zhang, W.-w., Chen, Y.-h., Zhu, P., Peng, C., Wang, L., Zhang, S.-x., & Colinet, G. (2022). Effect of long-term fertilization on phosphorus fractions in different soil layers and their quantitative relationships with soil properties. Journal of Integrative Agriculture, 21(9), 2720-2733.
Wang, S., Feng, P., Batchelor, W. D., Hu, K., & Li, J. (2024). Organic farming decreases nitrate leaching but increases dissolved organic nitrogen leaching in greenhouse vegetable production systems. Plant and Soil, 498(1), 111-124.
Wang, Y., & Zhang, Y. (2010). Soil‐phosphorus distribution and availability as affected by greenhouse subsurface irrigation. Journal of Plant Nutrition and Soil Science, 173(3), 345-352.
Wang, Z., Eltohamy, K. M., Liu, B., Jin, J., & Liang, X. (2024). Effects of drying-rewetting cycles on colloidal phosphorus composition in paddy and vegetable soils. Sci Total Environ, 907, 168016.
Wei, L., Ge, T., Zhu, Z., Luo, Y., Yang, Y., Xiao, M., Yan, Z., Li, Y., Wu, J., & Kuzyakov, Y. (2021). Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma, 398, 115121.
Weil, R., & Brady, N. (2017). The Nature and Properties of Soils. 15th edition.
White, R. E., & Taylor, A. W. (1977). EFFECT OF pH ON PHOSPHATE ADSORPTION AND ISOTOPIC EXCHANGE IN ACID SOILS AT LOW AND HIGH ADDITIONS OF SOLUBLE PHOSPHATE. Journal of Soil Science, 28(1), 48-61.
Williams, J. D. H., & Walker, T. W. (1969). FRACTIONATION OF PHOSPHATE IN A MATURITY SEQUENCE OF NEW ZEALAND BASALTIC SOIL PROFILES: I. Soil Science, 107(1), 22-30.
Withers, P. J. A., Nash, D. M., & Laboski, C. A. M. (2005). Environmental Management of Phosphorus Fertilizers. In Phosphorus: Agriculture and the Environment (pp. 781-827).
Wm.H. Patrick Jr., & Mahapatra, I. C. (1968). Transformation and Availability to Rice of Nitrogen and Phosphorus in Waterlogged Soils. Advances in Agronomy, 20, 323-359.
Wu, B., Meng, X., Yao, H., & Amelung, W. (2024). Iron dynamics and isotope fractionation in soil and rice during 2000 years of rice cultivation. Plant and Soil, 495(1), 615-629.
Xu, Z., Qu, M., Liu, S., Duan, Y., Wang, X., Brown, L. K., George, T. S., Zhang, L., & Feng, G. (2020). Carbon addition reduces labile soil phosphorus by increasing microbial biomass phosphorus in intensive agricultural systems. Soil Use and Management, 36(3), 536-546.
Yamamoto, K., Hashimoto, Y., Kang, J., & Kobayashi, K. (2018). Speciation of Phosphorus Zinc and Copper in Soil and Water-Dispersible Colloid Affected by a Long-Term Application of Swine Manure Compost. Environ Sci Technol, 52(22), 13270-13278.
Yang, W., Hao, F., Cheng, H., Lin, C., & Ouyang, W. (2013). Phosphorus Fractions and Availability in an Albic Bleached Meadow Soil. Agronomy Journal, 105(5), 1451-1457.
Yang, X., Gu, M., Kang, Y., & Feng, X. (2012). Contribution of N : P ratio and endogenous phytohormones during development of phosphorus toxicity in Brassica campestris spp. parachinensis. Journal of Plant Nutrition and Soil Science, 175(4), 582-594.
Yang, X., Post, W. M., Thornton, P. E., & Jain, A. (2013). The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences, 10(4), 2525-2537.
Ye, Z., Xu, D., Zhong, J., Gao, S., Wang, J., Zhang, Y., Xu, H., Li, Y., & Li, W. (2024). Influence of Soil Colloids on the Transport of Cd2+ and Pb2+ under Different pH and Ionic Strength Conditions. Agronomy, 14(2).
Zechmeister-Boltenstern, S., Keiblinger, K. M., Mooshammer, M., Peñuelas, J., Richter, A., Sardans, J., & Wanek, W. (2015). The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecological Monographs, 85(2), 133-155.
Zehetner, F., Wuenscher, R., Peticzka, R., & Unterfrauner, H. (2018). Correlation of extractable soil phosphorus (P) with plant P uptake: 14 extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment, 64(4), 192-201.
Zhang, Q., Boutton, T. W., Hsiao, C.-J., Mushinski, R. M., Wang, L., Bol, R., & Klumpp, E. (2023). Soil colloidal particles in a subtropical savanna: Biogeochemical significance and influence of anthropogenic disturbances. Geoderma, 430, 116282.
Zhang, Q., Wieler, M., O’Connell, D., Gill, L., Xiao, Q., & Hu, Y. (2020). Speciation of Phosphorus from Suspended Sediment Studied by Bulk and Micro-XANES. Soil Systems, 4(3).
Zhang, S., Li, Z., & Yang, X. (2015). Effects of Long-Term Inorganic and Organic Fertilization on Soil Micronutrient Status. Communications in Soil Science and Plant Analysis, 46(14), 1778-1790.
Zhao, S., Li, K., Zhou, W., Qiu, S., Huang, S., & He, P. (2016). Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agriculture, Ecosystems & Environment, 216, 82-88.
Zhao, W., Gu, C., Zhu, M., Yan, Y., Liu, Z., Feng, X., & Wang, X. (2023). Chemical speciation of phosphorus in farmland soils and soil aggregates around mining areas. Geoderma, 433, 116465.
Zhou, A., Tang, H., & Wang, D. (2005). Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition. Water Research, 39(7), 1245-1254.
Zhou, S., & Margenot, A. J. (2023). Muddied Waters: The Use of “Residual” And “Legacy” Phosphorus. Environmental Science & Technology, 57(51), 21535-21539.
Zhuang, L., Wang, P., Hu, W., Yang, R., Zhang, Q., Jian, Y., & Zou, Y. (2024). A Comprehensive Study on the Impact of Chemical Fertilizer Reduction and Organic Manure Application on Soil Fertility and Apple Orchard Productivity. Agronomy, 14(7), 1398.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97149-
dc.description.abstract磷是植物生長所必需的關鍵營養元素,其有效管理對於糧食安全與環境永續至關重要。然而,全球磷資源的枯竭以及過度施肥造成的環境污染風險,對現代農業提出了嚴峻挑戰。為探討不同施肥策略對土壤磷動態的長期影響,本研究以長期施肥試驗田加以比較慣行、折衷及有機施肥管理策略,對旱田和水田土壤中磷與碳的垂直分布及其移動性的影響,並評估不同施肥處理對土壤磷有效性和環境風險的差異。
旱田和水田的有機處理有最高濃度的總碳和總磷,有機處理碳和磷的累積,主因是施肥量不同所致。因此,透過磷活性因子(phosphorus activation coefficient, PAC)分析不同處理的磷轉換效率,有機處理仍有最高的PAC值,且隨著深度逐漸上升,顯示有機處理磷垂直移動的風險高於其他處理。同時,序列萃取結果顯示磷物種的垂直分布,在旱田表土層(0-30公分)有機處理土壤中可溶性磷濃度最高,代表其生物有效性較高;慣行處理則以鐵磷為主,其生物有效性較低。而水田區,因為浸水還原作用的影響,使可溶性磷的濃度上升。水田土壤之XANES LCF磷物種擬合結果顯示,缺乏有機質的慣行處理,土壤鐵磷物種以吸附在水鐵礦磷為主,而有機處裡則是以磷酸鐵為主。土壤膠體萃取可以分析磷在土壤中的垂直移動機制:在0-30公分分的土層,慣行處理膠體碳和磷釋出比例最高,顯示慣行處理下,磷主要以膠體的型式垂直移動。有機處理因為具有豐富的土壤有機質,增強土壤團粒結構,抑制膠體磷的釋出。
透過分析碳和磷總量、有效性、磷物種和膠體萃取,研究結果顯示長期施用有機肥料可增加土壤總碳含量並提升土壤有效磷轉換效率。其通過增加土壤有機質,並提升磷的可溶性含量與生物有效性,實現了更高的磷轉化效率。然而,有機處理中磷的累積,特別是可溶性磷濃度的提升,可能帶來磷垂直移動的環境風險,進一步影響地下水質的安全性。相比之下,慣行處理中,磷物種主要以鐵磷的形式存在,但低碳環境下土壤團粒結構的不穩定,導致膠體磷的釋出和移動性增強,加劇了表土磷流失的風險。
zh_TW
dc.description.abstractPhosphorus (P) is an essential nutrient for plant growth, and its effective management is critical for both food security and environmental sustainability. However, the depletion of global phosphorus resources and the environmental risks associated with excessive fertilization pose significant challenges to modern agriculture. This study investigates the long-term effects of different fertilization strategies on soil phosphorus dynamics. Using a long-term fertilization experiment, we compared conventional, integrated, and organic fertilization practices to evaluate their impact on the vertical distribution and mobility of phosphorus and carbon in upland and paddy soils, as well as their effects on phosphorus availability and environmental risks.
Both upland and paddy soils under organic treatment exhibited the highest concentrations of total carbon and total phosphorus, primarily due to differences in fertilizer inputs. The phosphorus activation coefficient (PAC) analysis revealed that organic treatment had the highest PAC values, which increased with depth, indicating a higher risk of phosphorus vertical transport compared to other treatments. Sequential extraction results further showed variations in phosphorus speciation across soil depths. In upland soils, the organic treatment had the highest concentration of soluble phosphorus in the 0–30 cm surface layer, suggesting higher bioavailability, whereas the conventional treatment was dominated by iron-bound phosphorus, which is less bioavailable. In paddy soils, the reductive conditions induced by waterlogging increased soluble phosphorus concentrations. X-ray absorption near-edge structure (XANES) linear combination fitting (LCF) analysis indicated that in the absence of organic matter, iron-bound phosphorus in conventionally managed paddy soils was primarily associated with ferrihydrite, while in organically managed soils, phosphorus was predominantly in the form of iron phosphate.
Colloidal extraction further elucidated the mechanisms of phosphorus vertical transport. In the 0–30 cm soil layer, conventional treatment resulted in the highest release of colloidal carbon and phosphorus, suggesting that phosphorus in this system primarily moves vertically in colloidal form. In contrast, the organic treatment, with its higher soil organic matter content, enhanced soil aggregate stability and suppressed colloidal phosphorus release.
By analyzing total carbon and phosphorus, phosphorus bioavailability, phosphorus speciation, and colloidal extraction, this study demonstrates that long-term organic fertilization increases total soil carbon content and enhances phosphorus transformation efficiency. Organic management improves phosphorus solubility and bioavailability through increased soil organic matter content, leading to more efficient phosphorus utilization. However, the accumulation of soluble phosphorus under organic treatment raises concerns about potential phosphorus leaching and groundwater contamination. In contrast, under conventional treatment, phosphorus was predominantly present in iron-bound forms, but the instability of soil aggregates in low-carbon conditions led to increased colloidal phosphorus release and surface phosphorus loss.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:25:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:25:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 v
表次 viii
圖次 x
第一章、 前言 1
第二章、 研究目的 2
第三章、 文獻回顧 3
3.1 磷在土壤中的流佈 3
3.2 磷的固定作用 4
3.2.1 沉澱與吸附作用 4
3.2.2 pH和Eh值對土壤磷固定的影響 6
3.2.3 有機質的影響 7
3.2.4 微生物的活動 8
3.3 評估磷有效性及其移動性之方法 9
3.3.1 有效磷測定方法 9
3.3.2 序列萃取 10
3.3.3 土壤膠體 11
3.4 農業管理對土壤磷有效性的影響 12
第四章、 材料方法 15
4.1 田間試驗田區設計 15
4.1.1 輪作系統 15
4.1.2 施肥方法 18
4.2 土壤樣品採集 18
4.3 土壤基本性質 19
4.4 土壤總碳 20
4.5 土壤總氮 20
4.6 土壤中磷分析 20
4.6.1 全量分析 20
4.6.2 有效磷分析 20
4.6.3 序列萃取法 21
4.6.4 X光吸收光譜 21
4.7 膠體萃取與分析 22
4.8 統計分析 22
第五章、 結果與討論 23
5.1 土壤基本性質 23
5.1.1 pH 值 23
5.1.2 土壤質地 24
5.2 土壤碳和磷總量和磷有效性分析 25
5.2.1 總碳 25
5.2.2 總氮與碳氮比 27
5.2.3 總磷 29
5.2.4 土壤有效磷分析 31
5.2.5 磷活性因子與碳磷比 31
5.3 土壤磷物種分布 36
5.3.1 可溶性與弱結合相態 36
5.3.2 鋁磷 38
5.3.3 鐵磷 39
5.3.4 可還性溶解磷 40
5.3.5 鈣磷 40
5.3.6 水田區土壤之磷XANES LCF結果 47
5.4 土壤膠體 48
5.4.1 膠體碳 48
5.4.2 膠體磷 52
5.4.3 膠體鋁、鐵和鈣 58
5.5 其他元素分析 63
5.5.4 鐵 63
5.5.5 鈣 67
5.5.6 銅 70
5.5.7 錳 73
5.5.8 鋅 78
5.5.9 鉀 83
5.5.10 鎂 86
5.6 長期試驗田近年產量 89
第六章、 結論 92
第七章、 參考文獻 94
第八章、 附錄 111
-
dc.language.isozh_TW-
dc.title長期有機和慣行農法試驗對土壤中碳和磷的垂直分布的影響zh_TW
dc.titleThe Effect of Long-Term Application of Organic and Chemical Fertilizer on the Vertical Distribution of Carbon and Phosphorus in Soilen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄒裕民;簡士濠;劉雨庭zh_TW
dc.contributor.oralexamcommitteeYu-Min Tzou;Shih-Hao Jien;Yu-Ting Liuen
dc.subject.keyword磷,碳,有機肥料,磷序列萃取,膠體促進運輸,zh_TW
dc.subject.keywordphosphorus,carbon,organic fertilizer,phosphorus sequential extraction,colloid-facilitated transport,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202500329-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
dc.date.embargo-lift2030-02-10-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
3.34 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved