請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97144完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 閔明源 | zh_TW |
| dc.contributor.advisor | Ming-Yuan Min | en |
| dc.contributor.author | 劉孟炫 | zh_TW |
| dc.contributor.author | Meng-Xuan Liu | en |
| dc.date.accessioned | 2025-02-27T16:23:49Z | - |
| dc.date.available | 2025-02-28 | - |
| dc.date.copyright | 2025-02-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-13 | - |
| dc.identifier.citation | Alonso, I., Scheer, I., Palacio-Manzano, M., Frézel-Jacob, N., Philippides, A., & Prsa, M. (2023). Peripersonal encoding of forelimb proprioception in the mouse somatosensory cortex. Nature Communications, 14(1), 1866. https://doi.org/10.1038/s41467-023-37575-w
Andersen, Morris, Amaral, Bliss, & O'Keefe. (2006). The Hippocampus Book. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195100273.001.0001 Arber, S., Ladle, D. R., Lin, J. H., Frank, E., & Jessell, T. M. (2000). ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell, 101(5), 485-498. https://doi.org/10.1016/s0092-8674(00)80859-4 Berglund, K., Clissold, K., Li, H. E., Wen, L., Park, S. Y., Gleixner, J., Klein, M. E., Lu, D., Barter, J. W., Rossi, M. A., Augustine, G. J., Yin, H. H., & Hochgeschwender, U. (2016). Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation. Proceedings of the National Academy of Sciences of the United States of America, 113(3), E358-367. https://doi.org/10.1073/pnas.1510899113 Berglund, K., Fernandez, A. M., Gutekunst, C.-A. N., Hochgeschwender, U., & Gross, R. E. (2020). Step-function luminopsins for bimodal prolonged neuromodulation. Journal of Neuroscience Research, 98(3), 422-436. https://doi.org/10.1002/jnr.24424 Berglund, K., Tung, J. K., Higashikubo, B., Gross, R. E., Moore, C. I., & Hochgeschwender, U. (2016). Combined optogenetic and chemogenetic control of neurons. Methods in Molecular Biology, 1408, 207-225. https://doi.org/10.1007/978-1-4939-3512-3_14 Campbell, M. G., Ocko, S. A., Mallory, C. S., Low, I. I. C., Ganguli, S., & Giocomo, L. M. (2018). Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. Nature Neuroscience, 21(8), 1096-1106. https://doi.org/10.1038/s41593-018-0189-y Chen, G., King, J. A., Burgess, N., & O'Keefe, J. (2013). How vision and movement combine in the hippocampal place code. Proceedings of the National Academy of Sciences of the United States of America, 110(1), 378-383. https://doi.org/10.1073/pnas.1215834110 Chen, R., Gore, F., Nguyen, Q. A., Ramakrishnan, C., Patel, S., Kim, S. H., Raffiee, M., Kim, Y. S., Hsueh, B., Krook-Magnusson, E., Soltesz, I., & Deisseroth, K. (2021). Deep brain optogenetics without intracranial surgery. Nat Biotechnol, 39(2), 161-164. https://doi.org/10.1038/s41587-020-0679-9 Chung, B., Zia, M., Thomas, K. A., Michaels, J. A., Jacob, A., Pack, A., Williams, M. J., Nagapudi, K., Teng, L. H., Arrambide, E., Ouellette, L., Oey, N., Gibbs, R., Anschutz, P., Lu, J., Wu, Y., Kashefi, M., Oya, T., Kersten, R.,…Sober, S. J. (2023). Myomatrix arrays for high-definition muscle recording. eLife, 12. https://doi.org/10.7554/eLife.88551 Dallmann, C. J., Karashchuk, P., Brunton, B. W., & Tuthill, J. C. (2021). A leg to stand on: computational models of proprioception. Current Opinion in Physiology, 22. https://doi.org/10.1016/j.cophys.2021.03.001 Delhaye, B. P., Long, K. H., & Bensmaia, S. J. (2018). Neural basis of touch and proprioception in primate cortex. Comprehensive Physiology, 8(4), 1575-1602. https://doi.org/10.1002/cphy.c170033 English, A. W., Berglund, K., Carrasco, D., Goebel, K., Gross, R. E., Isaacson, R., Mistretta, O. C., & Wynans, C. (2021). Bioluminescent Optogenetics: A Novel Experimental Therapy to Promote Axon Regeneration after Peripheral Nerve Injury. International Journal of Molecular Sciences, 22(13). https://doi.org/10.3390/ijms22137217 Etienne, A. S. (1992). Navigation of a small mammal by dead reckoning and local cues. Current Directions in Psychological Science, 1(2), 48-52. https://doi.org/10.1111/1467-8721.ep11509737 Florez-Paz, D., Bali, K. K., Kuner, R., & Gomis, A. (2016). A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Scientific Reports, 6, 25923. https://doi.org/10.1038/srep25923 Friard, O., & Gamba, M. (2016). BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods in Ecology and Evolution, 7(11), 1325-1330. https://doi.org/10.1111/2041-210X.12584 Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806. https://doi.org/10.1038/nature03721 Ho, J., Tumkaya, T., Aryal, S., Choi, H., & Claridge-Chang, A. (2019). Moving beyond P values: data analysis with estimation graphics. Nature Methods, 16(7), 565-566. https://doi.org/10.1038/s41592-019-0470-3 Ichikawa, H., Deguchi, T., Nakago, T., Jacobowitz, D. M., & Sugimoto, T. (1994). Parvalbumin, calretinin and carbonic anhydrase in the trigeminal and spinal primary neurons of the rat. Brain Res, 655(1-2), 241-245. https://doi.org/10.1016/0006-8993(94)91620-9 Ikefuama, E. C., Kendziorski, G. E., Anderson, K., Shafau, L., Prakash, M., Hochgeschwender, U., & Petersen, E. D. (2022). Improved Locomotor Recovery in a Rat Model of Spinal Cord Injury by BioLuminescent-OptoGenetic (BL-OG) Stimulation with an Enhanced Luminopsin. International Journal of Molecular Sciences, 23(21). https://doi.org/10.3390/ijms232112994 Jiang, T., Song, J., & Zhang, Y. (2023). Coelenterazine-Type Bioluminescence-Induced Optical Probes for Sensing and Controlling Biological Processes. International Journal of Molecular Sciences, 24(6). https://doi.org/10.3390/ijms24065074 Jooya, P., & Delavari, F. (2019). The Proprioceptive System. In N. Rezaei & A. Saghazadeh (Eds.), Biophysics and neurophysiology of the sixth sense (pp. 85-98). Springer International Publishing. https://doi.org/10.1007/978-3-030-10620-1_6 Kaya, D., Yertutanol, F. D. K., & Calik, M. (2018). Neurophysiology and assessment of the proprioception. In D. Kaya, B. Yosmaoglu, & M. N. Doral (Eds.), Proprioception in orthopaedics, sports medicine and rehabilitation (pp. 3-11). Springer International Publishing. https://doi.org/10.1007/978-3-319-66640-2_1 Kishi, K. E., Kim, Y. S., Fukuda, M., Inoue, M., Kusakizako, T., Wang, P. Y., Ramakrishnan, C., Byrne, E. F. X., Thadhani, E., Paggi, J. M., Matsui, T. E., Yamashita, K., Nagata, T., Konno, M., Quirin, S., Lo, M., Benster, T., Uemura, T., Liu, K.,…Kato, H. E. (2022). Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell, 185(4), 672-689 e623. https://doi.org/10.1016/j.cell.2022.01.007 Lee, C.-H., & Chen, C.-C. (2018). Roles of asics in nociception and proprioception. Advances in Experimental Medicine and Biology, 1099, 37-47. https://doi.org/10.1007/978-981-13-1756-9_4 Lin, S.-H., Cheng, Y.-R., Banks, R. W., Min, M.-Y., Bewick, G. S., & Chen, C.-C. (2016). Evidence for the involvement of ASIC3 in sensory mechanotransduction in proprioceptors. Nature Communications, 7, 11460. https://doi.org/10.1038/ncomms11460 Marin Vargas, A., Bisi, A., Chiappa, A. S., Versteeg, C., Miller, L. E., & Mathis, A. (2024). Task-driven neural network models predict neural dynamics of proprioception. Cell, 187(7), 1745-1761.e1719. https://doi.org/10.1016/j.cell.2024.02.036 Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. (2018). DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience, 21(9), 1281-+. https://doi.org/10.1038/s41593-018-0209-y McNaughton, B. L., Barnes, C. A., Gerrard, J. L., Gothard, K., Jung, M. W., Knierim, J. J., Kudrimoti, H., Qin, Y., Skaggs, W. E., Suster, M., & Weaver, K. L. (1996). Deciphering the hippocampal polyglot: the hippocampus as a path integration system. Journal of Experimental Biology, 199(Pt 1), 173-185. https://doi.org/10.1242/jeb.199.1.173 McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M.-B. (2006). Path integration and the neural basis of the 'cognitive map'. Nature Reviews. Neuroscience, 7(8), 663-678. https://doi.org/10.1038/nrn1932 Mittelstaedt, M. L., & Mittelstaedt, H. (1980). Homing by path integration in a mammal. Die Naturwissenschaften, 67(11), 566-567. https://doi.org/10.1007/BF00450672 Müller, M., & Wehner, R. (1988). Path integration in desert ants, Cataglyphis fortis. Proceedings of the National Academy of Sciences of the United States of America, 85(14), 5287-5290. https://doi.org/10.1073/pnas.85.14.5287 O'Keefe, J., & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford University Press. Oliver, K. M., Florez-Paz, D. M., Badea, T. C., Mentis, G. Z., Menon, V., & de Nooij, J. C. (2021). Molecular correlates of muscle spindle and Golgi tendon organ afferents. Nature Communications, 12(1), 1451. https://doi.org/10.1038/s41467-021-21880-3 Park, S. Y., Song, S.-H., Palmateer, B., Pal, A., Petersen, E. D., Shall, G. P., Welchko, R. M., Ibata, K., Miyawaki, A., Augustine, G. J., & Hochgeschwender, U. (2020). Novel luciferase-opsin combinations for improved luminopsins. Journal of Neuroscience Research, 98(3), 410-421. https://doi.org/10.1002/jnr.24152 Pop, I. V., Espinosa-Becerra, F., Goyal, M., Mona, B., Landy, M., Ogujiofor, O., Dean, K. M., Gurumurthy, C. M., & Lai, H. C. (2020). Evidence for genetically distinct direct and indirect spinocerebellar pathways mediating proprioception. BioRxiv. https://doi.org/10.1101/2020.08.17.254607 Santuz, A., Laflamme, O. D., & Akay, T. (2022). The brain integrates proprioceptive information to ensure robust locomotion. The Journal of Physiology, 600(24), 5267-5294. https://doi.org/10.1113/JP283181 Shadrach, J. L., Gomez-Frittelli, J., & Kaltschmidt, J. A. (2021). Proprioception revisited: where do we stand? Current Opinion in Physiology, 21, 23-28. https://doi.org/10.1016/j.cophys.2021.02.003 Sleigh, J. N., Tosolini, A. P., Gordon, D., Devoy, A., Fratta, P., Fisher, E. M. C., Talbot, K., & Schiavo, G. (2020). Mice Carrying ALS Mutant TDP-43, but Not Mutant FUS, Display In Vivo Defects in Axonal Transport of Signaling Endosomes. Cell Rep, 30(11), 3655-3662 e3652. https://doi.org/10.1016/j.celrep.2020.02.078 Sleigh, J. N., Weir, G. A., & Schiavo, G. (2016). A simple, step-by-step dissection protocol for the rapid isolation of mouse dorsal root ganglia. BMC Res Notes, 9, 82. https://doi.org/10.1186/s13104-016-1915-8 Stern, M. A., Skelton, H., Fernandez, A. M., Gutekunst, C.-A. N., Gross, R. E., & Berglund, K. (2022). Applications of Bioluminescence-Optogenetics in Rodent Models. Methods in Molecular Biology, 2525, 347-363. https://doi.org/10.1007/978-1-0716-2473-9_27 Szekely, G., & Rizzo, M. (2004). Testing for equal distributions in high dimension. InterStat, 5. Tuthill, J. C., & Azim, E. (2018). Proprioception. Current Biology, 28(5), R194-R203. https://doi.org/10.1016/j.cub.2018.01.064 Wittlinger, M., Wehner, R., & Wolf, H. (2007). The desert ant odometer: a stride integrator that accounts for stride length and walking speed. Journal of Experimental Biology, 210(Pt 2), 198-207. https://doi.org/10.1242/jeb.02657 Wobbrock, J. O., Findlater, L., Gergle, D., & Higgins, J. J. (2011). The aligned rank transform for nonparametric factorial analyses using only anova procedures. The 2011 Annual Conference on Human Factors in Computing Systems, 143. https://doi.org/10.1145/1978942.1978963 Wu, D., Schieren, I., Qian, Y., Zhang, C., Jessell, T. M., & de Nooij, J. C. (2019). A Role for Sensory end Organ-Derived Signals in Regulating Muscle Spindle Proprioceptor Phenotype. The Journal of Neuroscience, 39(22), 4252-4267. https://doi.org/10.1523/JNEUROSCI.2671-18.2019 Zhang, J. Y., Tung, J. K., Wang, Z., Yu, S. P., Gross, R. E., Wei, L., & Berglund, K. (2020). Improved trafficking and expression of luminopsins for more efficient optical and pharmacological control of neuronal activity. Journal of Neuroscience Research, 98(3), 481-490. https://doi.org/10.1002/jnr.24546 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97144 | - |
| dc.description.abstract | 以闡明機制為目的的研究,將周邊神經訊息的處理過程與目標導向的認知功能進行因果上的連結,是神經科學中的新興領域。動物通過整合外部與內部的感覺輸入,在腦中形成自身與環境關係的神經表徵,從而指導行為。在涉及空間導航的多感官模態情境中(如現實世界場景),自我運動資訊相較於外部感官線索的因果重要性仍未明確。一些理論指出,身體本身可能是空間感知的關鍵基準。然而,現有的實驗方法通常無法精確控制外部與自我運動驅動的感官回饋。在本研究中,我們開發了一種動物模型系統,用於操控記憶依賴性、類空間導航行為環境中的聽覺、視覺及本體感覺輸入。這個系統使用自製設計的虛擬實境與通過生物冷光光遺傳學技術對本體感覺回饋進行急性調控。小鼠背根神經節中的parvalbumin陽性神經元,作為本體感覺機械傳導的媒介,被基因轉殖所表達的 Luminopsin 3(LMO3)通道所選擇性調控。利用LMO3的配體,coelenterazine(CTZ),我們嘗試建立一個系統,能夠在不影響一般運動能力的情況下損害本體感覺信號的傳遞,這與傳統會損害一般運動能力的 Piezo2 基因剔除方法不同。接受肌肉內注射 CTZ 的小鼠在一般運動技能、肢體協調性以及尋求獎勵的動機方面均表現正常。令人意外的是,這些小鼠在被認為需要本體感覺回饋維持身體平衡的任務中,其表現與對照組無顯著差異。然而,在需要整合過去運動信息以導航至虛擬目標位置的記憶依賴性任務中,這些小鼠在跑步機上的精確目標導向行為中表現出輕微的行為變化。
這些結果表明,PV-LMO3 系統可能會影響小鼠在相對複雜的空間決策中整合本體感覺信號的方式,但不會影響其感知和調節身體動作的能力。我們的發現提供了支持本體感覺在不同層面影響行為決策的初步證據,並展示了在空間導航中使用生物冷光光遺傳學技術調控本體感覺神經的潛力。 儘管目前的方法效果有限,但未來仍有許多可探索的改進選項,包括改良的 LMO3 版本、更高劑量的 CTZ,以及通過在周邊神經系統植入光纖進行光遺傳神經干擾,以進一步闡明本體感覺在複雜行為中的角色。綜合來說,我們設計、實現並測試了一套可編程、進行急性操控的策略,用於研究小鼠在虛擬實境中的記憶導向空間導航,實現了對聽覺、視覺和自我運動感官輸入的動態精確控制。 | zh_TW |
| dc.description.abstract | Mechanistic studies that causally link peripheral neural processes with goal-directed cognitive functions is a new frontier in neuroscience. Animals integrate external and internal sensory inputs to form neural representations of their relationship with the environment, which guide behavior. In multimodal settings of spatial navigation, including real-world scenarios, the causal importance of self-motion information relative to external sensory cues remains largely unclear. Some theories suggest that the body itself serves as a key metric for spatial perception. However, existing experimental methods often fail to precisely control external and self-motion-driven sensory feedback. In this study, we developed an animal model system to manipulate auditory, visual, and proprioceptive inputs during memory-dependent, spatial-navigation-like behavior settings.
This was achieved with a multiplexed approach combining custom-designed virtual reality for mice with acute modulation of proprioceptive feedback via bioluminescent optogenetics. Proprioceptive mechanical transduction, mediated by parvalbumin-positive neurons in the dorsal root ganglia, was selectively manipulated by transgenic expression of Luminopsin 3 (LMO3) channels in mice. Using the extracellular ligand coelenterazine (CTZ), we aimed to establish a system to impair proprioceptive signaling without compromising locomotion, unlike conventional Piezo2 knockouts. Mice receiving intramuscular CTZ injections exhibited normal motor skills and coordination in general assessments as well as normal motivation for seeking rewards. Surprisingly, these mice performed comparably well to their controls (or control conditions) in tasks thought to require proprioceptive feedback, such as balance-beam tasks. However, they displayed mild behavioral changes in memory-dependent tasks requiring integration of past movements to navigate to a virtual location, engaged in precise goal-dependent behavior on a treadmill. These results suggest that the PV-LMO3 system might influence how mice integrate proprioceptive signals for relatively complex spatial decision-making, while leaving their ability to grossly sense and tune body movements intact. Our finding supports the idea regarding task-specific nature of proprioceptive functions, and demonstrate the potential utility of chemo- or optogenetic control of proprioceptive nerves for modulating peripheral proprioceptive signaling during spatial navigation. Although the current approach showed limited effects in certain tasks, future studies can be carried out to investigate improved options including new LMO3 variants, higher CTZ doses, and optogenetic perturbation of nerves with peripheral optical-fiber implants, to further elucidate the roles of proprioception in complex behaviors. Together, we designed, implemented and tested a suite of programmable and acute manipulation strategies for memory-guided spatial navigation research for mice in virtual reality, which realizes dynamic and precise control of audio-visual and self-motion-based sensory inputs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:23:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-27T16:23:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
Acknowledgements iii 摘要 iv Abstract v Figure list ix Chapter 1 – Introduction 1 Spatial Navigation 1 The Neural Pathways for Idiothetic Sensory and Spatial Information 2 Considerations of Causal Proof for the Role of Proprioception in Spatial Navigation 6 Chapter 2 - Materials and Methods 9 Animals 9 Intramuscular and intraperitoneal injection 10 Headplate Implantation 11 Behavior Task Design 11 Dorsal root ganglia isolation and histological sectioning 19 Immunohistochemistry 19 Data Analysis 20 Statistics 22 Code Availability 25 ChatGPT 25 Chapter 3 – Results 26 Design of Sensory Control in Programmable Auditory Virtual Reality (VR) for Head-Restrained Animals 26 Empirical Tests and Considerations for Using Transgenics with the bioluminescence-Optogenetic Actuator LMO3 in Proprioceptive Neurons of the DRG 29 Normal Locomotor Activity, 2-D Motion Kinematics, and Motivation for Reward Seeking in Mice with LMO3-Perturbed Proprioceptive Nerves in Limbs 31 Locomotor Coordination and Proprioceptive Feedback Show Limited Impairment under the LMO3 Perturbation 33 Memory-Directed Behavior for Locating Rewards in Virtual Space Is Potentially Affected by LMO3 Perturbation at Higher Doses 35 Chapter 4 – Discussion 38 Critical scientific need for animal models allowing direct manipulation of proprioception 38 Why LMOs 38 Route of administration of the luciferase ligand (CTZ) and the pharmacodynamics 39 Do different behavioral tasks reflect proprioceptive functions in the same way? 40 Interpretation of the results from the spatial dead reckoning task 41 Limitations of the study and future work 42 Figures 44 References 64 | - |
| dc.language.iso | en | - |
| dc.subject | 生物冷光光遺傳學 | zh_TW |
| dc.subject | 空間導航 | zh_TW |
| dc.subject | 虛擬實境 | zh_TW |
| dc.subject | 本體感覺 | zh_TW |
| dc.subject | Bioluminescent Optogenetics | en |
| dc.subject | Proprioception | en |
| dc.subject | Spatial navigation | en |
| dc.subject | Virtual Reality | en |
| dc.title | 急性週邊本體感覺操弄策略之測試與小鼠虛擬實境空間行為模式之整合 | zh_TW |
| dc.title | Testing and Integration of Acute Peripheral Proprioception Perturbation for Spatial Behavior of Mice in Virtual Reality | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 徐經倫 | zh_TW |
| dc.contributor.coadvisor | Ching-Lung Hsu | en |
| dc.contributor.oralexamcommittee | 陳志成;江柏翰;林宛蓁 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Cheng Chen;Po-Han Chiang;Wan-Chen Lin | en |
| dc.subject.keyword | 本體感覺,空間導航,虛擬實境,生物冷光光遺傳學, | zh_TW |
| dc.subject.keyword | Proprioception,Spatial navigation,Virtual Reality,Bioluminescent Optogenetics, | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202500606 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-02-13 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| dc.date.embargo-lift | 2025-02-28 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 5.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
