Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97143
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江簡富zh_TW
dc.contributor.advisorJean-Fu Kiangen
dc.contributor.author張哲睿zh_TW
dc.contributor.authorChe-Jui Changen
dc.date.accessioned2025-02-27T16:23:33Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-14-
dc.identifier.citation[1] N. Buzulukova and B. Tsurutani, “Space weather: from solar origins to risks and hazards evolving in time,” Frontiers in Astronomy and Space Science, vol. 9, DOI 10.3389, fspas.2022.1017103, December, 2022.
[2] J. Zheng, J. Huang, Z. Li, W. Li, Y. Han et al., “Multiple-band electric field response to the Geomagnetic Storm on 4 November 2021,” Remote Sensing, vol. 16, iss. 18, no. 3497, 2024.
[3] N. A. Frissell, J. S. Vega, E. Markowitz et al., “High-frequency communications response to solar activity in September 2017 as observed by amateur radio networks,” Space Weather, vol. 17, issue 1, pp. 118-132, 2019.
[4] P. V. S. Rama Rao, S. Gopi Krishna, J. Vara Prasad et al., “Geomagnetic storm effects on GPS based navigation,” Annales Geophysicae, vol. 27, pp. 2101-2110, 2009.
[5] X. Luo, J. Du, Y. Lou et al., “A method to mitigate the effects of strong geomagnetic storm on GNSS precise point positioning,” Space Weather, vol. 20, issue 1, 2022.
[6] T. Dang, X. Li, B. Luo et al., “Unveiling the space weather during the Starlink satellites destruction event on 4 February 2022,” Space Weather, vol. 20, issue 8, 2022.
[7] S. Bruinsma, T. D. de Wit, T. Fuller-Rowell et al., “Thermosphere and satellite drag,” Advances in Space Research, accepted, 2023.
[8] A. Keiling, O. Marghitu and M. Wheatland, Electric Currents in Geospace and Beyond, John Wiley & Sons, Inc., Hoboken, USA, 2018.
[9] M. Kellinsalmi, A. Viljanen, L. Juusola and S. Kaki, “The time derivative of the geo magnetic field has a short memory,” Annales Geophysicae, vol. 40, pp. 545-562, 2022.
[10] J. G. Kappenman and V. D. Albertson, “Bracing for the geomagnetic storms,” IEEE Spectrum, vol. 27, pp. 27-33, 1990.
[11] T. S. Molinski, “Why utilities respect geomagnetically induced currents,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 64, pp. 1765-1778, 2002.
[12] B. Adhikari, N. Sapkota, S. Dahal et al., “Spectral characteristic of geomagnetically induced current during geomagnetic storms by wavelet techniques,” Journal of Atmo spheric and Solar-Terrestrial Physics, vol. 192, 104777, 2019.
[13] D. K. Cheng, Field and Wave Electromagnetics, 2nd edition, Addison-Wesley Publishing Company, 1983.
[14] N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill Book Company, 1973.
[15] A. Pulkkinen, M. Kuznetsova, A. Ridley et al., “Geospace environment modeling 2008-2009 challenge: ground magnetic field perturbations,” Space Weather, vol. 9, S02004, 2011.
[16] N. K. Kwagala, M. Hesse, T. Moretto et al., “Validating the space weather modeling framework (SWMF) for applications in northern Europe,” Journal of Space Weather and Space Climate, vol. 10, no. 33, 2020.
[17] J. Wang, A. Du, Y. Zhang et al., “Modeling the Earth’s magnetosphere under the influence of solar wind with due northward IMF by the AMR-CESE-MHD model,” Science China Earth Sciences, vol. 58, pp. 1235-1242, 2015.
[18] C.-M. Lai and J.-F. Kiang, “Comparative study on planetary magnetosphere in the solar system,” Sensors, vol. 20, issue 6, no. 1673, 2020.
[19] M. L. Goodman, “A three-dimensional, iterative mapping procedure for the implemen tation of an ionosphere-magnetosphere anisotropic Ohm’s law boundary condition in global magnetohydrodynamic simulations,” Annales Geophysicae, vol. 13, pp. 843-853, 1995.
[20] A. J. Ridley Y. Deng and G. Toth, “The global ionosphere-thermosphere model,” Jour nal of Atmospheric and Solar-Terrestrial Physics, vol. 68, pp. 839-864, 2006.
[21] D. Bilitza, M. Pezzopane, V. Truhlik et al., “The international reference ionosphere model: a review and description of an ionospheric benchmark,” Reviews of Geophysics, vol. 60, e2022RG000792, 2022.
[22] B. Nava, P. Coisson and S. M. Radicella, “A new version of the NeQuick ionosphere electron density model,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 70, pp. 1856-1862, 2008.
[23] R. E. Daniell, L. D. Brown, D. N. Anderson et al., “Parameterized ionospheric model: a global ionospheric parameterization based on first principles models,” Radio Science, vol. 30, no. 5, pp. 1499-1510, 1995.
[24] Y. Deng, C. Sheng, B. T. Tsurutani et al., “Possible influence of extreme magnetic storms on the thermosphere in the high latitudes,” Space Weather, vol. 16, pp. 802-813, 2018.
[25] S. Fujita, I. Fujii, A. Endo and H. Tominaga, “Numerical modeling of spatial profiles of geomagnetically induced electric field intensity in and around Japan,” Technical Report of the Kakioka Magnetic Observatory, vol. 14, no. 2, pp. 35-50, 2018.
[26] S. Nakamura, Y. Ebihara, S. Fujita et al., “Time domain simulation of geomagneti cally induced current (GIC) flowing in 500-kV power grid in Japan including a three dimensional ground inhomogeneity,” Space Weather, vol. 16, iss. 12, pp. 1946-1959, 2018.
[27] M. Lehtinen and R. J. Pirjola, “Currents produced in earthed conductor networks by geomagnetically-induced electric fields,” Annales Geophysicae, vol. 3, no. 4, pp. 479-484, 1985.
[28] R. J. Pirjola, D. H. Boteler, L. Tuck and S. Marsal, “The Lehtinen-Pirjola method modified for efficient modelling of geomagnetically induced currents in multiple voltage levels of a power network,” Annales Geophysicae, vol. 40, pp. 205-215, 2022.
[29] D. Oyedokun, M. Heyns, P. Cilliers and CT Gaunt, “Frequency components of geomagnetically induced currents for power system modelling,” 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa, pp. 1-6, 2020.
[30] A. L. Fleetham, S. E. Milan, S. M. Imber et al., “The relationship between large dB/dt and field-aligned currents during five geomagnetic storms,” Journal of Geophysical Re search: Space Physics, vol. 129, e2024JA032483, 2024.
[31] C.-J. Chang and J.-F. Kiang, “Simulations of switchback, fragmentation and sunspot pair in δ-sunspots during magnetic flux emergence,” Sensors, vol. 21, Iss. 2, no. 586, 2021.
[32] P. Stubbe and T. Hagfors, “The earth’s ionosphere: a wall-less plasma laboratory,” Surveys in Geophysics, vol. 18, pp. 57-127, 1997.
[33] J. Raeder, “Global magnetohydrodynamics - a tutorial,” Space Plasma Simulation. Lecture Notes in Physics, vol. 615, Springer, Berlin, Heidelberg, 2003.
[34] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: A Practical introduction, Third Edition, 2009.
[35] P. Londrillo and L. D. Zanna, “On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method,” Journal of Computational Physics, vol. 195, pp. 17-48, 2004.
[36] Tatsuki Ogino, “A three-dimensional MHD simulation of the interaction of the solar wind with the Earth’s magnetosphere: the generation of field-aligned currents,” Journal of Geophysical Research, vol. 91, no. A6, June 1, 1986.
[37] M. Walt, Introduction to Geomagnetically Trapped Radiation, Cambridge University Press, 1994.
[38] D. E. Winch, D. J. Ivers, J. P. R. Turner et al., “Geomagnetism and Schmidt quasi-normalization,” Geophysical Journal International, vol. 160, pp. 487-504, 2005.
[39] H. Zhou, L. Turc, Y. Pfau-Kempf et al., “Magnetospheric responses to solar wind Pc5 density fluctuations: results from 2D hybrid Vlasov simulation,” Frontiers in Astronomy and Space Sciences, 9:984918, September 02, 2022.
[40] V. B. Ovodenko, I. Zakharenkova, M. V. Klimenko et al., “Ionospheric irregularities over Norilsk during the 27-28 May 2017 geomagnetic storm,” 2nd URSI AT-RASC, Gran Canaria, 2018.
[41] Y. A. Tariku, “The geomagnetic storm time response of the mid latitude ionosphere during solar cycle 24,” Radio Science, vol. 56, e2021RS007340, 2021.
[42] B. T. Tsurutani, A. J. Mannucci, B. Iijima et al., “The extreme Halloween 2003 solar flares, ICMEs, and resultant extreme ionospheric effects: a review,” Advances in Space Research, vol. 37, pp. 1583-1588, 2006.
[43] G. Siscoe, N. U. Crooker and C. R. Clauer, “Dst of the Carrington storm of 1859,” Advances in Space Research, vol. 38, pp. 173-179, 2006.
[44] H. Hayakawa, S. Bechet, F. Clette et al., “Magnitude estimates for the Carrington flare in 1859 September: as seen from the original records,” Astrophys. J., vol. 954:L3 (10pp), September 1, 2023.
[45] E. W. Cliver, C. J. Schrijver, K. Shibata and I. G. Usoskin, “Extreme solar events,” Living Reviews in Solar Physics, vol. 19, no. 2, 2022.
[46] X. Li, M. Temerin, B. T. Tsurutani and S. Alex, “Modeling of 1-2 September 1859 super magnetic storm,” Advances in Space Research, vol. 38, pp. 273-279, 2006.
[47] H. Zamani, K. Sheshyekani and P. Dehkhoda, “3-D FDTD method for fast calculation of geomagnetic storm electromagnetic fields,” IEEE Transactions on Electromagnetic Compatibility, vol. 63, no. 4, August 2021.
[48] R. M. Shore, K. A. Whaler, S. Macmillan et al., “Ionospheric midlatitude electric current density inferred from multiple magnetic satellites,” Journal of Geophysical Research: Space Physics, vol. 118, pp. 5813-5829, 2013.
[49] A. Z. Elsherbeni and V. Demir, The finite-difference time-domain method for electromagneitcs with MATLAB simulations, 2nd edition, 2015.
[50] J.-P. Berrut and L. N. Trefethen, “Barycentric Lagrange Interpolation,” SIAM Review, vol. 46, no. 3, pp. 501-517, 2004.
[51] Y. Zhang and J. J. Simpson, “Extrapolation within the Time-Stepping Loop of FDTD Models,” IEEE Transactions on Antennas and Propagation, vol. 72, no. 4, April 2024.
[52] NOAA National Geophysical Data Center, ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for Environmental Information, 2009.
[53] G. Laske and T. G. Masters, “A global digital map of sediment thickness,” EOS Trans actions American Geophysical Union, 78(46), 483.
[54] W. Li and M. K. Hudson, “Earth’s Van Allen radiation belts: from discovery to the Van Allen Probes eras,” Journal of Geophysical Research: Space Physics, vol. 124, pp. 8319-8351, 2019.
[55] https://web.archive.org/web/20200306135737/https://www.nasa.gov/content/goddard/van-allen-probes-spot-impenetrable-barrier-in-space.
[56] C.-J. Chang and J.-F. Kiang, “Simulations on synchrotron radiation intensity and rotation measure of relativistic magnetized jet PKS 1502+106,” Universe, vol. 9, no. 235, 2023.
[57] C.-J. Chang and J.-F. Kiang, “Reconstruction of Fermi and eROSITA bubbles from magnetized jet eruption with simulations,” Universe, vol. 10, no. 279, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97143-
dc.description.abstract太空天氣在磁層和電離層的日變化中起著重要作用,從而影響大氣層內及地表的人類活動。太陽風攜帶星際磁場驅動空間中的地磁場導引電流,進而在地球表面產生地磁感應電場和地磁感應電流。地磁感應電流可能會損壞電網中的變壓器和傳輸線、鐵路設備、通信電纜以及管道網絡。文獻中通常將地表的地磁感應電場起源簡化為面電流或線電流。在本研究中,將探討地球表面的地磁感應電場與磁暴期間地磁場導引電流之間的關係。通過磁流體力學模型模擬地球磁暴期間磁層對太陽風的響應,並將該響應作為邊界條件,進一步模擬電離層的響應。最後,應用時域有限差分法計算基於電離層響應推導出的電流源,並
獲得地磁感應電場的時空分佈。本研究模擬了 2017 年 5 月磁暴、萬聖節磁暴以及卡靈頓事件三種情境下的地磁感應電場分佈,以評估太陽風暴可能帶來的災害。此外,模擬中還揭示了類似范艾倫輻射帶的現象。
zh_TW
dc.description.abstractSpace weather plays an important role in the diurnal variation of magnetosphere and ionossphere, hence impacts the human activities in the atmosphere and on the ground. The solar wind accompanied by the interplanetary magnetic field (IMF) drives field-aligned cur rents (FACs) in space, which in turn drive geomagnetically induced electric field (GIE) and geomagnetically induced current (GIC) on the Earth surface. The GIC may damage trans formers and transmission lines in power grids, railway equipment, communication cables and pipeline networks. The ground-level GIE was assumed to originate from some simpli fied current sheet or line current in the literature. In this work, the relationship between GIE on the Earth surface and the FACs during a magnetic storm will be studied. The magnetospheric response to the solar wind during geomagnetic storms is simulated by using an MHD model. The ionospheric response is then simulated by taking the magnetospheric response as the boundary conditions. Finally, an FDTD method is applied to compute the spatial and temporal distributions of GIE in terms of the current sources derived from the ionospheric response. The distributions of GIE are simulated in three scenarios of May 2017 storm, Halloween storm and Carrington storm, respectively, to evaluate possible hazards of solar storms. In addition, phenomena akin to the Van Allen radiation belts are revealed in the simulations.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:23:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:23:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement ii
Chinese Abstract iii
Abstract iv
Contents vi
List of Figures viii
List of Tables xiii
1 Introduction 1
2 MHD Model of Solar Winds 6
2.1 Magnetosphere-Ionosphere Coupling on Inner Boundary 12
2.2 Simulations of Ionosphere 17
3 FAC-Induced GIE with FDTD Method 19
4 Results and Discussions 23
4.1 Simulations with 2D-MHD Model 23
4.2 GIE Induced by Current Sheet Obtained from the MHD Simulations 31
5 Conclusions 42
Bibliography 44
-
dc.language.isoen-
dc.title太陽磁暴期間由地磁場導引電流感應的地面電場模擬zh_TW
dc.titleSimulations of GIE induced by Field-Aligned Current during Magnetic Stormen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee丁建均;李翔傑;李俊興;鄭宇翔zh_TW
dc.contributor.oralexamcommitteeJian-Jiun Ding;Hsiang-Chieh Lee;Chun-Hsing Li;Yu-Hsiang Chengen
dc.subject.keyword地磁場導引電流,地磁感應電場,地磁感應電流,zh_TW
dc.subject.keywordfield-aligned current,geomagnetically induced electric field,geomagnetically induced current,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202500706-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-02-28-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf20.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved