Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97130
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor丁建均zh_TW
dc.contributor.advisorJian-Jiun Dingen
dc.contributor.author謝昌諭zh_TW
dc.contributor.authorChang-Yu Hsiehen
dc.date.accessioned2025-02-27T16:20:01Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-11-
dc.identifier.citation[1] Eli Arbel and Hagit Hel-Or. Shadow removal using intensity surfaces and texture anchor points. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6):1202–1216, 2011. 2, 14
[2] Manel Baradad, Vickie Ye, Adam B. Yedidia, Fr´edo Durand, William T. Freeman, Gregory W. Wornell, and Antonio Torralba. Inferring light fields from shadows. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6267–6275, 2018. 1
[3] Hua-En Chang, Chia-Hsuan Hsieh, Hao-Hsiang Yang, I-Hsiang Chen, Yi-Chung Chen, Yuan-Chun Chiang, Zhi-Kai Huang, Wei-Ting Chen, and Sy-Yen Kuo. Tsrformer: Transformer based two-stage refinement for single image shadow removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 1436–1446, June 2023. 27, 28
[4] Zipei Chen, Chengjiang Long, Ling Zhang, and Chunxia Xiao. Canet: A context-aware network for shadow removal. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 4723–4732, 2021. 3
[5] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati. Detecting moving objects, ghosts, and shadows in video streams. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10):1337–1342, 2003. 2
[6] R. Cucchiara, C. Grana, M. Piccardi, A. Prati, and S. Sirotti. Improving shadow suppression in moving object detection with hsv color information. In ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585), pages 334–339, 2001. 2
[7] Xiaodong Cun, Chi-Man Pun, and Cheng Shi. Towards ghost-free shadow removal via dual hierarchical aggregation network and shadow matting gan. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 10680–10687, 2020. 45
[8] Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg, and Joost van de Weijer. Adaptive color attributes for real-time visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014. 2
[9] G.D. Finlayson, S.D. Hordley, Cheng Lu, and M.S. Drew. On the removal of shadows from images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1):59–68, 2006. 2, 14
[10] Graham D Finlayson, Mark S Drew, and Cheng Lu. Entropy minimization for shadow removal. International Journal of Computer Vision, 85(1):35–57, 2009. 2, 14
[11] Graham D. Finlayson, Steven D. Hordley, and Mark S. Drew. Removing shadows from images. In Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter Johansen, editors, Computer Vision — ECCV 2002, pages 823–836, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. 14
[12] Matthieu Fradet, Patrice Hirtzlin, Pierrick Jouet, Anthony Laurent, and Caroline Baillard. Light4ar: a shadow-based estimator of multiple light sources in interactive time for more photorealistic ar experiences. In 2021 IEEE Interna-tional Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pages 304–309, 2021. 1
[13] Gang Fu, Qing Zhang, and Chunxia Xiao. Towards high-quality intrinsic images in the wild. In 2019 IEEE International Conference on Multimedia and Expo (ICME), pages 175–180, 2019. 2
[14] Lan Fu, Changqing Zhou, Qing Guo, Felix Juefei-Xu, Hongkai Yu, Wei Feng, Yang Liu, and Song Wang. Auto-exposure fusion for single-image shadow removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10571–10580, June 2021. 3, 10, 18, 47
[15] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 3354–3361, 2012. 7
[16] David Griffiths, Tobias Ritschel, and Julien Philip. Outcast: Outdoor singleimage relighting with cast shadows. Computer Graphics Forum, 41(2):179–193, May 2022. 2
[17] Chunle Guo, Chongyi Li, Jichang Guo, Chen Change Loy, Junhui Hou, Sam Kwong, and Runmin Cong. Zero-reference deep curve estimation for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. 30
[18] Lanqing Guo, Siyu Huang, Ding Liu, Hao Cheng, and Bihan Wen. Shadowformer: Global context helps shadow removal. In Brian Williams, Yiling Chen, and Jennifer Neville, editors, Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pages 710–718. AAAI Press, 2023. v, 3, 20, 28, 29, 33, 41, 47
[19] Lanqing Guo, Chong Wang, Wenhan Yang, Siyu Huang, Yufei Wang, Hanspeter Pfister, and Bihan Wen. Shadowdiffusion: When degradation prior meets diffusion model for shadow removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 14049–14058, June 2023. 20
[20] Ruiqi Guo, Qieyun Dai, and Derek Hoiem. Single-image shadow detection and removal using paired regions. In CVPR 2011, pages 2033–2040, 2011. 2, 14
[21] Ruiqi Guo, Qieyun Dai, and Derek Hoiem. Paired regions for shadow detection and removal. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(12):2956–2967, 2013. 2, 14
[22] Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei Zhang. Toward convolutional blind denoising of real photographs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. 29
[23] Yan Hong, Li Niu, and Jianfu Zhang. Shadow generation for composite image in real-world scenes. AAAI, 2022. 7, 13
[24] Xiaowei Hu, Chi-Wing Fu, Lei Zhu, Jing Qin, and Pheng-Ann Heng. Directionaware spatial context features for shadow detection and removal. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(11):2795–2808, 2020. 3, 18
[25] Xiaowei Hu, Yitong Jiang, Chi-Wing Fu, and Pheng-Ann Heng. Maskshadowgan: Learning to remove shadows from unpaired data. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019. 3, 7, 47
[26] Xiaowei Hu, Tianyu Wang, Chi-Wing Fu, Yitong Jiang, Qiong Wang, and Pheng-Ann Heng. Revisiting shadow detection: A new benchmark dataset for complex world. IEEE Transactions on Image Processing, 30:1925–1934, 2021. iv, v, 3, 7, 8, 36
[27] Yeying Jin, Aashish Sharma, and Robby T. Tan. Dc-shadownet: Single-image hard and soft shadow removal using unsupervised domain-classifier guided network. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 5027–5036, October 2021. 47
[28] P. KaewTraKulPong and R. Bowden. An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection, pages 135–144. Springer US, Boston, MA, 2002. 2
[29] Salman Hameed Khan, Mohammed Bennamoun, Ferdous Sohel, and Roberto Togneri. Automatic feature learning for robust shadow detection. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 1939– 1946, 2014. 3, 15
[30] Jean-Fran¸cois Lalonde, Alexei A. Efros, and Srinivasa G. Narasimhan. Detecting ground shadows in outdoor consumer photographs. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios, editors, Computer Vision – ECCV 2010, pages 322–335, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. 2, 14
[31] Hieu Le and Dimitris Samaras. Shadow removal via shadow image decomposition. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019. v, 3, 18, 33, 34, 35
[32] Hieu Le and Dimitris Samaras. From shadow segmentation to shadow removal. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, pages 264–281, Cham, 2020. Springer International Publishing. 3
[33] Hieu Le, Tomas F. Yago Vicente, Vu Nguyen, Minh Hoai, and Dimitris Samaras. A+d net: Training a shadow detector with adversarial shadow attenuation. In Proceedings of the European Conference on Computer Vision (ECCV), September 2018. 3, 16
[34] Zhengqi Li and Noah Snavely. Learning intrinsic image decomposition from watching the world. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018. 2
[35] Daquan Liu, Chengjiang Long, Hongpan Zhang, Hanning Yu, Xinzhi Dong, and Chunxia Xiao. Arshadowgan: Shadow generative adversarial network for augmented reality in single light scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. iv, 7, 12, 13
[36] Feng Liu and Michael Gleicher. Texture-consistent shadow removal. In David Forsyth, Philip Torr, and Andrew Zisserman, editors, Computer Vision – ECCV 2008, pages 437–450, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. 2, 14
[37] Qingyang Liu, Junqi You, Jianting Wang, Xinhao Tao, Bo Zhang, and Li Niu. Shadow generation for composite image using diffusion model. CoRR, 2024. iv, 7, 12, 13, 15, 39, 41
[38] Ruoshi Liu, Sachit Menon, Chengzhi Mao, Dennis Park, Simon Stent, and Carl Vondrick. Shadows shed light on 3d objects, 2022. 2
[39] Zhihao Liu, Hui Yin, Yang Mi, Mengyang Pu, and Song Wang. Shadow removal by a lightness-guided network with training on unpaired data. IEEE Transactions on Image Processing, 30:1853–1865, 2021. 3, 29
[40] Zhihao Liu, Hui Yin, Xinyi Wu, Zhenyao Wu, Yang Mi, and Song Wang. From shadow generation to shadow removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4927– 4936, June 2021. 3
[41] Hieu M Le, Bento Goncalves, Dimitris Samaras, and Heather Lynch. Weakly labeling the antarctic: The penguin colony case. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019. 2
[42] Vu Nguyen, Tomas F. Yago Vicente, Maozheng Zhao, Minh Hoai, and Dimitris Samaras. Shadow detection with conditional generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017. 16
[43] Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong Tang, and Rynson W. H. Lau. Deshadownet: A multi-context embedding deep network for shadow removal. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2308–2316. IEEE Computer Society, 2017. iv, v, 3, 7, 9, 17, 23, 27, 33, 34, 35, 36, 39, 41, 45
[44] Fadlullah Raji and John Murray Bruce. Soft shadow diffusion (ssd): Physicsinspired learning for 3d computational periscopy. In Aleˇs Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and G¨ ul Varol, editors, Computer Vision – ECCV 2024, pages 382–400, Cham, 2025. Springer Nature Switzerland. 2
[45] Mrinmoy Sen, Sai Pradyumna Chermala, Nazrinbanu Nurmohammad Nagori, Venkat Peddigari, Praful Mathur, B. H. Pawan Prasad, and Moonhwan Jeong. Shards: Efficient shadow removal using dual stage network for high-resolution images. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 1809–1817, January 2023. iv, 3, 7, 11
[46] Mrinmoy Sen, Sai Pradyumna Chermala, Nazrinbanu Nurmohammad Nagori, Venkat Peddigari, Praful Mathur, B. H. Pawan Prasad, and Moonhwan Jeong. Shards: Efficient shadow removal using dual stage network for high-resolution images. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 1809–1817, January 2023. 28
[47] Joongchol Shin, Hasil Park, and Joonki Paik. Region-based dehazing via dualsupervised triple-convolutional network. IEEE Transactions on Multimedia, 24:245–260, 2022. 2
[48] J. Stander, R. Mech, and J. Ostermann. Detection of moving cast shadows for object segmentation. IEEE Transactions on Multimedia, 1(1):65–76, 1999. 2
[49] Maryam Sultana, Arif Mahmood, and Soon Ki Jung. Unsupervised moving object detection in complex scenes using adversarial regularizations. IEEE Transactions on Multimedia, 23:2005–2018, 2021. 2
[50] Florin-Alexandru Vasluianu, Andres Romero, Luc Van Gool, and Radu Timofte. Shadow removal with paired and unpaired learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 826–835, June 2021. 3
[51] Florin-Alexandru Vasluianu, Tim Seizinger, and Radu Timofte. Wsrd: A novel benchmark for high resolution image shadow removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 1826–1835, June 2023. iv, 3, 7, 10, 11, 25
[52] Tom´ as F. Yago Vicente, Le Hou, Chen-Ping Yu, Minh Hoai, and Dimitris Samaras. Large-scale training of shadow detectors with noisily-annotated shadow examples. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016, pages 816–832, Cham, 2016. Springer International Publishing. iv, v, 3, 6, 7, 15, 36
[53] Tom´ as F. Yago Vicente and Dimitris Samaras. Single image shadow removal via neighbor-based region relighting. In Lourdes Agapito, Michael M. Bronstein, and Carsten Rother, editors, Computer Vision - ECCV 2014 Workshops, pages 309–320, Cham, 2015. Springer International Publishing. 2, 14
[54] Jin Wan, Hui Yin, Zhenyao Wu, Xinyi Wu, Yanting Liu, and Song Wang. Styleguided shadow removal. In European Conference on Computer Vision, pages 361–378. Springer, 2022. v, 3, 19, 29, 33, 41, 47, 48
[55] Jifeng Wang, Xiang Li, and Jian Yang. Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018. iv, v, 3, 7, 9, 10, 17, 21, 27, 33, 34, 35, 36, 39, 41, 45
[56] Tianyu Wang, Xiaowei Hu, Qiong Wang, Pheng-Ann Heng, and Chi-Wing Fu. Instance shadow detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. iv, 7, 12, 14
[57] Yifan Wang, Brian L. Curless, and Steven M. Seitz. People as Scene Probes, page 438–454. Springer International Publishing, 2020. 2
[58] Jinjiang Wei, Chengjiang Long, Hua Zou, and Chunxia Xiao. Shadow inpainting and removal using generative adversarial networks with slice convolutions. In Computer Graphics Forum, volume 38, pages 381–392. Wiley Online Library, 2019. 28
[59] Yimin Xu, Mingbao Lin, Hong Yang, Fei Chao, and Rongrong Ji. Shadow-aware dynamic convolution for shadow removal. Pattern Recognition, 146:109969, 2024. 33, 47
[60] Qingxiong Yang, Kar-Han Tan, and Narendra Ahuja. Shadow removal using bilateral filtering. IEEE Transactions on Image Processing, 21(10):4361–4368, 2012. 14
[61] Qianhao Yu, Naishan Zheng, Jie Huang, and Feng Zhao. Cnsnet: A cleannessnavigated-shadow network for shadow removal. In European Conference on Computer Vision, pages 221–238. Springer, 2022. 3, 19
[62] Ling Zhang, Chengjiang Long, Xiaolong Zhang, and Chunxia Xiao. Ris-gan: Explore residual and illumination with generative adversarial networks for shadow removal. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 12829–12836, 2020. 28
[63] Ling Zhang, Qing Zhang, and Chunxia Xiao. Shadow remover: Image shadow removal based on illumination recovering optimization. IEEE Transactions on Image Processing, 24(11):4623–4636, 2015. 2, 14
[64] Wuming Zhang, Xi Zhao, Jean-Marie Morvan, and Liming Chen. Improving shadow suppression for illumination robust face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(3):611–624, 2019. 2
[65] Xiaofeng Zhang, Yudi Zhao, Chaochen Gu, Changsheng Lu, and Shanying Zhu. Spa-former:an effective and lightweight transformer for image shadow removal. In 2023 International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2023. 47, 48
[66] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. 7
[67] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic understanding of scenes through the ade20k dataset. International Journal of Computer Vision, 127:302–321, 2019. 7
[68] Lei Zhu, Zijun Deng, Xiaowei Hu, Chi-Wing Fu, Xuemiao Xu, Jing Qin, and Pheng-Ann Heng. Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In Proceedings of the European Conference on Computer Vision (ECCV), September 2018. 3, 16
[69] Yurui Zhu, Jie Huang, Xueyang Fu, Feng Zhao, Qibin Sun, and Zheng-Jun Zha. Bijective mapping network for shadow removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 5627–5636, June 2022. 10, 47, 48
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97130-
dc.description.abstract陰影的存在導致了具有較低光強度的區域,削弱了底層資訊並導致高階電腦視覺演算法的失效。因此,作為影像回復的子任務之一,專注於移除陰影並回復背景資訊的陰影去除(shadow removal)是一項重要任務。長久以來,眾多研究者已經提出多種方法。早期方法採用了基於對陰影形成模型的手工設計方法。更近期,隨著大規模資料集的出現,基於深度學習的方法大幅提高了回復品質。然而,作為此類方法的重要基礎,現存的各種資料集具有多項限制。首先,由於資料所包含場景缺乏可見陰影遮擋物,部屬到真實世界的應用時模型可能有所偏差。再者,沒有遮擋物衍伸出受限的相機伏角注定了這些資料集只能有較短的景深和包含俯視圖為主的資料。此外,非陰影區域中嚴重的不一致問題導致了模型能力的不準確評估以及訓練和評估階段之間的偏差。因此,在這篇論文中,一個新的基準,先進陰影處理資料集(Advanced Dataset for Shadow Processing, ADSP)被提出。ADSP採用了新提出基於後處理的合成策略來收集包含可見遮擋物的影像配對。該資料集是第一個包含可見遮擋物的戶外陰影/無陰影影像配對資料集。它為訓練更穩健陰影去除模型提供了很好的監督。同時,不受沒有遮擋物的限制,ADSP在相機角度以及視角種類上有更高的自由度。此外,受益於合成策略的高度可操控性,所提出的ADSP展現了對於不一致問題很好的抑制。統計分析與實驗呈現了ADSP更具挑戰性、更少的遷移、匹配真實世界場景、更好的泛化能力等優勢。最後,作為去除任務上設定一個基準,一個分段細化去除網路(Segmented Refinement Removal Network, SRRN)也被提出。該網路旨在區別兩種去除任務中常見的偽影。更具體的說,採用了一個三階段架構分別進行初步去除、顏色調整以及邊界平滑。在使用去除子網路進行初步去除後,有兩個細化子網,負責處理陰影區域上的顏色偏差,以及半陰影區域上的邊界效應。這兩個子網配有特別設計的損失函數,以專注在回復其目標區域。實驗結果證明了SRRN可以提高視覺愉悅程度,並在提出的ADSP上達到了最先進的陰影去除結果。zh_TW
dc.description.abstractThe existence of shadow results in low-intensity areas, weakening underlying features and leading to malfunctions in high-level computer vision algorithms. Thus, shadow removal, as a subtask of image restoration, which aims to remove the shadow from the image and recover the background information, is an essential and popular task. For a long time, researchers have proposed different methods to deal with it. Early works adopted hand-crafted methods based on observing shadow formulation models. More recently, with the appearance of large-scale benchmarks, deep-learning-based solutions have further advanced performance in restoration quality. However, as the important base for learning-based methods, the existing benchmarks have several limitations. The lack of visible occluders within the scenes makes them biased when deployed on real-world applications. Restricted camera depression angle doom that they have a short depth of field and are most top-viewed. Severe inconsistency problems in the non-shadow region result in inaccurate estimation of model ability and deviation between training and evaluation. Therefore, in this thesis, a novel benchmark of the Advanced Dataset for Shadow Processing (ADSP) was introduced. The ADSP was built based on a novel synthesizing strategy, a post-processing-based method for collecting image pairs with visible occluders. The ADSP is the first benchmark containing outdoor shadow/shadow-free image pairs with visible occluders, providing excellent supervision for training shadow removal models with better robustness. Meanwhile, without the limitation of visible occluder, the ADSP has a higher degree of freedom regarding camera angle and type of view. Furthermore, benefiting from the high controllability of the synthesizing strategy, the proposed ADSP shows great suppression of inconsistency problems. Statistical analysis and experiments demonstrate that the ADSP has the advantages of being more challenging, less domain shifting, matching real-world scenarios, and having sufficient generalizing capability. Last, a Segmented Refinement Removal Network (SRRN) was proposed as a reference for the removal task. The SRRN was designed to differentiate two artifacts commonly appearing in removal. More specifically, a three-stage structure was adopted to perform preliminary removal, color adjustment, and boundary smoothing, respectively. After the preliminary removal by the shadow removal subnet, two refinement subnets are responsible for addressing the color bias on the shadow region and boundary effect on the penumbra region. These subnets have specially designed loss functions to focus on recovering the target region. Experimental results verify that the SRRN can improve visual pleasantness and achieve state-of-the-art ADSP removal.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:20:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:20:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i

Acknowledgement ii

Abstract iii

摘要 v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Primary Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related works 6
2.1 Large-scale benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Shadow detection . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Shadow removal . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Other tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Prior-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Deep-Learning-based methods . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Shadow detection . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Shadow removal . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Methodology 21
3.1 Advanced Dataset got Shadow Processing (ADSP) . . . . . . . . . . . 21
3.2 Segmented Refinement Removal Networks (SRRN) . . . . . . . . . . 27

4 Experiments 33
4.1 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Domain shift experiments . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Comparison with State-of-the-Art Methods . . . . . . . . . . . . . . . 47

5 Conclusion 51
5.1 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Contribution overview . . . . . . . . . . . . . . . . . . . . . . . . . . 53
References 54
-
dc.language.isoen-
dc.titleADSP: 先進陰影處理資料集zh_TW
dc.titleADSP: Advanced Dataset for Shadow Processingen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee歐陽良昱;余執彰;許文良zh_TW
dc.contributor.oralexamcommitteeLiang-Yu Ou Yang;Chih-Chang Yu;Wen-Liang Hsueen
dc.subject.keyword電腦視覺,底層視覺,影像恢復,陰影去除,資料集建置,zh_TW
dc.subject.keywordComputer Vision,Low-level vision,Image Restoration,Shadow Removal,Dataset Creation,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202500587-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-02-28-
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-113-1.pdf39.87 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved