Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97125
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童慶斌zh_TW
dc.contributor.advisorChing-Pin Tungen
dc.contributor.author陳致綱zh_TW
dc.contributor.authorChih-Kang Chenen
dc.date.accessioned2025-02-27T16:18:36Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2025-
dc.date.submitted2025-02-13-
dc.identifier.citationBertsimas, D., & Tsitsiklis, J. (1997). Introduction to linear optimization. Athena Scientific.
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.
Geem, Z. W. (2006). Optimal scheduling of multiple dam system using harmony search algorithm. Energy Conversion and Management, 47(18-19), 2757-2768.
Banos, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753-1766.
Zhou, Z., Chan, H. K., Song, H., & Wu, H. (2016). Unlocking the power of big data in new product development. Annals of Operations Research, 271(1), 685-697.
Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80-91.
Toth, P., & Vigo, D. (2014). Vehicle routing: Problems, methods, and applications. Society for Industrial and Applied Mathematics.
Demir, E., Bektaş, T., & Laporte, G. (2014). A review of recent research on green road freight transportation. European Journal of Operational Research, 237(3), 775-793
Bektaş, T., & Laporte, G. (2011). The pollution-routing problem. Transportation Research Part B: Methodological, 45(8), 1232-1250.
Stigler, G. J. (1945). The cost of subsistence. Journal of Farm Economics, 27(2), 303-314.
Van Dooren, C., Marinussen, M., Blonk, H., Aiking, H., & Vellinga, P. (2014). Exploring dietary guidelines based on ecological and nutritional values: A comparison of six dietary patterns. Food Policy, 44, 36-46.
Temme, E. H. M., van der Voet, H., Thissen, J. T. N. M., Verkaik-Kloosterman, J., van Donkersgoed, G., & Nonhebel, S. (2015). Replacement of meat and dairy by more sustainable plant-based foods: Implications for nutrient adequacy and greenhouse gas emissions. The European Journal of Clinical Nutrition, 69(7), 836-843.
Willett, W., Rockström, J., Loken, B., et al. (2019). Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393, 447–492.
Food and Agriculture Organization (FAO). (2015). Sustainable food systems: Concept and framework. FAO. Retrieved from https://www.fao.org​:contentReference[oaicite:6]{index=6}
Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515, 518–522.
Clark, M. A., Domingo, N. G. G., Colgan, K., et al. (2020). Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science, 370, 705–708.
Food and Agriculture Organization (FAO). (2021). Greenhouse gas emissions from agrifood systems: Global, regional and country trends, 2000–2020. FAOSTAT Analytical Brief 50. Retrieved from https://www.fao.org​:contentReference[oaicite:9]{index=9}
Springmann, M., Clark, M., Mason-D'Croz, D., et al. (2018). Options for keeping the food system within environmental limits. Nature, 562, 519–525.
Steffen, W., Richardson, K., Rockström, J., et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 736–747.
Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–992.
Garnett, T., Appleby, M. C., Balmford, A., et al. (2013). Sustainable intensification in agriculture: Premises and policies. Science, 341(6141), 33–34.
Aleksandrowicz, L., Green, R., Joy, E. J. M., Smith, P., & Haines, A. (2016). The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: A systematic review. PLoS ONE, 11(11), e0165797.
Scarborough, P., Clark, M., Cobiac, L., et al. (2023). Vegans, vegetarians, fish-eaters and meat-eaters in the UK show discrepant environmental impacts. Nature Food, 4(7), 565–574.
Zaman, M., Heng, L., & Müller, C. (2021). Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques. Springer.
Natural Capital Coalition. (2016). Natural Capital Protocol. Natural Capital Coalition.
FAO. (2016). FAO/INFOODS Analytical Food Composition Database Version 1.1 – AnFooD1.1. Food and Agriculture Organization of the United Nations.
衛生福利部食品藥物管理署. (2022). 食品營養成分資料庫 (第111版). 衛生福利部食品藥物管理署.
行政院環境保護署. (2022). 即食餐食服務環境足跡類別規則 (第1.0版). 行政院環境保護署.
GRI. (2016). GRI 204:採購實務. Global Reporting Initiative.
GRI. (2016). GRI 308:供應商環境評估. Global Reporting Initiative.
GRI. (2018). GRI 403:職業安全衛生. Global Reporting Initiative.
行政院農業委員會. (n.d.). 生鮮蔬果建議儲運溫度. 農業試驗所.
衛生福利部國民健康署. (2022). 國人膳食營養素參考攝取量 (第八版). 衛生福利部國民健康署.
European Commission. (n.d.). Farm to Fork Strategy. Retrieved November 21, 2024, from https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en
EAT-Lancet Commission. (n.d.). EAT-Lancet Commission on Food, Planet, Health. Retrieved November 21, 2024, from https://eatforum.org/eat-lancet-commission/
Carbon Footprint Platform Taiwan. (n.d.). Coefficient Database. Retrieved November 21, 2024, from https://cfp-calculate.tw/cfpc/WebPage/WebSites/CoefficientDB.aspx
International Civil Aviation Organization (ICAO). (n.d.). Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Retrieved November 21, 2024, from https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx
SeaRates. (n.d.). Distance & Time Calculator. Retrieved November 21, 2024, from https://www.searates.com/distance-time
LCA Food Database. (n.d.). LCA Food Database. Retrieved November 21, 2024, from https://www.lcafood.dk
U.S. Department of Agriculture (USDA). (n.d.). About Us – FoodData Central. Retrieved November 21, 2024, from https://fdc.nal.usda.gov/about-us
Blonk Sustainability. (n.d.). Agri-footprint – Tools and Databases. Retrieved November 21, 2024, from https://blonksustainability.nl/tools-and-databases/agri-footprint
Ecoinvent. (n.d.). Ecoinvent Support – Database. Retrieved November 21, 2024, from https://support.ecoinvent.org/database
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97125-
dc.description.abstract全球氣候變遷與環境問題日益嚴峻,食品系統作為主要的溫室氣體排放來源之一,對實現永續發展目標(Sustainable Development Goals, SDGs)及巴黎協定氣候目標構成挑戰。在此背景下,低碳飲食被認為是減少碳足跡並改善飲食健康的有效策略。本研究以生命週期分析(Life Cycle Assessment, LCA)方法為基礎,構建了一個涵蓋食品營養成分與碳足跡數據的整合性資料庫。研究收集並整合了多個國內外資料來源,包括臺灣地區的食品營養成分資料庫、Ecoinvent、Agri-footprint,以及 LCA Food Database,針對食品原料取得及服務前運輸階段進行系統性碳排放評估。
為實現低碳飲食方案的科學化設計,本研究開發了一套基於線性規劃的最佳化工具,以碳足跡最小化為目標,並在滿足基本營養需求的前提下提供符合永續發展的飲食建議。該工具針對團膳供應商及家庭消費者的需求,提供精確的食品採購策略與方案設計。案例研究結果顯示,透過應用此工具,飲食行為的碳排放量可有效減少約 60%,同時滿足每日膳食營養需求。本研究的結果為政策制定者、食品供應鏈管理者及消費者提供了實證基礎,支持低碳飲食的實踐與永續食品系統的建構。
此外,研究成果強調推動本地化採購、降低乳製品比例、優化蛋白質來源及多樣化飲食選擇的重要性。本研究不僅填補了食品碳足跡與營養成分整合的數據缺口,還提供了一種具有操作性與應用性的模型,適用於多種地區與場景的低碳飲食推廣,促進食品系統與環境的協調發展。
zh_TW
dc.description.abstractGlobal climate change and environmental issues are becoming increasingly severe. The food system, as a major source of greenhouse gas emissions, poses significant challenges to achieving the Sustainable Development Goals (SDGs) and the climate targets outlined in the Paris Agreement. Against this backdrop, low-carbon diets are recognized as an effective strategy to reduce carbon footprints while improving dietary health. This study employs the Life Cycle Assessment (LCA) method to construct a comprehensive database that integrates food nutritional composition and carbon emission data. Data were collected and consolidated from various domestic and international sources, including Taiwan's Food Nutrition Database, Ecoinvent, Agri-footprint, and the LCA Food Database, to systematically assess carbon emissions in the raw material acquisition and pre-service transportation stages.
To achieve a scientifically designed low-carbon dietary plan, this study developed an optimization tool based on linear programming with the objective of minimizing carbon footprints while meeting basic nutritional requirements. This tool provides precise food procurement strategies and dietary plan designs tailored to the needs of meal service providers and household consumers. The case study results indicate that adopting this tool can effectively reduce dietary carbon emissions by approximately 60%, while also meeting daily dietary nutritional needs. The findings of this study provide empirical evidence for policymakers, food supply chain managers, and consumers, supporting the implementation of low-carbon diets and the construction of sustainable food systems.
Furthermore, the research highlights the importance of promoting localized procurement, reducing dairy product consumption, optimizing protein sources, and enhancing dietary diversity. This study not only addresses the data gap in integrating food carbon footprints and nutritional composition but also offers an actionable and applicable model suitable for promoting low-carbon diets across various regions and contexts, fostering harmony between food systems and the environment.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:18:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:18:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 I
摘要 III
ABSTRACT IV
目次 VI
圖次 IX
表次 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究流程與架構 4
第二章 文獻回顧 6
2.1 食品系統對全球的環境影響 6
2.2 低碳飲食的政策需求 8
2.3 生命週期評估 (LIFE CYCLE ASSESSMENT, LCA) 11
2.3.1 生命週期評估概述 11
2.3.2 產品類別規則(Product Category Rules, PCR) 13
2.4 規劃求解最佳化技術之應用與發展 16
2.4.1 能源領域中的應用 16
2.4.2 交通運輸與供應鏈物流的應用 17
2.4.3 健康與營養領域的應用 17
2.5 食品營養與碳足跡資料庫的發展現況 18
2.5.1 食品營養成分資料庫 18
2.5.2 碳足跡與生命週期資料庫 20
第三章 研究方法 25
3.1 資料庫蒐集與彙整 26
3.1.1 食品營養成分之數據蒐集 26
3.1.2 食品碳足跡資料庫蒐集 27
3.1.3 資料庫整合 29
3.2 食品碳足跡生命週期模型 32
3.2.1 生命週期目標與範疇界定 32
3.2.2 擷取生命週期範疇內之碳足跡數據 33
3.2.3 計算運輸過程之在地化碳足跡數據 35
3.3 低碳飲食方案最佳化模式 39
3.3.1 線性規劃概述 39
3.3.2 選定決策變數 40
3.3.3 定義目標函數 40
3.3.4 定義限制條件 41
第四章 研究成果與討論 43
4.1 工具說明 43
4.1.1 「食品碳足跡生命週期模型」工作表 44
4.1.2 「營養參考攝取量」工作表 45
4.1.3 「低碳飲食(採購)工具」工作表 47
4.1.4 「低碳飲食(採購)方案」工作表 49
4.2 工具應用說明:以團膳供應商為例 50
4.2.1 案例假設情境說明 50
4.2.2 工具操作流程與成果展示 50
4.3 工具應用成果討論 53
4.3.1 各天「低碳採購方案」詳述 58
4.3.2 「低碳採購方案」成果討論 60
4.4 「食品碳足跡生命週期模型」之資料分析 62
4.4.1 高碳排食品與低碳排食品鑑別 62
4.4.2 「低碳高效食材」辨別 64
4.5 低碳飲食採購建議與實施策略 66
4.5.1 推動本地化採購 66
4.5.2 降低乳製品比例 66
4.5.3 優化蛋白質來源 67
4.5.4 推動多樣化選擇 67
4.5.5 強化平衡分配策略 68
4.6 永續議題的拓展應用 68
4.6.1 永續糧食系統Sustainable food systems 68
4.6.2 地球健康飲食The Planetary Health Diet 69
4.6.3 碳中和與淨零排放目標 70
4.6.4 GRI(Global Reporting Initiative)標準 71
4.6.5 聯合國永續發展目標SDGs 72
第五章 結論與建議 75
5.1 結論 75
5.2 建議 78
參考文獻 80
-
dc.language.isozh_TW-
dc.title基於營養價值及應用生命週期分析碳足跡下之研究最佳低碳飲食方案zh_TW
dc.titleStudy on Optimal Low-Carbon Diet Solutions based on Nutritional Value and Life Cycle Analysis of Carbon Footprinten
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee馬鴻文;許少瑜zh_TW
dc.contributor.oralexamcommitteeHwong-Wen Ma;Shao-Yiu Hsuen
dc.subject.keyword低碳飲食,碳足跡,生命週期分析,線性規劃,食品資料庫,zh_TW
dc.subject.keywordLow-carbon diets,Carbon footprint,Life Cycle Assessment,Linear programming,Food database,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202500689-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-lift2030-02-13-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
6.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved