請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97115完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林寶秀 | zh_TW |
| dc.contributor.advisor | Bau-Show Lin | en |
| dc.contributor.author | 張涵君 | zh_TW |
| dc.contributor.author | Han-Chin Chang | en |
| dc.date.accessioned | 2025-02-27T16:15:48Z | - |
| dc.date.available | 2025-02-28 | - |
| dc.date.copyright | 2025-02-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-13 | - |
| dc.identifier.citation | 林寶秀(2022)。110-111年度鹿角坑生態保護區小觀音山區生態承載量評估計畫。陽明山國家公園管理處委託研究報告。
馬惠達、陳思倫、劉瓊如(2003)。龜山島生態旅遊遊憩承載量之研究。觀光研究學報,9(2),123-139。 曹勝雄、廖秀娟、張德儀、張心美、黃正一(2000)。陽明山國家公園容許遊憩承載量推估模式之建立。陽明山國家公園管理處委託研究報告。 楊錫麒、彭晧銑、宋煦仁(2003)。雪霸國家公園遊憩乘載量之研究。內政部營建署雪霸國家公園管理處補助研究生研究報告。 Abdi, B., Hami, A., & Zarehaghi, D. (2020). Impact of small-scale tree planting patterns on outdoor cooling and thermal comfort. Sustainable Cities and Society, 56, 102085. https://doi.org/10.1016/j.scs.2020.102085 Alonzo, M., Baker, M.E., Gao, Y., & Shandas, V. (2021). Spatial configuration and time of day impact the magnitude of urban tree canopy cooling. Environmental Research Letters, 16, 084028. https://doi.org/10.1088/1748-9326/ac12f2 Ambrosini, D., Galli, G., Mancini, B., Nardi, I., & Sfarra, S. (2014). Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met Climate Model. Sustainability, 6(10), 7013–7029. https://doi.org/10.3390/su6107013 Andersson, E., Barthel, S., & Ahrné, K. (2014). Measuring social–ecological dynamics behind the generation of ecosystem services. Ecological Applications, 24(5), 1185–1198. https://doi.org/10.1890/06-1116.1 Armson, D., Stringer, P., & Ennos, A.R. (2012). The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening, 11(3), 245–255. Asgarian, A., Amiri, B.J., & Sakieh, Y. (2015). Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosystem, 18, 209–222. https://doi.org/10.1007/s11252-014-0387-7 Bagstad, K. J., Johnson, G. W., Voigt, B., & Villa, F. (2013). Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosystem Services, 4, 117–125. Bai, X., Yu, Z., Wang, B., Zhang, Y., Zhou, S., Sha, X., Li, S., Yao, X., & Geng, X. (2024). Quantifying threshold and scale response of urban air and surface temperature to surrounding landscapes under extreme heat. Building and Environment, 247, 111029. https://doi.org/10.1016/j.buildenv.2023.111029 Beery, T., Olsson, M.R., & Vitestam, M. (2021). Covid-19 and outdoor recreation management: Increased participation, connection to nature, and a look to climate adaptation. Journal of Outdoor Recreation and Tourism, 36, 100457. https://doi.org/10.1016/j.jort.2021.100457 Bernhardt-Römermann, M., Gray, A., Vanbergen, A.J., Bergès, L., Bohner, A., Brooker, R.W., De Bruyn, L., De Cinti, B., Dirnböck, T., Grandin, U., Hester, A.J., Kanka, R., Stefan Klotz,S., Loucougaray, G., Lundin, L., Matteucci, G., Mészáros, I., Oláh, V., Preda, E., Prévosto, B., Pykälä, J., Schmidt,W., Taylor, M. E., Vadineanu, A., Waldmann, T., & Stadler, J. (2011). Functional traits and local environment predict vegetation responses to disturbance: a pan-European multi-site experiment. Journal of Ecology, 99(3), 777–787. https://doi.org/10.1111/j.1365-2745.2011.01794.x Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006 Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006 Breiman, L. (2001). Random forests. Machine learning, 45, 5–32. Burns. B.R., Ward, J., & Downs, T.M. (2013). Trampling impacts on thermotolerant vegetation of geothermal areas in New Zealand. Environmental Management, 52, 1463–1473. https://doi.org/10.1007/s00267-013-0187-5 Burns, R.C., Arnberger, A., & von Ruschkowski, E. (2010). Social Carrying Capacity Challenges in Parks, Forests, and Protected Areas. International Journal of Sociology, 40(3) 30–50. https://doi.org/10.2753/IJS0020-7659400302 Buttstädt, M., & Schneider, C. (2014). Thermal load in a medium-sized european city using the example of Aachen, Germany. Erdkunde, 68(2), 71–83. https://doi.org/10.3112/erdkunde.2014.02.01 Cao, J., Zhou, W., Zheng, Z., Ren, T., & Wang, W. (2021). Within-city spatial and temporal heterogeneity of air temperature and its relationship with land surface temperature. Landscape and Urban Planning, 206, 103979. https://doi.org/10.1016/j.landurbplan.2020.103979 Chang, C. R., Li, M. H., & Chang, S. D. (2007). A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning, 80(4), 386–395. Chang, H. C., Hsieh, C. I., Yu, C. C., Lin, Y. J., & Lin, B. S. (2023). Ecological Carrying Capacity Estimation of the Trails in a Protected Area: Integrating a Path Analysis Model and the Stakeholders’ Evaluation. Forests, 14, 2400. https://doi.org/10.3390/f14122400 Cheval, S., Amihăesei, V.-A., Chitu, Z., Dumitrescu, A., Falcescu, V., Irașoc, A., Micu, D. M., Mihulet, E., Ontel, I., Paraschiv, M.-G., & Tudose, N. C. (2024). A systematic review of urban heat island and heat waves research (1991–2022). Climate Risk Management, 44, 100603. https://doi.org/10.1016/j.crm.2024.100603 Chiesura, A. (2004). The role of urban parks for the sustainable city. Landscape and Urban Planning, 68(1), 129–138. https://doi.org/10.1016/j.landurbplan.2003.08.003 Cifuentes, M. (1992). Determinación de Capacidad de Carga Turística en Áreas Protegidas. Turrialba, Costa Rica: Centro Agronómico Tropical de Investigación y Enseñanza - CATIE. Cole, D. N. (1987). Effects of three seasons of experimental trampling on five montane forest communities and a grassland in Western Montana, USA. Biological Conservation, 40(3), 219–244. https://doi.org/10.1016/0006-3207(87)90087-5 Cole, D.N. (1995a). Experimental trampling of vegetation II. Predictors of resistance and resilience. Journal of Applied Ecology, 32, 215–224. Cole, D.N. (1995b). Experimental trampling of vegetation I. Relationship between tramping intensity and vegetation response. Journal of Applied Ecology, 32, 203–214. Cortinovis, C., & Geneletti, D. (2019). A framework to explore the effects of urban planning decisions on regulating ecosystem services in cities. Ecosystem Services, 38, 100946. Costanza, R., D'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R. G., Sutton, P., & Van Den Belt, M. (1997). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253–260. Dimoudi, A., Kantzioura, A., Zoras, S., Pallas, C., & Kosmopoulos, P. (2013). Investigation of urban microclimate parameters in an urban center. Energy and Buildings, 64, 1–9. https://doi.org/10.1016/j.enbuild.2013.04.014 Doick, K. J., Peace, A., & Hutchings, T. R. (2014). The role of one large greenspace in mitigating London's nocturnal urban heat island. Science of The Total Environment, 493, 662–671. Dormann, C. F., Bagnara, M., Boch, S., Hinderling, J., Janeiro-Otero, A., Schäfer, D., Schall, P., & Hartig, F. (2020). Plant species richness increases with light availability, but not variability, in temperate forests understorey. BMC Ecology, 20, 43. https://doi.org/10.1186/s12898-020-00311-9 Du, H., Cai, W., Xu, Y., Wang, Z., Wang, Y., & Cai, Y. (2017). Quantifying the cool island effects of urban green spaces using remote sensing data. Urban Forestry & Urban Greening, 27, 24–31. https://doi.org/10.1016/j.ufug.2017.06.008 Fernández, C.I. (2019). A multiple-class distance-decaying approach for mapping temperature reduction ecosystem services provided by urban vegetation in Santiago de Chile. Ecological Economics, 161, 193–201. Feyisa, L. G., Dons, K., & Melby, H. (2014). Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape and Urban Planning, 123, 87–95. Fu, J., Dupre, K., Tavares, S., King, D., & Banhalmi-Zakar, Z. (2022). Optimized greenery configuration to mitigate urban heat: A decade systematic review. Frontiers of Architectural Research, 11(3), 466–491. https://doi.org/10.1016/j.foar.2021.12.005 Gallay, I., Olah, B., Murtinová, V., & Gallayová, Z. (2023). Quantification of the Cooling Effect and Cooling Distance of Urban Green Spaces Based on Their Vegetation Structure and Size as a Basis for Management Tools for Mitigating Urban Climate. Sustainability, 15(4), 3705. Gardes, T., Schoetter, R., Hidalgo, J., Long, N., Marquès, E., & Masson, V. (2020). Statistical prediction of the nocturnal urban heat island intensity based on urban morphology and geographical factors—An investigation based on numerical model results for a large ensemble of French cities. Science of The Total Environment, 737, 139253. https://doi.org/10.1016/j.scitotenv.2020.139253 Geneletti, D. (2011). Reasons and options for integrating ecosystem services in strategic environmental assessment of spatial planning. International Journal of Biodiversity Science, Ecosystem Services & Management, 7, 143–149. https://doi.org/10.1080/21513732.2011.617711 Goldenberg, R., Kalantari, Z., & Destouni, G. (2021). Comparative quantification of local climate regulation by green and blue urban areas in cities across Europe. Scientific Reports, 11, 23872. Goldenberg, R., Kalantari, Z., Cvetkovic, V., Mörtberg, U., Deal, B., & Destouni, G. (2017). Distinction, quantification and mapping of potential and realized supply-demand of flow-dependent ecosystem services. Science of The Total Environment, 593–594, 599–609. Gómez-Baggethun, E., & Barton, D. N. (2013). Classifying and valuing ecosystem services for urban planning. Ecological Economics, 86, 235–245. Grace, J.B., & Keeley, J.E. (2006). A Structural Equation Model Analysis Of Postfire Plant Diversity In California Shrublands. Ecological Applications, 16(2), 503–514. https://doi.org/10.1890/1051-0761(2006)016[0503:ASEMAO]2.0.CO;2 Granek, E. F., Polasky, S., Kappel, C. V., Reed, D. J., Stoms, D. M., Koch, E. W., Kennedy, C. J., Cramer, L. A., Hacker, S. D., Barbier, E. B., Aswani, S., Ruckelshaus, M., Perillo, G. M., Silliman, B. R., Muthiga, N., Bael, D., & Wolanski, E. (2010). Ecosystem services as a common language for coastal ecosystem-based management. Conservation Biology, 24, 207–216. https://doi.org/10.1111/j.1523-1739.2009.01355.x Grilo, F., Pinho, P., Aleixo, C., Catita, C., Silva, P., Lopes, N., Freitas, C., Santos-Reis, M., McPhearson, T., & Branquinho, C. (2020). Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Science of The Total Environment, 724, 138182. Gunawardena, K. R., Wells, M.J., & Kershaw, T. (2017). Utilising green and bluespace to mitigate urban heat island intensity. Science of The Total Environment, 584–585, 1040–1055. https://doi.org/10.1016/j.scitotenv.2017.01.158 Gusson, C. S., & Duarte, D. H. S. (2016). Effects of built density and urban morphology on urban microclimate - calibration of the model ENVI-met v4 for the subtropical Sao Paulo, Brazil. Procedia Engineering, 169, 2-10. https://doi.org/10.1016/j.proeng.2016.10.001 Haase, D., Frantzeskaki, N., Elmqvist, T., Andersson, E., Langemeyer, J., Haaβ, A., & Kabisch, N. (2014). A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ecosystem Services, 10, 11–23. https://doi.org/10.1016/j.ecoser.2014.09.001 Haddad, N. M., Brudvig, L. A., Clobert, J., et al. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1(2), e1500052. https://doi.org/10.1126/sciadv.1500052 Haines-Young, R., & Potschin, M. (2013). Common International Classification of Ecosystem Services (CICES): Consultation on Version 4. European Environmental Agency. Hammitt, W., Cole, D., & Monz, C. (2015). Wildland recreation: Ecology and management. John Wiley & Sons. Hastie, T. J., Tibshirani, R. J. (1990). Generalized Additive Models. Chapman & Hall. He, J., Y, H., & Liu, J. (2016). Urban green space recreational service assessment and management: A conceptual model based on the service generation process. Ecological Economics, 124, 59–68. https://doi.org/10.1016/j.ecolecon.2016.01.023 He, M., Yuan, C., Zhang, X., Wang, P., & Yao, C. (2023). Impacts of green-blue-grey infrastructures on high-density urban thermal environment at multiple spatial scales: A case study in Wuhan. Urban Climate, 52, 101714. Heaviside, C., Macintyre, H., & Vardoulakis S. (2017). The urban heat island: Implications for health in a changing environment. Current environmental health reports, 4(3), 296–305. Heusinkveld, B.G., Steeneveld, G.J., Van Hove, L.W.A., Jacobs, C.M.J., Holtslag, A.A.M. (2014). Spatial variability of the rotterdam urban heat island as influenced by urban land use. Journal of Geophysical Research: Atmospheres, 119(2), 677–692. https://doi.org/10.1002/2012JD019399 Holt, A.R., Mears, M., L.M., & Warren, P. (2015). Understanding spatial patterns in the production of multiple urban ecosystem services. Ecosystem Services, 16, 33–46. Huang, J. M., & Chen, L. C. (2020). A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan. Sustainability, 12(10), 3952. https://doi.org/10.3390/su12103952 Jaganmohan, M., Knapp, S., Buchmann, C. M., & Schwarz, N. (2016). The bigger, the better? The influence of urban green space design on cooling effects for residential areas. Journal of Environmental Quality, 45(1), 134–45. Jiang, Y., Song, D., Shi, T., & Han, X. (2018). Adaptive analysis of green space network planning for the cooling effect of residential blocks in summer: A case study in Shanghai. Sustainability, 10(9), 3189. https://doi.org/10.3390/su10093189 Kabisch, N., Korn, H., Stadler, J., & Bonn, A. (Eds.). (2017). Nature-based solutions to climate change adaptation in urban areas: Linkages between science, policy and practice. Springer. Kaveh, N., Ebrahimi, A., & Asadi, E. (2023). Comparative analysis of random forest, exploratory regression, and structural equation modeling for screening key environmental variables in evaluating rangeland above-ground biomass. Ecological Informatics, 77, 102251. https://doi.org/10.1016/j.ecoinf.2023.102251 Keenan, R.J., & Kimmins, J. (1993). The ecological effects of clear-cutting. Environmental Reviews, 1, 121–144. Ketterer, C., & Matzarakis, A. (2014). Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany. International Journal of Biometeorology, 59, 1299–1309. https://doi.org/10.1007/s00484-014-0940-3 Koellner, T., Bonn, A., Arnhold, S., Bagstad, K.J., Fridman, D., Guerra, C.A., Kastner, T., Kissinger, M., Kleemann, J., Kuhlicke, C., Liu, J.G., López-Hoffman, L., Marques, A., Martín-López, B., Schulp, C.J.E., Wolff, S., & Schröter, M. (2019). Guidance for assessing interregional ecosystem service flows. Ecological Indicators, 105, 92–106. Kong, F., Yin, H., James, P., Hutyra, L. R., & He, H. S. (2014). Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning, 128, 35–47. Kostrakiewicz-Gierałt, K., Pliszko, A., & Gmyrek, K. (2021). The Effect of Informal Tourist Trails on the Abiotic Conditions and Floristic Composition of Deciduous Forest Undergrowth in an Urban Area. Forests, 12(4), 423. https://doi.org/10.3390/f12040423 Kraemer, R., & Kabisch, N. (2022). Parks under stress: Air temperature regulation of urban green spaces under conditions of drought and summer heat. Frontiers in Environmental Science, 10, 849965. https://doi.org/10.3389/fenvs.2022.849965 Krayenhoff, E. S., & Voogt, J. A. (2010). Impacts of urban albedo increase on local air temperature at daily–annual time scales: Model results and synthesis. Journal of Applied Meteorology and Climatology, 49(8), 1634–1648. Laban, T. L., Van Zyl, P. G., Beukes, J. P., Mikkonen, S., Santana, L., Josipovic, M., Vakkari, V., Thompson, A. M., Kulmala, M., & Laakso, L. (2020). Statistical analysis of factors driving surface ozone variability over continental South Africa. Journal of Integrative Environmental Sciences, 17(3), 1–28. https://doi.org/10.1080/1943815X.2020.1768550 Laigle, I., Janeau, J. L., & Rivière, A. (2021). Human disturbances and their direct and indirect effects on soil and litter invertebrate communities. Journal of Applied Ecology, 58(2), 305–316. Laigle, I., Moretti, M., Rousseau, L., Gravel, D., Venier, L., Handa, I.T., Messier, C., Morris, D., Hazlett, P., Fleming, R., Webster, K., Shipley, B., & Aubin, I. (2021). Direct and Indirect Effects of Forest Anthropogenic Disturbance on Above and Below Ground Communities and Litter Decomposition. Ecosystems, 24, 1716–1737. https://doi.org/10.1007/s10021-021-00613-z Lan, Y., & Zhan, Q. (2017). How do urban buildings impact summer air temperature? The effects of building configurations in space and time. Building and Environment, 125, 88–98. https://doi.org/10.1016/j.buildenv.2017.08.046 Li, X., & Zhou, W. (2019). Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: extending understanding from local to the city scale Urban Forestry & Urban Greening, 41, 255–263. https://doi.org/10.1016/j.ufug.2019.04.008 Lin, B. S., & Lin, C. T. (2016). Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban Forestry & Urban Greening, 20, 348–357. Lin, B. S., & Chang, H. C. (2022). Detecting the Spatial Matching Relationship between Supply-Side and Demand-Side of Recreation Ecosystem Services (RES) from the Perspectives of Resource, Management, and Beneficiary: A Case Study in Yangmingshan National Park. Forests, 13(11), 1849. https://doi.org/10.3390/f13111849 Lin, B. S., Cho, Y. H., & Hsieh, C. I. (2021). Study of the thermal environment of sidewalks within varied urban road structures. Urban Forestry & Urban Greening, 62, 127137. https://doi.org/10.1016/j.ufug.2021.127137 Littlemore, J., & Barker, S. (2001). The ecological response of forest ground flora and soils to experimental trampling in British urban woodlands. Urban Ecosystems, 5, 257–276. https://doi.org/10.1023/A:1025639828427 Liu, Z., Lin, Y., De Meulder, B., & Wang, S. (2020). Heterogeneous landscapes of urban greenways in Shenzhen: Traffic impact, corridor width and land use. Urban Forestry & Urban Greening, 55, 126785. https://doi.org/10.1016/j.ufug.2020.126785 Manning, R.E. (2011). Studies in outdoor Recreation: Search and research for satisfaction (3rd ed.). Oregon State University Press. Marando, F., Heris, M.P., Zulian, G., Udías, A., Mentaschi, L., Chrysoulakis, N., Parastatidis, D., & Maes, J. (2022). Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustainable Cities and Society, 77, 103564. Marando, F., Salvatori, E., Sebastiani, A., Fusaro, L., & Manes, F. (2019). Regulating Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy. Ecological Modelling, 392, 92–102. Marion, J.L., & Cole, D.N. (1996). Spatial and Temporal variation in soil and vegetation impacts on campsites. Ecological Applications, 6(2), 520–530. https://doi.org/10.2307/2269388 McDonald, R. I., Biswas, T., Sachar, C., Housman, I., Moersberger, H., & Sander, H. A. (2020). The value of US urban tree cover for reducing heat-related health impacts and electricity consumption. Ecosystem Services, 42, 101071. https://doi.org/10.1016/j.ecoser.2019.101071 McLachlan, A., & Defeo, O. (2018). Management and Conservation. The Ecology of Sandy Shores (Third Edition), 451–495. Metzger, J. P., Villarreal-Rosas, J., Suárez-Castro, A. F., López-Cubillos, S., González-Chaves, A., Runting, R. K., Hohlenwerger, C., & Rhodes, J. R. (2021). Considering landscape-level processes in ecosystem service assessments. Science of The Total Environment, 796, 149028. Millennium Ecosystem Assessment (MEA). (2005). Ecosystems and human well-being: Synthesis. Island Press. Miner, M. J., Taylor, R. A., Jones, C. & Phelan, P. E. (2016). Efficiency, economics, and the urban heat island. Environment and Urbanization, 29(1), 183–194. Monz, C.A., Cole, D.N., Leung, YF., & Marion, J.L. (2010). Sustaining Visitor Use in Protected Areas: Future Opportunities in Recreation Ecology Research Based on the USA Experience. Environmental Management, 45, 551–562. https://doi.org/10.1007/s00267-009-9406-5 Monz, C.A., Pickering, C.M., & Hadwen, W.L. (2013). Recent advances in recreation ecology and the implications of different relationships between recreation use and ecological impacts. Frontiers in Ecology and the Environment, 11(8), 441–446. https://doi.org/10.1890/120358 Mora, F. (2017). A structural equation modeling approach for formalizing and evaluating ecological integrity in terrestrial ecosystems. Ecological Informatics, 41, 74–90. https://doi.org/10.1016/j.ecoinf.2017.05.002 Morakinyo, T. E., Kong, L., Lau, K. K., Yuan, C., & Ng, E. (2017). A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal comfort. Building and Environment, 115, 1–17. https://doi.org/10.1016/j.buildenv.2017.01.005 Müllerová, J., Vítková, M., & Vítek, O. (2011). The impacts of road and walking trails upon adjacent vegetation: Effects of road building materials on species composition in a nutrient poor environment. Science of The Total Environment, 409(19), 3839–3849. https://doi.org/10.1016/j.scitotenv.2011.06.056 Munyati, C. (2024). Detecting the air-cooling effect of urban green spaces in a hot climate town relative to land surface temperature on Landsat-9 thermal imagery. Advances in Space Research, 74(2024), 4598–4615. https://doi.org/10.1016/j.asr.2024.07.027 National Institutes of Health. (1997–2018). ImageJ (Version 1.4.3.67) [Computer software]. https://imagej.net Needham, M.D., Szuster, B.W., & Bell, C.M. (2011). Encounter norms, social carrying capacity indicators, and standards of quality at a marine protected area. Ocean & Coastal Management, 54(8), 633–641. Nowak, D. J., & Crane, D. E. (2002). Carbon storage and sequestration by urban trees in the USA. Environmental Pollution, 116(3), 381–389. https://doi.org/10.1016/S0269-7491(01)00214-7 Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24. https://doi.org/10.1002/qj.49710845502 Oke, T. R. (1987). Boundary layer climates (2nd ed.). Routledge. Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban Climates. Cambridge University Press. https://doi.org/10.1017/9781139016476 Oke, T. R. (1988). The urban energy-balance. Progress in Physical Geography: Earth and Environment, 12, 471–508. Oliveira, S., Andrade, H., & Vaz, T. (2011). The cooling effect of green spaces as a contribution to the mitigation of urban heat: a case study in Lisbon. Building and Environment, 46(11), 2186–2194. Ortiz Porangaba, G.F., Teixeira, D.C.F., Amorim, M.C.D.C.T., Silva, M.H.S.D., Dubreuil, V. (2021). Modeling the urban heat island at a winter event in Três Lagoas, Brazil. Urban Climate, 37, 100853. https://doi.org/10.1016/j.uclim.2021.100853 Oukawa, G. Y., Krecl, P., & Targino, A. C. (2022). Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches. Science of The Total Environment, 815, 152836. https://doi.org/10.1016/j.scitotenv.2021.152836 Outdoor Foundation (2022). 2022 Outdoor participation trends report. Retrieved from: https://outdoorindustry.org/resource/2022-outdoor-participation-trends-report/ accessed 27 September 2022. Paudel, B., Velinsky, D., Belton, T., & Pang, H. (2016). Spatial variability of estuarine environmental drivers and response by phytoplankton: A multivariate modeling approach. Ecological Informatics, 34, 1–12. https://doi.org/10.1016/j.ecoinf.2016.04.013 Phan, K. D., Nguyen, C. T., Nguyen, K. D., Nguyen, T. H. D., Pham, T. B. T., Tran, G. H., & Phan, T. N. (2024). Remote sensing for urban heat island research: Progress, current issues, and perspectives. Remote Sensing Applications: Society and Environment, 33, 101081. https://doi.org/10.1016/j.rsase.2023.101081 Pickering, C. M., & Hill, W. (2007). Impacts of recreation and tourism on plant biodiversity and vegetation in protected areas in Australia. Journal of Environmental Management, 85(4), 791–800. https://doi.org/10.1016/j.jenvman.2006.11.021 Pickering, C.M. (2010). Ten Factors that Affect the Severity of Environmental Impacts of Visitors in Protected Areas. AMBIO, 39, 70–77. https://doi.org/10.1007/s13280-009-0007-6 Pickering, C.M., & Growcock, A.J. (2009). Impacts of experimental trampling on tall alpine herbfields and subalpine grasslands in the Australian Alps. Journal of Environmental Management, 91(2), 532–540. https://doi.org/10.1016/j.jenvman.2009.09.022 Prevéy, J.S., & Seastedt, T.R. (2014). Seasonality of precipitation interacts with exotic species to alter composition and phenology of a semi-arid grassland. Journal of Ecology, 102(6), 1549–1561. https://doi.org/10.1111/1365-2745.12320 Rajagopalan, P., Lim, K. C., & Jamei, E. (2014). Urban heat island and wind flow characteristics of a tropical city. Solar Energy, 107, 159–170. https://doi.org/10.1016/j.solener.2014.05.042 Rathnayake, R.M.W., & Gunawardena, U.A.D.P. (2013). Enjoying Elephant Watching: A Study on Social Carrying Capacity of Kawdulla National Park in Sri Lanka. Sabaragamuwa University Journal, 12(1), 23–39. http://repo.lib.sab.ac.lk:8080/xmlui/handle/123456789/742 Reis, C., & Lopes, A. (2019). Evaluating the Cooling Potential of Urban Green Spaces to Tackle Urban Climate Change in Lisbon. Sustainability, 11(9), 2480. https://doi.org/10.3390/su11092480 Ríos-Jara, E., Galván-Villa, C.M., Rodríguez-Zaragoza, F.A., López-Uriarte, E., & Muñoz-Fernández, V.T. (2013). The Tourism Carrying Capacity of Underwater Trails in Isabel Island National Park, Mexico. Environmental Management, 52, 335–347. https://doi.org/10.1007/s00267-013-0047-3 Rocha, C.H.B., Fontoura, L.M., do Vale, W.B., de Paula Castro, L.F., da Silva, A.F., de Oliveira Prado, T. & da Silveira, F.J. (2021). Carrying capacity and impact indicators: analysis and suggestions for sustainable tourism in protected areas – Brazil. World Leisure Journal, 63(1), 73–97. Rogowski, M. (2019). Assessing the tourism carrying capacity of hiking trails in the Szczeliniec Wielki and Błędne Skały in Stołowe Mts. National Park. Forest Research Papers, 80(2), 125–135. http://dx.doi.org/10.2478/frp-2019-0011 Ros, M., Garcia, C., Hernandez, T., Andres, M., & Barja, A. (2004). Short-Term Effects of Human Trampling on Vegetation and Soil Microbial Activity. Communications in Soil Science and Plant Analysis, 35, 1591–1603. https://doi.org/10.1081/CSS-120038556 Rotem-Mindali, O., Michael, Y., Helman, D., & Lensky, I. M. (2015). The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Applied Geography, 56, 145–153. https://doi.org/10.1016/j.apgeog.2014.11.023 Sahani, N., & Ghosh, T. (2021). GIS-based spatial prediction of recreational trail susceptibility in protected area of Sikkim Himalaya using logistic regression, decision tree and random forest model. Ecological Informatics, 64, 101352. https://doi.org/10.1016/j.ecoinf.2021.101352 Salata, F., Golasi, I., Petitti, D., & de Lieto Vollaro, A. (2017). Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustainable Cities and Society, 30, 79–96. https://doi.org/10.1016/j.scs.2017.01.006 Salemi, M., Jozi, S.A., Malmasi, S., & Rezaian, S. (2019). A New Model of Ecological Carrying Capacity for Developing Ecotourism in the Protected Area of the North Karkheh, Iran. Journal of the Indian Society of Remote Sensing, 47, 1937–1947. https://doi.org/10.1007/s12524-019-01035-0 Salerno, F., Viviano, G., Manfredi, E.C., Caroli, P., Thakuri, S., & Tartari, G. (2013). Multiple Carrying Capacities from a management-oriented perspective to operationalize sustainable tourism in protected areas. Journal of Environmental Management, 128, 116–125. https://doi.org/10.1016/j.jenvman.2013.04.043 Santamouris, M. (2014). Cooling the cities - a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682–703. Santamouris, M. (2015). Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of the Total Environment, 512–513, 582–598. https://doi.org/10.1016/j.scitotenv.2015.01.060 Santamouris, M., Ban-Weiss, G., Osmond, P., Paolini, R., Synnefa, A., Cartalis, C., Muscio, A., Zinzi, M., Morakinyo, T. E., Ng, E., Tan, Z., Takebayashi, H., Sailor, D., Crank, P., Taha, H., Pisello, A. L., Rossi, F., Zhang, J., & Kolokotsa, D. (2018). Progress in urban greenery mitigation science – assessment methodologies advanced technologies and impact on cities. Journal of Civil Engineering and Management, 24(8), 638–671. Schröter, M., Koellner, T., Alkemade, R., Arnhold, S., Bagstad, K.J., Erb, K.H., Frank, K., Kastner, T., Kissinger, M., Liu, J.G., López-Hoffman, L., Maes, J., Marques, A., Martín-López, B., Meyer, C., Schulp, C.J.E., Thober, J., Wolff, S., & Bonn, A. (2018). Interregional flows of ecosystem services: Concepts, typology and four cases. Ecosystem Services, 31, 231–241. Seto, K. C., Guneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109(40), 16083–16088. https://doi.org/10.1073/pnas.1211658109 Sezer, N., Yoonus, H., Zhan, D., Wang, L., Hassan, I. G., & Rahman, M. A. (2023). Urban microclimate and building energy models: A review of the latest progress in coupling strategies. Renewable and Sustainable Energy Reviews, 184, 113577. https://doi.org/10.1016/j.rser.2023.113577 Shandas, V., Voelkel, J., Williams, J., & Hoffman, J. (2019). Integrating Satellite and Ground Measurements for Predicting Locations of Extreme Urban Heat. Climate, 7(1), 5. https://doi.org/10.3390/cli7010005 Sharp, R., Tallis, H., Ricketts, T., Guerry, A., Wood, S., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N. (2020). InVEST 3.8.0 User’s Guide. The Natural Capital Project, 2020. Shelby, B., & Heberlein, T.A. (1984). A Conceptual Framework for Carrying Capacity Determination. Leisure Sciences, 6, 433–451. http://dx.doi.org/10.1080/01490408409513047 Shen, C., Hou, H., Zheng, Y., Murayama, Y., Wang, R., & Hu, T. (2022). Prediction of the future urban heat island intensity and distribution based on landscape composition and configuration: A case study in Hangzhou. Sustainable Cities and Society, 83, 103992. https://doi.org/10.1016/j.scs.2022.103992 Shiflett, S. A., Liang, L. L., Crum, S. M., Feyisa, G. L., Wang, J., & Jenerette, G. D. (2017). Variation in the urban vegetation, surface temperature, air temperature nexus. Science of The Total Environment, 579, 495–505. https://doi.org/10.1016/j.scitotenv.2016.11.069 Roberts, N., Moreno, A., Valero-Garcés, B. L., Corella, J. P., Jones, M., Allcock, S., Woodbridge, J., Morellón, M., Luterbacher, J., Xoplaki, E., & Türkeş, M. (2012). Palaeolimnological evidence for an east–west climate see-saw in the Mediterranean since AD 900. Global and Planetary Change, 84–85, 23–34. https://doi.org/10.1016/j.gloplacha.2011.11.002 Shih, W. Y. (2017). The cooling effect of green infrastructure on surrounding built environments in a sub-tropical climate: A case study in Taipei metropolis. Landscape Research, 42(5), 558–573. https://doi.org/10.1080/01426397.2016.1235684 Sobhani, P., Esmaeilzadeh, H., Sadeghi, S.M.M., & Marcu, M.V. (2021). Estimation of Ecotourism Carrying Capacity for Sustainable Development of Protected Areas in Iran. International Journal of Environmental Research and Public Health, 19(3), 1059. https://doi.org/10.3390/ijerph19031059 Song, Y. Z., Yang, H. L., Peng, J. H., Song, Y. R., Sun, Q., &Li, Y. (2015) Estimating PM2.5 concentrations in Xi'an city using a generalized additive model with multi-Source monitoring data. PLoS ONE, 10(11), e0142149. https://doi.org/10.1371/journal.pone.0142149 Stankey, G.H., McCool, S.F., & Stokes, G.L. (1984). Limits of Acceptable Change: A New Framework for Managing The Bob Marshall Wilderness Complex. Western Wildlands, 10, 33–37. Straub A., Berger K., Breitner S., Cyrys J., Geruschkat U., Jacobeit J., Kuhlbach B., Kusch, T., Philipp, A., Schneider, A., Umminger, R., Wolf, K., & Beck, C. (2019). Statistical modelling of spatial patterns of the urban heat island intensity in the urban environment of Augsburg, Germany. Urban Climate, 29, 100491. https://doi.org/10.1016/j.uclim.2019.100491 Su, W., Zhang, L., & Chang, Q. (2022). Nature-based solutions for urban heat mitigation in historical and cultural block: The case of Beijing Old City. Building and Environment, 225, 109600. https://doi.org/10.1016/j.buildenv.2022.109600 Talbot, L.M., Turton, S.M., & Graham, A.W. (2003). Trampling resistance of tropical rainforest soils and vegetation in the wet tropics of north east Australia. Journal of Environmental Management, 69(1), 63–69. https://doi.org/10.1016/S0301-4797(03)00119-1 Tan, Z., Lau, K. K., & Ng, E. (2016). Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 114, 265–274. https://doi.org/10.1016/j.enbuild.2015.06.031 Tanoori, G., Soltani, A., & Modiri, A. (2024). Machine learning for urban heat island (UHI) analysis: Predicting land surface temperature (LST) in urban environments. Urban Climate, 55, 101962. https://doi.org/10.1016/j.uclim.2024.101962 Tomlinson, C. J., Chapman, L., Thornes, J. E., & Baker, C. (2011). Remote sensing land surface temperature for meteorology and climatology: A review. Meteorological Applications, 18(3), 296–306. https://doi.org/10.1002/met.287 Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kazmierczak, A., Niemelä, J., & James, P. (2007). Promoting ecosystem and human health in urban areas using green infrastructure: A literature review. Landscape and Urban Planning, 81(3), 167–178. https://doi.org/10.1016/j.landurbplan.2007.02.001 Vaz Monteiro, M., Doick, K. J., Handley, P., & Peace, A. (2016). The impact of greenspace size on the extent of local nocturnal air temperature cooling in London. Urban Forestry & Urban Greening, 16, 160–169. https://doi.org/10.1016/j.ufug.2016.02.008 Venter, Z. S., Brousse, O., Esau, I., & Meier, F. (2020). Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sensing of Environment, 242, 111791. https://doi.org/10.1016/j.rse.2020.111791 Voelkel, J., & Shandas, V. (2017). Towards Systematic Prediction of Urban Heat Islands: Grounding Measurements, Assessing Modeling Techniques. Climate, 5(2), 41. Whinam, J., & Chilcott, N.M. (2003). Impacts after four years of experimental trampling on alpine/sub-alpine environments in western Tasmania. Journal of Environmental Management, 67(4), 339–351. https://doi.org/10.1016/S0301-4797(02)00218-9 White, M. P., Alcock, I., Wheeler, B. W., & Depledge, M. H. (2013). Coastal proximity, health, and well-being: A general population perspective. Health & Place, 23(2), 97–103. https://doi.org/10.1016/j.healthplace.2013.05.006 Wilks, D. S. (2006). Statistical Methods in the Atmospheric Sciences (2nd edition). Academic Press. Wolch, J. R., Byrne, J., & Newell, J. P. (2014). Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landscape and Urban Planning, 125, 234-244. https://doi.org/10.1016/j.landurbplan.2014.01.017 Wu, J. (2013). Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landscape Ecology, 28(6), 999–1023. https://doi.org/10.1007/s10980-013-9894-9 Wubie, M.A., & Assen, M. (2019). Effects of land cover changes and slope gradient on soil quality in the Gumara watershed, Lake Tana basin of North–West Ethiopia. Modeling Earth Systems and Environment, 6, 85–97. https://doi.org/10.1007/s40808-019-00660-5 Yan, C., Guo, Q., Li, H., Li, L., & Qiu, G. Y. (2020). Quantifying the cooling effect of urban vegetation by mobile traverse method: A local-scale urban heat island study in a subtropical megacity. Building and Environment, 169, 106541. https://doi.org/10.1016/j.buildenv.2019.106541 Yang, L., Shen, F., Zhang, L., Cai, Y., Yi, F., & Zhou, C. (2021). Quantifying influences of natural and anthropogenic factors on vegetation changes using structural equation modeling: A case study in Jiangsu Province, China. Journal of Cleaner Production, 280(2), 124330. https://doi.org/10.1016/j.jclepro.2020.124330 Yu, Q., Acheampong, M., Pu, R., Landry, S. M., Ji, W., & Dahigamuwa, T. (2018a). Assessing effects of urban vegetation height on land surface temperature in the City of Tampa, Florida, USA. International Journal of Applied Earth Observation and Geoinformation, 73, 712–720. https://doi.org/10.1016/j.jag.2018.08.016 Yu, Z., Guo, X., Jørgensen, G., & Vejre, H. (2017). How can urban green spaces be planned for climate adaptation in subtropical cities? Ecological Indicators, 82, 152–162. https://doi.org/10.1016/j.ecolind.2017.07.002 Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3), 375–386. Zawadzka, J. E., Harris, J. A., & Corstanje , R. (2021). The importance of spatial configuration of neighbouring land cover for explanation of surface temperature of individual patches in urban landscapes. Landscape Ecology, 36, 3117–3136. https://doi.org/10.1007/s10980-021-01302-x Zhao, L., Li, T., Przybysz, A., Liu, H., Zhang, B., An, W., & Zhu, C. (2023). Effects of urban lakes and neighbouring green spaces on air temperature and humidity and seasonal variabilities. Sustainable Cities and Society, 91, 104438. https://doi.org/10.1016/j.scs.2023.104438 Zhou, H., Xu, C., Pu, H., Nie, Y., & Sun, J. (2023). Influence of urban surface compositions on outdoor thermal environmental parameters on an urban road: A combined two-aspect analysis. Sustainable Cities and Society, 90, 104376. Ziter, C.D., Pedersen, E.J., Kucharik, C.J., & Turner, M.G. (2019). Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences of the United States of America, 116(15), 7575–7580. https://doi.org/10.1073/pnas.1817561116 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97115 | - |
| dc.description.abstract | 綠地在都市中能提供多面向的生態系統服務,不僅涵蓋糧食與水源等供給服務,也同時在空氣淨化、降溫等調節服務以及休閒遊憩等文化服務上發揮關鍵作用。隨著都市持續擴張、綠地與自然棲地破碎化,導致可提供服務的空間限縮或退化,在高度人口集中的條件下對於服務的需求反而更加急迫,有鑑於此,都市自然棲地保護及綠色基礎設施規劃,已成為當前都市發展與環境治理的重要議題。為能使綠地規劃管理精準並取得最大效率,近幾年都市生態系統服務評估研究快速增長,廣泛討論生態環境變化影響效益的機制、開發多元模型,並作為管理者評估管理方案並制定決策之科學基礎。相關研究指出生態系統服務具備空間連續性與流動性,透過綠地空間連結或區域互補,小尺度的累積效益將會對較大尺度層面產生深遠影響,既有研究大多採取單一尺度的評估方法,可能因無法完整掌握生態系統服務的整體效益,導致策略失準。氣候調節服務與遊憩服務管理是都市綠地規劃管理的重要目標,本研究針對這兩項重要的生態系統服務,以多尺度的觀點分別建立環境與效益之評估模型。
遊憩服務管理方面,以陽明山國家公園鹿角坑生態保護區小觀音山區步道為研究地點,調查步道使用量與步道環境衝擊情形,依據現地調查數據與既有文獻建構環境衝擊理論模型,以路徑分析探討步道使用量與環境衝擊參數之關係。研究結果發現遊客使用量的增加直接導致步道土壤硬度上升和植栽覆蓋率下降,進而間接影響周邊環境的土壤硬度及植栽覆蓋率。此外,地方尺度的環境條件,如步道所在區域的植被種類和坡度,也顯著影響植被覆蓋率,尤其是在紅楠林區域和較大坡度地區,植被覆蓋率較低。在氣候調節服務方面,以臺北市為研究地點,應用ENVI-met模擬不同時段微氣候數值,以多元線性迴歸分析微尺度、地方尺度環境境變項影響氣溫變化的差異與貢獻,建立不同時段氣溫與環境特徵之關係式,並基於關係式以廣義相加模型分析環境與氣溫關係之影響閾值。研究發現350至400公尺範圍的環境變化對氣溫的解釋力(R²)最佳,其中周邊環境變項對氣溫的影響力普遍高於微尺度網格變項,特別是樹冠覆蓋聚集面積對微氣候調節的貢獻更為顯著。此外,不同環境變項與氣溫之間存在明顯的非線性關係及閾值效應,例如,當分析範圍內樹冠覆蓋聚集面積超過20%時,對夜間降溫效益顯著增強,而當樹冠覆蓋分散面積大於10%至15%後可呈現顯著降溫效果。 研究結果進一步釐清各種生態功能在不同層次上彼此作用的機制,為生態系統服務研究提供更完整的理論基礎,並可作為不同層級的利益關係人與決策者更具針對性與操作性之科學依據。 | zh_TW |
| dc.description.abstract | Urban green spaces provide a wide range of ecosystem services, including not only provisioning services like food and water, crucial regulating services such as air purification and temperature reduction, and cultural services like recreation. As urban areas grow, the fragmentation of green spaces and natural habitats leads to a contraction or degradation of the available areas for these services. At the same time, the demand for these services becomes more pressing in highly populated settings. Given this context, the conservation of urban natural habitats and the planning of green infrastructure have become major concerns in urban development and environmental management. To enhance the accuracy and efficiency of green space planning, urban ecosystem service assessments have rapidly gained traction in recent years. These studies examine how environmental changes impacted ecological benefits, developed various models, and provided a scientific basis for decision-makers to assess and implement management strategies. Research suggested that ecosystem services function continuously across space and flow between areas. Connecting green spaces or complementing functions regionally can amplify small-scale benefits into large-scale impacts. However, most existing studies relied on single-scale assessments, which may overlook the overall effects of ecosystem services, leading to suboptimal strategies. Climate regulation and recreational services are key goals in urban green space planning. This study addressed these two critical services by developing multi-scale evaluation models to assess their environmental and functional benefits.
For recreational service management, this study examined the Xiaoguanyin Mountain Trail trail in the ecological protection area of Yangmingshan National Park. We surveyed trail usage and environmental impacts, constructing a theoretical model of environmental impacts based on field survey data and existing literature. Path analysis explored the relationship between trail usage and environmental impact parameters. The findings showed that increased visitor numbers directly result in increased soil hardness and decreased vegetation coverage on the trail, indirectly affecting the soil hardness and vegetation coverage in the surrounding environment. Moreover, landscape-scale environmental conditions, such as the types of vegetation and the slope in the trail area, significantly affected vegetation coverage, especially in Machilus thunbergii type forest regions and areas with steeper slopes, where vegetation coverage was lower. Regarding climate regulation services, this study focused on Taipei City, applying ENVI-met to simulate microclimate data at different times. Multiple linear regression analysis was used to assess the differences and contributions of micro-scale and local-scale environmental variables to temperature changes, establishing relationships between temperature and environmental characteristics at different times. The generalized additive model was utilized to analyze the impact thresholds of the relationships between the environment and temperature. The study found that environmental changes within a 350 to 400-meter range had the highest R² for temperature variations. Surrounding environmental variables generally influenced temperature more than micro-scale grid variables, with clustered canopy cover especially contributing significantly to microclimate regulation. Furthermore, transparent non-linear relationships and threshold effects existed between different environmental variables and temperature. For example, when clustered canopy cover exceeded 20%, the cooling benefits at night were significantly enhanced, while dispersed canopy cover above 10% to 15% showed a notable cooling effect. This study enhanced the understanding of how different ecological functions interact across multiple scales, strengthening the theoretical foundation of ecosystem service research. It also provided stakeholders and policymakers with a more practical and targeted scientific basis for decision-making. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:15:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-27T16:15:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 III 摘要 V Abstract VII 第一章 緒論 1 第一節 研究緣起 1 一、遊憩服務管理 4 二、氣候調節服務 5 第二節 研究流程 7 第二章 遊憩服務管理 9 第一節 前言 9 第二節 文獻回顧 12 一、遊憩服務 12 二、遊憩衝擊對環境的影響 12 三、遊憩衝擊評估方法 14 第三節 研究方法 17 一、研究地點 17 二、生態環境衝擊調查 18 三、使用量調查 21 四、資料分析 24 第四節 研究結果 25 一、使用量調查結果 25 二、生態環境衝擊調查結果 26 三、生態環境衝擊模型之建立 27 第五節 結果與討論 30 一、路徑分析支持理解使用量與環境因子的直接與間接關係 30 二、多尺度評估方法之發展與模型精進 30 第三章 氣候調節服務 33 第一節 前言 33 第二節 文獻回顧 36 一、氣候調節影響因子 36 二、氣候調節數據量測方法 42 三、建模方法 48 第三節 研究方法 54 一、研究地點 54 二、ENVI-met模型建置 55 三、數值模擬、資料處理與分析 61 第四節 研究結果 66 一、樣本組成 66 二、環境變項與氣溫之影響範圍及評估參數 72 第五節 結果與討論 80 一、氣溫對環境變化的敏感度隨時段及分析範圍變化而波動 80 二、不同環境變項與氣溫的線性關係及閾值具有明顯差異 81 第四章 總論 83 一、多尺度觀點對於生態系統服務評估之重要性 83 二、評估模型之應用 84 參考文獻 87 附錄 103 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 生態衝擊 | zh_TW |
| dc.subject | 閾值 | zh_TW |
| dc.subject | 尺度 | zh_TW |
| dc.subject | 路徑分析 | zh_TW |
| dc.subject | ENVI-met | zh_TW |
| dc.subject | ENVI-met | en |
| dc.subject | threshold | en |
| dc.subject | ecological impact | en |
| dc.subject | scale | en |
| dc.subject | path analysis | en |
| dc.title | 都市綠地效益之研究:遊憩管理模型與氣候調節模型之建構 | zh_TW |
| dc.title | Study on the Benefits of Urban Green Areas: Constructing Models for Recreation Management and Climate Regulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林晏州;謝正義;張俊彥;郭彰仁;江彥政;歐聖榮 | zh_TW |
| dc.contributor.oralexamcommittee | Yann-Jou Lin;Cheng-I Hsieh;Chun-Yen Chang;Chang-Jen Kuo;Yen-Cheng Chiang;Sheng-Jung Ou | en |
| dc.subject.keyword | 尺度,生態衝擊,路徑分析,ENVI-met,閾值, | zh_TW |
| dc.subject.keyword | scale,ecological impact,path analysis,ENVI-met,threshold, | en |
| dc.relation.page | 104 | - |
| dc.identifier.doi | 10.6342/NTU202500696 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-02-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2027-02-13 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 9.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
