請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97098完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝文斌 | zh_TW |
| dc.contributor.advisor | Wen-Pin Hsieh | en |
| dc.contributor.author | 邱仁謙 | zh_TW |
| dc.contributor.author | Jen-Chien Chiu | en |
| dc.date.accessioned | 2025-02-27T16:11:04Z | - |
| dc.date.available | 2025-02-28 | - |
| dc.date.copyright | 2025-02-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-11 | - |
| dc.identifier.citation | Akaogi, Masaki, et al. "Thermodynamic properties of α‐quartz, coesite, and stishovite and equilibrium phase relations at high pressures and high temperatures." Journal of Geophysical Research: Solid Earth 100.B11 (1995): 22337-22347.
Andrault, Denis, et al. "Equation of state of stishovite to lower mantle pressures." American Mineralogist 88.2-3 (2003): 301-307. Antonelli, G. Andrew, et al. "Characterization of mechanical and thermal properties using ultrafast optical metrology." MRS bulletin 31.8 (2006): 607-613. Aoki, Ichiro, and Eiichi Takahashi. "Density of MORB eclogite in the upper mantle." Physics of the Earth and Planetary Interiors 143 (2004): 129-143. Alexander, Conel M. O'D. "The origin of inner Solar System water." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375.2094 (2017): 20150384. Bell, David R., and George R. Rossman. "Water in Earth's mantle: the role of nominally anhydrous minerals." Science 255.5050 (1992): 1391-1397. Bercegeay, C., and S. Bernard. "First-principles equations of state and elastic properties of seven metals." Physical Review B—Condensed Matter and Materials Physics 72.21 (2005): 214101. Bose, Kunal, and Jibamira Ganguly. "Experimental and theoretical studies of the stabilities of talc, antigorite and phase A at high pressures with applications to subduction processes." Earth and Planetary Science Letters 136.3-4 (1995): 109-121. Blacic, James D. "Effect of water on the experimental deformation of olivine." Geophysical Monograph Series 16 (1972): 109-115. Bolfan-Casanova, Nathalie, Hans Keppler, and David C. Rubie. "Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: implications for the distribution of water in the Earth's mantle." Earth and Planetary Science Letters 182.2-4 (2000): 209-221. Bolfan‐Casanova, N., et al. "Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water in the Earth's lower mantle." Geophysical Research Letters 29.10 (2002): 89-1. Bromiley, Geoffrey D., and Alison R. Pawley. "The high-pressure stability of Mg-sursassite in a model hydrous peridotite: A possible mechanism for the deep subduction of significant volumes of H2O." Contributions to Mineralogy and Petrology 142 (2002): 714-723. Cahill, David G., Kenneth Goodson, and Arunava Majumdar. "Thermometry and thermal transport in micro/nanoscale solid-state devices and structures." J. Heat Transfer 124.2 (2002): 223-241. Cahill, David G. "Analysis of heat flow in layered structures for time-domain thermoreflectance." Review of Scientific Instruments 75.12 (2004): 5119-5122. Cahill, David G., and Fumiya Watanabe. "Thermal conductivity of isotopically pure and Ge-doped Si epitaxial layers from 300 to 550 K." Physical Review B—Condensed Matter and Materials Physics 70.23 (2004): 235322. Cai, Han, et al. "Path-level network transformation for efficient architecture search." International Conference on Machine Learning. PMLR, 2018. Chase, Malcolm W. "NIST-JANAF Thermochemical Tables 4th ed." J. of Physical and Chemical Reference Data (1998): 1529-1564. Chen, Jiuhua, et al. "Effect of water on olivine‐wadsleyite phase boundary in the (Mg, Fe)2SiO4 system." Geophysical Research Letters 29.18 (2002): 22-1. Chiritescu, Catalin, et al. "Ultralow thermal conductivity in disordered, layered WSe2 crystals." Science 315.5810 (2007): 351-353. Chang, Yun-Yuan, et al. "Spin transition of Fe3+ in Al-bearing phase D: An alternative explanation for small-scale seismic scatterers in the mid-lower mantle." Earth and Planetary Science Letters 382 (2013): 1-9. Chang, Yun-Yuan, et al. "Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle." Proceedings of the National Academy of Sciences 114.16 (2017): 4078-4081. Chien, Yu-Hsiang, et al. "Anisotropic thermal conductivity of antigorite along slab subduction impacts seismicity of intermediate-depth earthquakes." Nature Communications 15.1 (2024): 5198. Courant, Richard, Kurt Friedrichs, and Hans Lewy. "Über die partiellen Differenzengleichungen der mathematischen Physik." Mathematische Annalen 100.1 (1928): 32-74. Costescu, R. M., et al. "Ultra-low thermal conductivity in W/Al2O3 nanolaminates." Science 303.5660 (2004): 989-990. Crichton, W. A., and N. L. Ross. "Equation of state of phase E." Mineralogical Magazine 64.3 (2000): 561-567. Crichton, Wilson A., and Nancy L. Ross. "Equation of state of dense hydrous magnesium silicate phase A, Mg7Si2O8(OH)6." American Mineralogist 87.2-3 (2002): 333-338. Cynn, Hyunchae, and Anne M. Hofmeister. "High‐pressure IR spectra of lattice modes and OH vibrations in Fe‐bearing wadsleyite." Journal of Geophysical Research: Solid Earth 99.B9 (1994): 17717-17727. Cynn, H., et al. "Thermodynamic properties and hydrogen speciation from vibrational spectra of dense hydrous magnesium silicates." Physics and Chemistry of Minerals 23 (1996): 361-376. Datchi, F., et al. "Optical pressure sensors for high-pressure–high-temperature studies in a diamond anvil cell." High Pressure Research 27.4 (2007): 447-463. Daly, Luke, et al. "Solar wind contributions to Earth's oceans." Nature Astronomy 5.12 (2021): 1275-1285. Dewaele, Agnes, Paul Loubeyre, and Mohamed Mezouar. "Equations of state of six metals above 94 GPa." Physical Review B—Condensed Matter and Materials Physics 70.9 (2004): 094112. Deschamps, Frédéric, and Wen-Pin Hsieh. "Lowermost mantle thermal conductivity constrained from experimental data and tomographic models." Geophysical Journal International 219.Supplement_1 (2019): S115-S136. Downs, Robert T., et al. "The equation of state of forsterite to 17.2 GPa and effects of pressure media." American Mineralogist 81.1-2 (1996): 51-55. Dorogokupets, P. I., et al. "The equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3-perovskite, and postperovskite and phase diagram for the Mg2SiO4 system at pressures of up to 130 GPa." Russian Geology and Geophysics 56.1-2 (2015): 172-189. Fei, Yingwei, and T. J. Ahrens. "Thermal expansion." Mineral Physics and Crystallography: A Handbook of Physical Constants 2 (1995): 29-44. Feldman, Albert. "Algorithm for solutions of the thermal diffusion equation in a stratified medium with a modulated heating source." High Temperatures-High Pressures 31.3 (1999): 293-298. Fei, Y., et al. "Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications." Journal of Geophysical Research: Solid Earth 109.B2 (2004). Frost, Daniel J., and Yingwei Fei. "Stability of phase D at high pressure and high temperature." Journal of Geophysical Research: Solid Earth 103.B4 (1998): 7463-7474. Frost, D. J. "The stability of dense hydrous magnesium silicates in Earth's transition zone and lower mantle." Mantle Petrology: Field Observations and High Pressure Experimentation 6 (1999): 283-296. Fumagalli, P., and S. Poli. "Experimentally determined phase relations in hydrous peridotites to 6·5 GPa and their consequences on the dynamics of subduction zones." Journal of Petrology 46.3 (2005): 555-578. Fu, Suyu, et al. "Water concentration in single‐crystal (Al, Fe)‐bearing bridgmanite grown from the hydrous melt: Implications for dehydration melting at the topmost lower mantle." Geophysical Research Letters 46.17-18 (2019): 10346-10357. Gasparik, Tibor. "Phase relations in the transition zone." Journal of Geophysical Research: Solid Earth 95.B10 (1990): 15751-15769. Gasparik, Tibor. "The role of volatiles in the transition zone." Journal of Geophysical Research: Solid Earth 98.B3 (1993): 4287-4299. Gemmi, Mauro, et al. "A new hydrous Al-bearing pyroxene as a water carrier in subduction zones." Earth and Planetary Science Letters 310.3-4 (2011): 422-428. Gerya, Taras. Introduction to numerical geodynamic modelling. Cambridge University Press, 2019. Goldstein, Joseph I., et al. Scanning electron microscopy and X-ray microanalysis. Springer, 2017. Gu, Tingting, et al. "Hydrous peridotitic fragments of Earth's mantle 660 km discontinuity sampled by a diamond." Nature Geoscience 15.11 (2022): 950-954. Helffrich, George. "Topography of the transition zone seismic discontinuities." Reviews of Geophysics 38.1 (2000): 141-158. Hofmeister, A. M., et al. "Vibrational spectra of dense, hydrous magnesium silicates at high pressure: Importance of the hydrogen bond angle." American Mineralogist 84.3 (1999): 454-464. Hilairet, Nadège, Isabelle Daniel, and Bruno Reynard. "Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones." Geophysical Research Letters 33.2 (2006). Hofmeister, A. M. "Mantle values of thermal conductivity and the geotherm from phonon lifetimes." Science 283.5408 (1999): 1699-1706. Hosoya, Tomofumi, et al. "Water controls the fields of metastable olivine in cold subducting slabs." Geophysical Research Letters 32.17 (2005). Hohensee, Gregory T., et al. "Interpreting picosecond acoustics in the case of low interface stiffness." Review of Scientific Instruments 83.11 (2012). Hsieh, Wen-Pin. Testing theories for thermal transport using high pressure. University of Illinois at Urbana-Champaign, 2011. Hsieh, Wen‐Pin, et al. "Reduced lattice thermal conductivity of Fe‐bearing bridgmanite in Earth's deep mantle." Journal of Geophysical Research: Solid Earth 122.7 (2017): 4900-4917. Hsieh, Wen-Pin, et al. "Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics." Proceedings of the National Academy of Sciences 115.16 (2018): 4099-4104. Hsieh, Wen‐Pin, et al. "Spin transition of iron in δ‐(Al, Fe) OOH induces thermal anomalies in Earth's lower mantle." Geophysical Research Letters 47.4 (2020): e2020GL087036. Hsieh, Wen-Pin. "High-pressure thermal conductivity and compressional velocity of NaCl in B1 and B2 phase." Scientific Reports 11.1 (2021): 21321. Hsieh, Wen‐Pin, et al. "Low thermal conductivity of hydrous phase D leads to a self‐preservation effect within a subducting slab." Journal of Geophysical Research: Solid Earth 127.6 (2022a): e2022JB024556. Hsieh, Wen-Pin, et al. "High thermal conductivity of stishovite promotes rapid warming of a sinking slab in Earth's mantle." Earth and Planetary Science Letters 584 (2022b): 117477. Hung, Yu-Ping Grace, et al. "Thermal conductivity of aluminous garnets in Earth's deep interior." American Mineralogist 109.3 (2024): 482-487. Inoue, Toru, Hisayoshi Yurimoto, and Yasuhiro Kudoh. "Hydrous modified spinel, Mg1.75SiH0.5O4: a new water reservoir in the mantle transition region." Geophysical Research Letters 22.2 (1995): 117-120. Inoue, Toru, et al. "High‐pressure and high‐temperature stability and equation of state of superhydrous phase B." Earth's Deep Water Cycle 168 (2006): 147-157. Irifune, T., and A. E. Ringwood. "Phase transformations in a harzburgite composition to 26 GPa: Implications for dynamical behaviour of the subducting slab." Earth and Planetary Science Letters 86.2-4 (1987): 365-376. Irifune, Tetsuo, et al. "Phase transformations in serpentine and transportation of water into the lower mantle." Geophysical Research Letters 25.2 (1998): 203-206. Irifune, T., et al. "Sound velocities of majorite garnet and the composition of the mantle transition region." Nature 451.7180 (2008): 814-817. Irifune, T., and T. Tsuchiya. "Phase Transitions and Mineralogy of the Lower Mantle, Treatise on Geophysics." (2015). Ishii, Takayuki, and Eiji Ohtani. "Dry olivine and its high-pressure polymorphs coexisting with hydrous phases in wet subducting slab." AGU Fall Meeting Abstracts. Vol. 2021. 2021. Ishii, Takayuki, et al. "Superhydrous aluminous silica phases as major water hosts in high-temperature lower mantle." Proceedings of the National Academy of Sciences 119.44 (2022): e2211243119. Jayaraman, Aiyasami. "Diamond anvil cell and high-pressure physical investigations." Reviews of Modern Physics 55.1 (1983): 65. Karato, Shun‐Ichiro, Mervyn S. Paterson, and John D. FitzGerald. "Rheology of synthetic olivine aggregates: Influence of grain size and water." Journal of Geophysical Research: Solid Earth 91.B8 (1986): 8151-8176. Katsura, Tomoo, and Eiji Ito. "The system Mg2SiO4‐Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel." Journal of Geophysical Research: Solid Earth 94.B11 (1989): 15663-15670. Katsura, Tomoo, et al. "Post-spinel transition in Mg2SiO4 determined by high P–T in situ X-ray diffractometry." Physics of the Earth and Planetary Interiors 136.1-2 (2003): 11-24. Katsura, Tomoo, et al. "Olivine‐wadsleyite transition in the system (Mg, Fe)2SiO4." Journal of Geophysical Research: Solid Earth 109.B2 (2004). Katsura, Tomoo, et al. "Adiabatic temperature profile in the mantle." Physics of the Earth and Planetary Interiors 183.1-2 (2010): 212-218. Kanzaki, Masami. "Stability of hydrous magnesium silicates in the mantle transition zone." Physics of the Earth and Planetary Interiors 66.3-4 (1991): 307-312. Kanzaki, Masami. "Calculated powder X-ray patterns of phase B, anhydrous B and superhydrous B: Re-assessment of previous studies." Mineralogical Journal 16.5 (1993): 278-285. Kawamoto, Tatsuhiko, Richard L. Hervig, and John R. Holloway. "Experimental evidence for a hydrous transition zone in the early Earth's mantle." Earth and Planetary Science Letters 142.3-4 (1996): 587-592. Keppler, Hans, and Nathalie Bolfan-Casanova. "Thermodynamics of water solubility and partitioning." Reviews in Mineralogy and Geochemistry 62.1 (2006): 193-230. Kita, Saeko, and Thomas P. Ferrand. "Physical mechanisms of oceanic mantle earthquakes: Comparison of natural and experimental events." Scientific Reports 8.1 (2018): 17049. Kohlstedt, D. L., H. Keppler, and D. C. Rubie. "Solubility of water in the α, β and γ phases of (Mg, Fe)₂SiO₄." Contributions to Mineralogy and Petrology 123 (1996): 345-357. Koch-Müller, Monika, et al. "Polymorphic phase transition in Superhydrous Phase B." Physics and Chemistry of Minerals 32 (2005): 349-361. Kruger, M. B., Q. Williams, and R. Jeanloz. "Vibrational spectra of Mg(OH)₂ and Ca(OH)₂ under pressure." The Journal of Chemical Physics 91.10 (1989): 5910-5915. Kudoh, Y., et al. "Crystal structure and compressibility of superhydrous phase B, Mg₂₀Si₆H₈O₃₆." AIP Conference Proceedings. Vol. 309. No. 1. American Institute of Physics, 1994. Kubo, Tomoaki, et al. "Effects of water on the α-β transformation kinetics in San Carlos olivine." Science 281.5373 (1998): 85-87. Kudoh, Y., et al. "Structure and cation disorder of hydrous ringwoodite, γ-Mg₁.₈₉Si₀.₉₈H₀.₃₀O₄." Physics and Chemistry of Minerals 27 (2000): 474-479. Liu, Lin-Gun, et al. "Raman spectra of phase C (superhydrous phase B) at various pressures and temperatures." European Journal of Mineralogy 14.1 (2002): 15-23. Litasov, Konstantin, and Eiji Ohtani. "Phase relations and melt compositions in CMAS–pyrolite–H₂O system up to 25 GPa." Physics of the Earth and Planetary Interiors 134.1-2 (2002): 105-127. Litasov, Konstantin, et al. "Water solubility in Mg-perovskites and water storage capacity in the lower mantle." Earth and Planetary Science Letters 211.1-2 (2003): 189-203. Litasov, K., and E. Ohtani. "Stability of various hydrous phases in CMAS pyrolite-H₂O system up to 25 GPa." Physics and Chemistry of Minerals 30 (2003): 147-156. Litasov, Konstantin D., et al. "Wet subduction versus cold subduction." Geophysical Research Letters 32.13 (2005). Litasov, Konstantin D., et al. "Thermal equation of state of superhydrous phase B to 27 GPa and 1373 K." Physics of the Earth and Planetary Interiors 164.3-4 (2007): 142-160. Li, Juan, et al. "P and SH velocity structure in the upper mantle beneath Northeast China: Evidence for a stagnant slab in hydrous mantle transition zone." Earth and Planetary Science Letters 367 (2013): 71-81. Li, Xinyang, et al. "Elasticity of single‐crystal superhydrous phase B at simultaneous high pressure‐temperature conditions." Geophysical Research Letters 43.16 (2016): 8458-8465. Li, Xinyang, et al. "Phase Stability and Elasticity of Al-bearing Superhydrous Phase B at High Pressure and Temperature." AGU Fall Meeting Abstracts. Vol. 2021. 2021. Li, Xinyang, et al. "Synthesis, structure, and single-crystal elasticity of Al-bearing superhydrous phase B." American Mineralogist 107.5 (2022): 885-895. Lin, Yanhao, et al. "Evidence for the stability of ultrahydrous stishovite in Earth's lower mantle." Proceedings of the National Academy of Sciences 117.1 (2020): 184-189. Liu, Zhaodong, et al. "Bridgmanite is nearly dry at the top of the lower mantle." Earth and Planetary Science Letters 570 (2021): 117088. Li, Mingming. "The cycling of subducted oceanic crust in the Earth's deep mantle." Mantle Convection and Surface Expressions (2021): 303-328. Mao, H. K., J-A. Xu, and P. M. Bell. "Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions." Journal of Geophysical Research: Solid Earth 91.B5 (1986): 4673-4676. Marty, Bernard. "The origins and concentrations of water, carbon, nitrogen and noble gases on Earth." Earth and Planetary Science Letters 313 (2012): 56-66. Maurice, J., et al. "The stability of hydrous phases beyond antigorite breakdown for a magnetite-bearing natural serpentinite between 6.5 and 11 GPa." Contributions to Mineralogy and Petrology 173 (2018): 1-22. Marzotto, Enrico, et al. "Effect of water on lattice thermal conductivity of ringwoodite and its implications for the thermal evolution of descending slabs." Geophysical Research Letters 47.13 (2020): e2020GL087607. Marquardt, Hauke, and Andrew R. Thomson. "Experimental elasticity of Earth's deep mantle." Nature Reviews Earth & Environment 1.9 (2020): 455-469. McCubbin, Francis M., and Jessica J. Barnes. "Origin and abundances of H2O in the terrestrial planets, Moon, and asteroids." Earth and Planetary Science Letters 526 (2019): 115771. Mei, Shenghua, and David L. Kohlstedt. "Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime." Journal of Geophysical Research: Solid Earth 105.B9 (2000): 21457-21469. Meech, Karen, et al. "Origin of Earth's water: sources and constraints." Planetary astrobiology 325 (2020). Moon, S. H., and H. G. Drickamer. "Effect of pressure on hydrogen bonds on organic solids." The Journal of Chemical Physics 61.1 (1974): 48-54. Murakami, Motohiko, et al. "Water in Earth's lower mantle." Science 295.5561 (2002): 1885-1887. Navrotsky, Alexandra. "A lesson from ceramics." Science 284.5421 (1999): 1788-1789. Nishi, M., et al. "Stability of hydrous silicate at high pressures and water transport to the deep lower mantle." Nature Geoscience 7.3 (2014): 224-227. Nisr, Carole, et al. "Large H2O solubility in dense silica and its implications for the interiors of water-rich planets." Proceedings of the National Academy of Sciences 117.18 (2020): 9747-9754. O'Brien, David P., et al. "Water delivery and giant impacts in the ‘Grand Tack' scenario." Icarus 239 (2014): 74-84. Ohtani, Eiji, et al. "A new hydrous silicate, a water reservoir, in the upper part of the lower mantle." Geophysical Research Letters 24.9 (1997): 1047-1050. Ohtani, E., et al. "Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle." Physics of the Earth and Planetary Interiors 124.1-2 (2001): 105-117. Ohtani, Eiji, et al. "In situ X‐ray observation of decomposition of superhydrous phase B at high pressure and temperature." Geophysical Research Letters 30.2 (2003). Ohtani, Eiji, et al. "Water transport into the deep mantle and formation of a hydrous transition zone." Physics of the Earth and Planetary Interiors 143 (2004): 255-269. Ohtani, Eiji. "Water in the mantle." Elements 1.1 (2005): 25-30. Ohtani, Eiji, et al. "Stability of hydrous phase H MgSiO4H2 under lower mantle conditions." Geophysical Research Letters 41.23 (2014): 8283-8287. Ono, Shigeaki. "High temperature stability limit of phase egg, AlSiO3 (OH)." Contributions to Mineralogy and Petrology 137.1 (1999): 83-89. Osako, M., A. Yoneda, and E. Ito. "Thermal diffusivity, thermal conductivity and heat capacity of serpentine (antigorite) under high pressure." Physics of the Earth and Planetary Interiors 183.1-2 (2010): 229-233. Pacalo, Rosemary EG, and John B. Parise. "Crystal structure of superhydrous B, a hydrous magnesium silicate synthesized at 1400 C and 20 GPa." American Mineralogist 77.5-6 (1992): 681-684. Pearson, D. G., et al. "Hydrous mantle transition zone indicated by ringwoodite included within diamond." Nature 507.7491 (2014): 221-224. Piani, Laurette, et al. "Earth's water may have been inherited from material similar to enstatite chondrite meteorites." Science 369.6507 (2020): 1110-1113. Poli, Stefano, and Max W. Schmidt. "H2O transport and release in subduction zones: experimental constraints on basaltic and andesitic systems." Journal of Geophysical Research: Solid Earth 100.B11 (1995): 22299-22314. Poli, Stefano, and Max W. Schmidt. "Petrology of subducted slabs." Annual Review of Earth and Planetary Sciences 30.1 (2002): 207-235. Ranero, César R., and Valentí Sallarès. "Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench." Geology 32.7 (2004): 549-552. Rao, AS Madhusudhan, and K. Narender. "Studies on Thermophysical Properties of CaO and MgO by γ‐Ray Attenuation." Journal of Thermodynamics 2014.1 (2014): 123478. Raymond, Sean N., and Andre Izidoro. "The empty primordial asteroid belt." Science advances 3.9 (2017): e1701138. Reynard, Bruno. "Serpentine in active subduction zones." Lithos 178 (2013): 171-185. Ringwood, A. E., and Alan Major. "High-pressure reconnaissance investigations in the system Mg2SiO4-MgO-H2O." Earth and Planetary Science Letters 2.2 (1967): 130-133. Robert, Francois. "The origin of water on Earth." Science 293.5532 (2001): 1056-1058. Sano, Asami, et al. "In situ X-ray observation of decomposition of hydrous aluminum silicate AlSiO3OH and aluminum oxide hydroxide d-AlOOH at high pressure and temperature." Journal of Physics and Chemistry of Solids 65.8-9 (2004): 1547-1554. Savage, Brian. "Seismic constraints on the water flux delivered to the deep Earth by subduction." Geology 40.3 (2012): 235-238. Saxena, Surendra K., et al. Thermodynamic data on oxides and silicates: An assessed data set based on thermochemistry and high pressure phase equilibrium. Springer Science & Business Media, 2012. Schmidt, Max W., et al. "Synthesis, crystal structure, and phase relations of AlSiO3OH, a high-pressure hydrous phase." American Mineralogist 83.7-8 (1998): 881-888. Schmidt, Max W., and Stefano Poli. "Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation." Earth and Planetary Science Letters 163.1-4 (1998): 361-379. Schmidt, Max W., and S. Poli. "Generation of mobile components during subduction of oceanic crust." Treatise on geochemistry 3 (2003): 659. Shieh, Sean R., et al. "Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs." Earth and Planetary Science Letters 159.1-2 (1998): 13-23. Sun, Bo, and Yee Kan Koh. "Understanding and eliminating artifact signals from diffusely scattered pump beam in measurements of rough samples by time-domain thermoreflectance (TDTR)." Review of Scientific Instruments 87.6 (2016). Suzuki, Akio, et al. "In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4." Geophysical Research Letters 27.6 (2000): 803-806. Syracuse, Ellen M., Peter E. van Keken, and Geoffrey A. Abers. "The global range of subduction zone thermal models." Physics of the Earth and Planetary Interiors 183.1-2 (2010): 73-90. THOMPSON JR, JAMES B., Jo Laird, and ALAN B. THOMPSON. "Reactions in amphibolite, greenschist and blueschist." Journal of Petrology 23.1 (1982): 1-27. Thomsen, C., et al. "Surface generation and detection of phonons by picosecond light pulses." Physical Review B 34.6 (1986): 4129. Turcotte, Donald L., and Gerald Schubert. Geodynamics. Cambridge university press, 2002. Van Keken, Peter E., et al. "Subduction factory: 4. Depth‐dependent flux of H2O from subducting slabs worldwide." Journal of Geophysical Research: Solid Earth 116.B1 (2011). Wada, Ikuko, and Kelin Wang. "Common depth of slab‐mantle decoupling: Reconciling diversity and uniformity of subduction zones." Geochemistry, Geophysics, Geosystems 10.10 (2009). Wang, Dong, Zhongqing Wu, and Xin Deng. "Thermal conductivity of hydrous wadsleyite determined by non‐equilibrium molecular dynamics based on machine learning." Geophysical Research Letters 49.22 (2022): e2022GL100337. Wei, Changdong, et al. "Invited Article: Micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance." Review of Scientific Instruments 84.7 (2013). Wunder, Bernd, et al. "Synthesis, properties and stability of Al 3 Si 2 O 7 (OH) 3 (phase Pi), a hydrous high-pressure phase in the system Al 2 O 3-SiO 2 H 2 O (ASH)." European Journal of Mineralogy 5.4 (1993): 637-649. Wunder, Bernd, and Werner Schreyer. "Antigorite: High-pressure stability in the system MgO SiO2 H2O (MSH)." Lithos 41.1-3 (1997): 213-227. Wu, Xiang, et al. "Two‐stage spin transition of iron in FeAl‐bearing phase D at lower mantle." Journal of Geophysical Research: Solid Earth 121.9 (2016): 6411-6420. Xu, Yousheng, et al. "Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K." Physics of the Earth and Planetary Interiors 143 (2004): 321-336. Xu, Chaowen, et al. "Effect of Al on the stability of dense hydrous magnesium silicate phases to the uppermost lower mantle: Implications for water transportation into the deep mantle." Physics and Chemistry of Minerals 48.9 (2021): 31. Yang, Dapeng, Wenzhong Wang, and Zhongqing Wu. "Elasticity of superhydrous phase B at the mantle temperatures and pressures: Implications for 800 km discontinuity and water flow into the lower mantle." Journal of Geophysical Research: Solid Earth 122.7 (2017): 5026-5037. Ye, Yu, et al. "Compressibility and thermal expansion of hydrous ringwoodite with 2.5 (3) wt.% H2O." American Mineralogist 97.4 (2012): 573-582. Yusa, Hitoshi, Masaki Akaogi, and Eiji Ito. "Calorimetric study of MgSiO3 garnet and pyroxene: Heat capacities, transition enthalpies, and equilibrium phase relations in MgSiO3 at high pressures and temperatures." Journal of Geophysical Research: Solid Earth 98.B4 (1993): 6453-6460. Zhang, Youyue, et al. "Effect of iron content on thermal conductivity of olivine with implications for cooling history of rocky planets." Earth and Planetary Science Letters 519 (2019): 109-119. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97098 | - |
| dc.description.abstract | 地球表面覆蓋了大量的水,這些水可透過板塊隱沒進入地球深部,影響地球內部的物理與化學性質,是我們了解地球動力學及熱演化的重要關鍵。緻密含水鎂矽酸鹽(dense hydrous magnesium silicates, DHMSs)為隱沒板塊中隨著溫度與壓力變化相變而成的一系列含水礦物,在其晶體結構中可以含有大量水(OH-),對地球深部水循環有重要的影響。其中,高溫高壓礦物實驗顯示,超含水相 B(superhydrous phase B, ShyB)是一種可穩定存在於地函過渡帶至下部地函最上部的重要含水礦物,並具有攜帶大量水的能力。然而,超含水相 B的熱性質及其對隱沒板塊熱演化與隱沒動力學的影響尚未被充分理解。
本研究將高溫高壓實驗合成的超含水相 B,置於高壓鑽石砧及電阻式加熱系統中模擬地球內部的高壓及高溫環境,並利用時域熱反射技術精確量測其熱傳導性質,記錄隨著溫度與壓力上升的熱導率變化。結果顯示,超含水相 B的熱導率隨著壓力會單調上升,隨溫度的升高則會下降,與先前已被研究的其他含水相的低熱導率表現一致。 本研究進一步結合前人研究的其他含水礦物熱導率數據,建立隱沒板塊的熱演化數值模型。模型中顯示,由於含水礦物的體積占比低,對隱沒板塊整體的熱結構影響較小。但一系列含水相的熱導率變化會阻擋由高溫地函所帶來的熱流入板塊內部,或在部分深度區間反而促進熱流入,進而在板塊表層部分形成局部的溫度差異;一旦造成隱沒板塊內部溫度較低,則會促使含水礦物能攜帶更多水至更深的地球內部。此溫度差異也會導致周圍地函物質的密度與相變深度產生差異。同時,相變過程中伴隨的脫水現象可能因此在不同深度發生,形成地震波低速帶,並與深層地震活動相關聯。 | zh_TW |
| dc.description.abstract | Water covers a significant portion of the Earth's surface, which could be brought into the mantle through plate tectonics and subduction, influencing the physical and chemical properties in the Earth's interior. Mineral physics experiments have indicated that dense hydrous magnesium silicates (DHMS), a series of hydrous minerals formed in subducting slabs under the increasing pressure and temperature conditions, can contain water in their crystal structures and play a crucial role in the deep Earth water cycle. Among them, superhydrous phase B (ShyB) is expected to carry substantial amounts of water and stably exist at depths ranging from the mantle transition zone to the uppermost lower mantle. The thermal conductivity of ShyB could crucially affect the thermal state of a subducting slab, while it remains poorly understood.
In this study, synthesized ShyB was placed in a high-pressure diamond anvil cell coupled with a resistive heater, which is used to simulate the deep Earth's high-pressure and high-temperature conditions. The thermal conductivity of ShyB was precisely measured using time-domain thermoreflectance (TDTR) techniques, with changes recorded as both pressure and temperature increased. The results show that ShyB's thermal conductivity increases monotonically with pressure, but decreases with temperature, consistent with the thermal conductivity behaviors of other hydrous phases observed in previous studies. Combined with previous thermal conductivity data, a numerical model was developed to examine the thermal evolution of subducting slabs. The model indicates that while the volume fraction of hydrous minerals is relatively small, their thermal properties influence the slab's internal thermal structure. At certain depth ranges, depending on the relative thermal conductivity of hydrous phases and lithosphere, the changes in thermal conductivity of hydrous phases either inhibit or enhance the heat transfer into the slab, creating local temperature differences at the slab's surface. These differences can maintain a lower internal temperature in the subducting slab, which facilitates the transport of water deeper into the Earth. Additionally, these temperature variations slightly affect the density and the phase transition depths of surrounding mantle materials. The dehydration accompanying phase transitions at different depths may lead to the formation of seismic low-velocity zones, which are associated with deep seismic activities. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:11:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-27T16:11:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii List of Figures viii List of Tables xi CHAPTER 1: INTRODUCTION 1.1 Earth's Deep Water Cycle 1 1.1.1 Origin of Earth's water 1 1.1.2 Water in Earth's interior 2 1.1.3 Water transport to the deep Earth 3 1.1.4 Superhydrous phase B (ShyB) 5 1.2 Motivations and Outline of the Thesis 7 CHAPTER 2: EXPERIMENTAL METHODS 2.1 Sample Preparation 8 2.1.1 Sample synthesis 8 2.1.2 Electron probe microanalyzer (EPMA) 8 2.2 Setup for High Pressure and Temperature Experiments 9 2.2.1 Diamond anvil cell (DAC) 9 2.2.2 Resistive heater 11 2.2.3 Preparation of the externally heated DAC for high P-T measurements 12 2.3 Raman Spectroscopy 16 2.3.1 Principle of Raman spectroscopy 16 2.3.2 Pressure characterization 17 2.4 Time-Domain Thermoreflectance (TDTR) 19 2.4.1 TDTR setup 19 2.5 Thermal Diffusion Model 23 2.5.1 Pressure medium layer 24 2.5.2 Thermoreflectance transducer layer (aluminum layer) 25 2.5.3 ShyB layer 27 2.5.4 Interface layer 27 CHAPTER 3: EXPERIMENTAL RESULTS 3.1 Results of EMPA 30 3.2 Raman Spectrum of ShyB 32 3.3 Thermal Conductivity of ShyB (Λ_ShyB) 37 3.3.1 High-pressure, room-temperature Λ_ShyB 37 3.3.2 High-pressure, high-temperature Λ_ShyB 39 3.3.3 Uncertainties of TDTR measurements 40 CHAPTER 4: DISCUSSION 4.1 Modeled Thermal Conductivity of DHMS Phases in a Cold Subducting Slab 44 4.2 Numerical Modeling of the Thermal Evolution of a Subducting Slab with Hydrous Phases 48 4.2.1 Configuration of numerical modelling 48 4.2.2 Mineralogy and thermophysical properties in the subducting slab model 54 4.2.3 Unveiling the role of hydrous minerals in the thermal evolution of subducting slabs 73 CHAPTER 5: CONCLUSION 96 Bibliography 98 Appendix: TDTR Signal 114 | - |
| dc.language.iso | en | - |
| dc.subject | 超含水相 B | zh_TW |
| dc.subject | 地球深部水循環 | zh_TW |
| dc.subject | 時域熱反射技術 | zh_TW |
| dc.subject | 隱沒板塊 | zh_TW |
| dc.subject | 熱導率 | zh_TW |
| dc.subject | 緻密含水鎂矽酸鹽 | zh_TW |
| dc.subject | Subducting slab | en |
| dc.subject | Thermal conductivity | en |
| dc.subject | Superhydrous phase B (ShyB) | en |
| dc.subject | Dense hydrous magnesium silicates (DHMS) | en |
| dc.subject | Deep Earth water cycle | en |
| dc.subject | Time-domain thermoreflectance (TDTR) | en |
| dc.title | 超含水相B在高溫高壓下的熱傳導率及其對地球深部水循環的影響 | zh_TW |
| dc.title | Thermal Conductivity of Superhydrous Phase B at High Pressure and Temperature: Implications for Earth's Deep Water Cycle | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 徐翰;龔慧貞 | zh_TW |
| dc.contributor.oralexamcommittee | Han Hsu;Hui-Chen Kung | en |
| dc.subject.keyword | 緻密含水鎂矽酸鹽,超含水相 B,熱導率,隱沒板塊,時域熱反射技術,地球深部水循環, | zh_TW |
| dc.subject.keyword | Dense hydrous magnesium silicates (DHMS),Superhydrous phase B (ShyB),Thermal conductivity,Subducting slab,Time-domain thermoreflectance (TDTR),Deep Earth water cycle, | en |
| dc.relation.page | 119 | - |
| dc.identifier.doi | 10.6342/NTU202500610 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-02-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | 2025-02-28 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 5.8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
