請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97095
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉志文 | zh_TW |
dc.contributor.advisor | Chih-Wen Liu | en |
dc.contributor.author | 蕭奕友 | zh_TW |
dc.contributor.author | Yi-Yu Hsiao | en |
dc.date.accessioned | 2025-02-27T16:10:13Z | - |
dc.date.available | 2025-02-28 | - |
dc.date.copyright | 2025-02-27 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2025-02-07 | - |
dc.identifier.citation | [1] IEA. "IEA (2024), Global EV Outlook 2024, IEA, Paris, Licence: CC BY 4.0." IEA https://www.iea.org/reports/global-ev-outlook-2024 (accessed 2024).
[2] C. Liu and Y. Luo, "Overview of advanced control strategies for electric machines," Chinese Journal of Electrical Engineering, vol. 3, no. 2, pp. 53-61, 2017. [3] F. Korkmaz, İ. Topaloğlu, M. F. Cakir, and R. Gürbüz, "Comparative performance evaluation of FOC and DTC controlled PMSM drives," in 4th international conference on power engineering, energy and electrical drives, 2013: IEEE, pp. 705-708. [4] M. Abassi, A. Khlaief, O. Saadaoui, A. Chaari, and M. Boussak, "Performance analysis of FOC and DTC for PMSM drives using SVPWM technique," in 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 2015: IEEE, pp. 228-233. [5] Q. Chen, X. Yu, M. Sun, C. Wu, and Z. Fu, "Adaptive repetitive learning control of PMSM servo systems with bounded nonparametric uncertainties: theory and experiments," IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8626-8635, 2020. [6] Y. Zhou, H. Li, R. Liu, and J. Mao, "Continuous voltage vector model-free predictive current control of surface mounted permanent magnet synchronous motor," IEEE Transactions on Energy Conversion, vol. 34, no. 2, pp. 899-908, 2018. [7] P. Zhang, Y. Chen, Z. Wan, and W. Zhang, "Adaptive finite-time backstepping sliding mode control for PMSM system with backlash," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 6, pp. 7549-7559, 2022. [8] B. Wang, M. Tian, Y. Yu, Q. Dong, and D. Xu, "Enhanced ADRC with quasi-resonant control for PMSM speed regulation considering aperiodic and periodic disturbances," IEEE Transactions on Transportation Electrification, vol. 8, no. 3, pp. 3568-3577, 2021. [9] J. Yim, S. You, Y. Lee, and W. Kim, "Chattering attenuation disturbance observer for sliding mode control: Application to permanent magnet synchronous motors," IEEE Transactions on Industrial Electronics, vol. 70, no. 5, pp. 5161-5170, 2022. [10] Y. Yao, Y. Huang, F. Peng, and J. Dong, "A sliding-mode position estimation method with chattering suppression for LCL-equipped high-speed surface-mounted PMSM drives," IEEE Transactions on Power Electronics, vol. 37, no. 2, pp. 2057-2071, 2021. [11] P. Mani, R. Rajan, L. Shanmugam, and Y. H. Joo, "Adaptive fractional fuzzy integral sliding mode control for PMSM model," IEEE Transactions on Fuzzy Systems, vol. 27, no. 8, pp. 1674-1686, 2018. [12] A. K. Junejo et al., "Novel fast terminal reaching law based composite speed control of PMSM drive system," IEEE Access, vol. 10, pp. 82202-82213, 2022. [13] K. Zhang, L. Wang, and X. Fang, "High-order fast nonsingular terminal sliding mode control of permanent magnet linear motor based on double disturbance observer," IEEE Transactions on Industry Applications, vol. 58, no. 3, pp. 3696-3705, 2022. [14] D. Fu, X. Zhao, and J. Zhu, "A novel robust super-twisting nonsingular terminal sliding mode controller for permanent magnet linear synchronous motors," IEEE Transactions on Power Electronics, vol. 37, no. 3, pp. 2936-2945, 2021. [15] R. Krishan, K. Kumar, and R. Roy, "Comparative analysis of constant torque angle control and constant mutual flux linkage control of permanent magnet synchronous motor," in 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE), 2018: IEEE, pp. 1-9. [16] M. N. Uddin, T. S. Radwan, and M. A. Rahman, "Performance of interior permanent magnet motor drive over wide speed range," IEEE Transactions on Energy Conversion, vol. 17, no. 1, pp. 79-84, 2002. [17] S. R. Bowes and Y.-S. Lai, "The relationship between space-vector modulation and regular-sampled PWM," IEEE Transactions on Industrial Electronics, vol. 44, no. 5, pp. 670-679, 1997. [18] X. Yu, Y. Feng, and Z. Man, "Terminal sliding mode control–an overview," IEEE Open Journal of the Industrial Electronics Society, vol. 2, pp. 36-52, 2020. [19] C. Mu and H. He, "Dynamic behavior of terminal sliding mode control," IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3480-3490, 2017. [20] S.-Y. Chen and F.-J. Lin, "Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system," IEEE Transactions on Control Systems Technology, vol. 19, no. 3, pp. 636-643, 2010. [21] Y. Wang, Y. Feng, X. Zhang, and J. Liang, "A new reaching law for antidisturbance sliding-mode control of PMSM speed regulation system," IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 4117-4126, 2019. [22] Z. Zhang, X. Liu, J. Yu, and H. Yu, "Time-varying disturbance observer based improved sliding mode single-loop control of PMSM drives with a hybrid reaching law," IEEE Transactions on Energy Conversion, vol. 38, no. 4, pp. 2539-2549, 2023. [23] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding mode control and observation. Springer, 2014. [24] J.-J. E. Slotine and W. Li, Applied nonlinear control (no. 1). Prentice hall Englewood Cliffs, NJ, 1991. [25] Y. Deng, J. Wang, H. Li, J. Liu, and D. Tian, "Adaptive sliding mode current control with sliding mode disturbance observer for PMSM drives," ISA transactions, vol. 88, pp. 113-126, 2019. [26] L. Qu, W. Qiao, and L. Qu, "Active-disturbance-rejection-based sliding-mode current control for permanent-magnet synchronous motors," IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 751-760, 2020. [27] J. Xia, N. Amiri, J. Jatskevich, Y. Guo, and X. Zhang, "An adaptive MTPA control method for interior permanent magnet synchronous motors considering demagnetization and temperature effects," in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2018: IEEE, pp. 871-876. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97095 | - |
dc.description.abstract | 本文主旨為研究滑模控制應用於內藏式永磁同步電機驅動系統中之速度控制及電流控制,並於定轉矩區結合每安培最大轉矩的控制策略。滑模控制相較於比例積分控制具有較快的響應速度和更具強健性的優點,使其在高性能電機驅動系統應用中具有重要價值。為了使滑模控制的強健性更加提升,在轉速控制中本論文使用了滑模觀測器以觀測系統的轉矩負載及干擾值,電流控制中使用自適應滑模控制並設計了變係數的自適應增益,確保了在參數不匹配的情境,能消除抖震且仍具滑模可達性。最後,通過模擬軟體MATLAB/Simulink驗證所提出方法的有效性及其在提升電機驅動系統整體性能方面的潛力。 | zh_TW |
dc.description.abstract | The main objective of this thesis is to study the application of Sliding Mode Control (SMC) in the speed and current control of Interior Permanent Magnet Synchronous Motor (IPMSM) drive systems, combined with the Maximum Torque Per Ampere (MTPA) control strategy in the constant torque region. Compared with Proportional-Integral (PI) control, sliding mode control offers advantages such as faster response and greater robustness, making it valuable in high-performance motor drive system applications. To further enhance the robustness of sliding mode control, this paper employs a Sliding Mode Observer (SMO) in speed control to observe the system's torque load and disturbance values. In current control, an adaptive sliding mode control with a variable adaptive gain was designed to ensure that in the presence of parameter mismatches, chattering is eliminated while maintaining sliding mode reachability. Finally, the effectiveness of the proposed method and its potential to improve the overall performance of the motor drive system are verified through MATLAB/Simulink software simulations. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:10:13Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-27T16:10:13Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口委鑑定書 i
致謝 ii 摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 3 1.3 Contributions 4 1.4 Dissertation Organizations 5 Chapter 2 Summary of Permanent Magnet Synchronous Machine Drives 7 2.1 Introduction to permanent magnet synchronous machines 7 2.2 Coordinates transformation 9 2.2.1 Stationary coordinates 11 2.2.1 Synchronous coordinates 12 2.3 Modeling of PMSM 13 2.4 Space vector pulse width modulation 17 2.5 Field-oriented control 24 Chapter 3 Review of Sliding Mode Control 31 3.1 Introduction of Sliding Mode Control (SMC) 31 3.2 Sliding Surface 33 3.2.1 Linear sliding surface 33 3.2.2 Terminal sliding surface [18] 34 3.2.3 Nonsingular Terminal sliding surface [20] 35 3.2.4 Integral sliding surface [21] 35 3.2.5 Integral Nonsingular Terminal sliding surface [22] 36 3.3 Reaching Law 37 3.3.1 Constant Rate Reaching Law 37 3.3.2 Exponential reaching law 38 3.4 Chattering avoidance[23] 38 3.4.1 Saturation function 39 3.4.2 Sigmoid function 39 3.5 Stability analysis 40 3.5.1 Lyapunov function stability analysis [24] 41 3.5.2 Disturbance rejection 41 3.5.3 Disturbance rejection with sigmoid function 43 Chapter 4 Sliding Mode Speed and Current Control 45 4.1 Sliding mode speed control algorism 45 4.2 MTPA based sliding mode speed control 48 4.3 Sliding mode disturbance observer algorism 51 4.4 Adaptive sliding mode current control algorism 54 Chapter 5 Simulation and Result 60 5.1 Motor and Drive Simulator Model 61 5.2 Simulation results 64 5.2.1 Constant speed control simulation 64 5.2.2 Acceleration and Deceleration simulation 74 5.2.3 Constant speed control under parameter mismatch 77 Chapter 6 Conclusions and Future Works 92 6.1 Conclusions 92 6.2 Future works 93 Appendix 94 Appendix 1 Stability proof d-axis current ASMC 94 Appendix 2 Stability proof of q-axis current ASMC 95 References 96 | - |
dc.language.iso | en | - |
dc.title | 內藏式永磁同步電機之滑模速度控制及自適應滑模電流控制研究 | zh_TW |
dc.title | Research of Sliding Mode Speed Control and Adaptive Sliding Mode Current Control for Interior Permanent Magnet Synchronous Machines | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 賴炎生;陳耀銘;黃世杰 | zh_TW |
dc.contributor.oralexamcommittee | Yen-Shin Lai;Yaow-Ming Chen;Shyh-Jier Huang | en |
dc.subject.keyword | 內藏式永磁同步電機,滑模控制,滑模觀測器,每安培最大轉矩,自適應滑模控制, | zh_TW |
dc.subject.keyword | Interior Permanent Magnet Synchronous Motor (IPMSM),Sliding Mode Control (SMC),Sliding Mode Observer (SMO),Maximum Torque Per Ampere (MTPA),Adaptive Sliding Mode Control (ASMC), | en |
dc.relation.page | 100 | - |
dc.identifier.doi | 10.6342/NTU202500489 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-02-07 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電機工程學系 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 11.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。