Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97090
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor連豊力zh_TW
dc.contributor.advisorFeng-Li Lianen
dc.contributor.author武敬祥zh_TW
dc.contributor.authorChing-Hsiang Wuen
dc.date.accessioned2025-02-26T16:24:11Z-
dc.date.available2025-02-27-
dc.date.copyright2025-02-26-
dc.date.issued2025-
dc.date.submitted2025-02-08-
dc.identifier.citation[1: Zhou et al. 2020]Yongkun Zhou, Bin Rao, and Wei Wang, “UAV Swarm Intelligence: Recent Advances and Future Trends,” IEEE Access, vol. 8, pp. 183 856–183 878, 2020, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2020.3028865.
[2: Shakhatreh et al. 2019]Hazim Shakhatreh, Ahmad H. Sawalmeh, Ala Al-Fuqaha, Zuochao Dou, Eyad Almaita, Issa Khalil, Noor Shamsiah Othman, Abdallah Khreishah, and Mohsen Guizani, “Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges,” IEEE Access, vol. 7, pp. 48 572–48 634, 2019, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2019.2909530.
[3: Skydio 2024]Skydio. “How Drones Are Used for Search and Rescue | Skydio.” (2024), [Online]. Available: https://www.skydio.com/blog/how-to-use-drones-for-search-and-rescue/ (visited on 10/10/2024).
[4: Koetsier 2023]John Koetsier. “Wing Drone Delivery in 2024:`Capable Of Handling Tens Of Millions Of Deliveries For Millions Of Consumers',” Forbes. (2023), [Online]. Available: https://www.forbes.com/sites/johnkoetsier/2023/03/11/wingdrone-delivery-in-2024-capable-of-handling-tens-of-millionsof-deliveries-for-millions-of-consumers/ (visited on 10/10/2024).
[5: Zipline 2023]Zipline. “FAA Clears Way for Autonomous Aviation in the U.S.; Unlocks Major Drone Delivery Expansion with Zipline Decision | Zipline Instant Delivery & Logistics,”Zipline. (2023), [Online]. Available: https://www.flyzipline.com/newsroom/news/announcements/faa-authorizes-zipline-to-fly-bvlos(visited on 10/10/2024).
[6: Egypt 2023]Daily News Egypt. “Amazon Prime Air to launch drone delivery in three new locations,” Dailynewsegypt. (Oct. 23, 2023), [Online]. Available: https://www.dailynewsegypt.com/2023/10/23/amazon-prime-air-to-launch-dronedelivery-in-three-new-locations/ (visited on 10/10/2024).
[7: MiTAC 2019]MiTAC. “Coast guard using drones to monitor Taiwan's seas,” 神通資訊科技股份有限公司. (Apr. 15, 2019), [Online]. Available: https://www.mitac.com.tw/en/coast-guard-using-drones-to-monitor-taiwans-seas/ (visitedon 10/10/2024).
[8: 李文正2024]李文正. “陸4 艘執法船出現了!海巡署曝「與國防部等友軍」有掌握:請漁民放心- 社會,” 李文正. (Feb. 19, 2024), [Online]. Available: https://www.chinatimes.com/realtimenews/20240219002829-260402?chdtv (visited on10/10/2024).
[9: NAO 2023]NAO. “NAO-112-12 海洋委員會海巡署旋翼型無人飛行載具試辦計畫執行情形專案審計報告,” 中華民國審計部全球資訊網. (Dec. 15, 2023), [Online].Available: https://www.audit.gov.tw (visited on 10/10/2024).
[10: Boon et al. 2017]Marinus A. Boon, A. P. Drijfhout, and Solomon Tesfamichael, “COMPARISONOF A FIXED-WING AND MULTI-ROTOR UAV FOR ENVIRONMENTAL MAPPING APPLICATIONS: A CASE STUDY,” The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, vol. XLII-2/W6,pp. 47–54, Aug. 23, 2017, ISSN: 2194-9034. DOI: 10.5194/isprs- archives-XLII-2-W6-47-2017.
[11: Mirzaeinia et al. 2019]Amir Mirzaeinia, Mostafa Hassanalian, Kooktae Lee, and Mehdi Mirzaeinia, “Energyconservation of V-shaped swarming fixed-wing drones through position reconfiguration,”Aerospace Science and Technology, vol. 94, p. 105 398, Nov. 2019,ISSN: 12709638. DOI: 10.1016/j.ast.2019.105398.
[12: Zhang and Liu 2018]Qingrui Zhang and Hugh H.T. Liu, “Aerodynamic model-based robust adaptive control for close formation flight,” Aerospace Science and Technology, vol. 79,pp. 5–16, Aug. 2018, ISSN: 12709638. DOI: 10.1016/j.ast.2018.05.029.
[13: Saeed et al. 2018]Adnan S. Saeed, Ahmad Bani Younes, Chenxiao Cai, and Guowei Cai, “A survey of hybrid Unmanned Aerial Vehicles,” Progress in Aerospace Sciences, vol. 98,pp. 91–105, Apr. 2018, ISSN: 03760421. DOI: 10.1016/j.paerosci.2018.03.007.
[14: Nelson et al. 2007]Derek R. Nelson, D. Blake Barber, Timothy W. McLain, and Randal W. Beard,“Vector Field Path Following for Miniature Air Vehicles,” IEEE Transactions on Robotics, vol. 23, no. 3, pp. 519–529, Jun. 2007, ISSN: 1552-3098. DOI: 10.1109/TRO.2007.898976.
[15: Anderson et al. 2005]Erik P. Anderson, Randal W. Beard, and Timothy W. McLain, “Real-time dynamic trajectory smoothing for unmanned air vehicles,” IEEE Transactions on Control Systems Technology, vol. 13, no. 3, pp. 471–477, May 2005, ISSN: 1558-0865. DOI: 10.1109/TCST.2004.839555.
[16: Beard and McLain 2012]Randal W. Beard and Timothy W. McLain, Small Unmanned Aircraft: Theory and Practice. Princeton University Press, Feb. 26, 2012, ISBN: 978-1-4008-4060-1. DOI: 10.1515/9781400840601.
[17: Yu et al. 2018]Wanming Yu, Defu Lin, and Tao Song, “Adaptive Control for UAV Close Formation Flight against Disturbances,” in 2018 3rd International Conference on Robotics and Automation Engineering (ICRAE), Guangzhou: IEEE, Nov. 2018, pp. 196–201, ISBN: 978-1-5386-9594-4. DOI: 10.1109/ICRAE.2018.8586779.
[18: Zhang et al. 2021]Jialong Zhang, Pu Zhang, and Jianguo Yan, “Distributed Adaptive Finite-Time Compensation Control for UAV Swarm With Uncertain Disturbances,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 2, pp. 829–841, Feb. 2021, ISSN: 1549-8328, 1558-0806. DOI: 10.1109/TCSI.2020.3034979.
[19: Meier et al. 2015]Lorenz Meier, Dominik Honegger, and Marc Pollefeys, “PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA: IEEE, May 2015, pp. 6235–6240, ISBN: 978-1-4799-6923-4. DOI: 10.1109/ICRA.2015.7140074.
[20: Yang et al. 2021]Jun Yang, Cunjia Liu, Matthew Coombes, Yunda Yan, and Wen-Hua Chen, “Optimal Path Following for Small Fixed-Wing UAVs Under Wind Disturbances,”IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp. 996–1008, May 2021, ISSN: 1063-6536, 1558-0865, 2374-0159. DOI: 10.1109/TCST.2020.2980727.
[21: Shtessel et al. 2014]Yuri Shtessel, Christopher Edwards, Leonid Fridman, and Arie Levant, Sliding Mode Control and Observation (Control Engineering). New York, NY: Springer New York, 2014, ISBN: 978-0-8176-4892-3 978-0-8176-4893-0. DOI: 10.1007/978-0-8176-4893-0.
[22: Ouyang et al. 2023]Quan Ouyang, Zhaoxiang Wu, Yuhua Cong, and Zhisheng Wang, “Formation control of unmanned aerial vehicle swarms: A comprehensive review,” Asian Journal of Control, vol. 25, no. 1, pp. 570–593, Jan. 2023, ISSN: 1561-8625, 1934-6093. DOI: 10.1002/asjc.2806.
[23: Do et al. 2021]Hai Do, Hoang Hua, Minh Nguyen, Cuong Nguyen, Hoa Nguyen, Hoa Nguyen,and Nga Nguyen, “Formation Control Algorithms for Multiple-UAVs: A Comprehensive Survey,” EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, vol. 8, no. 27, p. 170 230, Jun. 23, 2021, ISSN: 2410-0218. DOI: 10.4108/eai.10-6-2021.170230.
[24: Liu et al. 2015]Zhixiang Liu, Xiang Yu, Chi Yuan, and Youmin Zhang, “Leader-follower formation control of unmanned aerial vehicles with fault tolerant and collision avoidance capabilities,” in 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA: IEEE, Jun. 2015, pp. 1025–1030, ISBN: 978-1-4799-6010-1. DOI: 10.1109/ICUAS.2015.7152392.
[25: Gu et al. 2006]Yu Gu, Brad Seanor, Giampiero Campa, Marcello R. Napolitano, Larry Rowe, Srikanth Gururajan, and Sheng Wan, “Design and Flight Testing Evaluation of Formation Control Laws,” IEEE Transactions on Control Systems Technology, vol. 14, no. 6, pp. 1105–1112, Nov. 2006, ISSN: 1063-6536. DOI: 10.1109/TCST.2006.880203.
[26: Zhang and Liu 2019]Qingrui Zhang and Hugh H. T. Liu. “Robust Cooperative Formation Control of Fixed-Wing Unmanned Aerial Vehicles.” arXiv: 1905.01028 [cs]. (May 6, 2019), [Online]. Available: http://arxiv.org/abs/1905.01028 (visited on 09/08/2024), pre-published.
[27: Kuriki and Namerikawa 2013] Yasuhiro Kuriki and Toru Namerikawa, “Control of Formation Configuration Using Leader-Follower Structure,” Journal of System Design and Dynamics, vol. 7, no. 3, pp. 254–264, 2013, ISSN: 1881-3046. DOI: 10.1299/jsdd.7.254.
[28: Zhi et al. 2022]Yongran Zhi, Lei Liu, Bin Guan, Bo Wang, Zhongtao Cheng, and Huijin Fan, “Distributed robust adaptive formation control of fixed-wing UAVs with unknown uncertainties and disturbances,” Aerospace Science and Technology, vol. 126, p. 107 600, Jul. 2022, ISSN: 12709638. DOI: 10.1016/j.ast.2022.107600.
[29: Bautista and De Marina 2024]Jesús Bautista and Héctor García De Marina, “Behavioral-based circular formation control for robot swarms,” in 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan: IEEE, May 13, 2024, pp. 8989–8995, ISBN: 9798350384574. DOI: 10.1109/ICRA57147.2024.10610826.
[30: Wang et al. 2023]Ximan Wang, Simone Baldi, Xuewei Feng, Changwei Wu, Hongwei Xie, and Bart De Schutter, “A Fixed-Wing UAV Formation Algorithm Based on Vector Field Guidance,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 1, pp. 179–192, Jan. 2023, ISSN: 1545-5955, 1558-3783. DOI: 10.1109/TASE.2022.3144672.
[31: Wilson et al. 2014]Daniel B. Wilson, Ali H. Goktogan, and Salah Sukkarieh, “A vision based relative navigation framework for formation flight,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China: IEEE, May 2014, pp. 4988–4995, ISBN: 978-1-4799-3685-4. DOI: 10.1109/ICRA.2014.6907590.
[32: Tian et al. 2021]Pengzhi Tian, Haiyang Chao, Matthew Rhudy, Jason Gross, and Huixuan Wu,“Wind sensing and estimation using small fixed-wing unmanned aerial vehicles: A survey,” Journal of Aerospace Information Systems, vol. 18, no. 3, pp. 132–143, 2021, ISSN: 1542-9423. DOI: 10.2514/1.I010885.
[33: Ardupilot 2024]Ardupilot. “Windspeed Estimation and Baro Compensation —Copter documentation.”(2024), [Online]. Available: https://ardupilot.org/copter/docs/airspeed-estimation.html (visited on 10/10/2024).
[34: PX4 2019]PX4. “Using the ECL EKF | PX4 Guide (main).” (2019), [Online]. Available: https://docs.px4.io/main/en/advanced_config/tuning_the_ecl_ekf.html#what-are-the-advantages-and-disadvantages-of-the-ecl-ekf-overother-estimators (visited on 10/10/2024).
[35: AviationHunt 2024]AviationHunt. “Different Types of Airspeed: IAS, TAS, CAS, EAS, GS - Aviation-Hunt.” (Oct. 23, 2024), [Online]. Available: https://www.aviationhunt.com/types-of-airspeed/ (visited on 12/18/2024).
[36: Beard 2024]Randal W. Beard, Byu-magicc/mavsim_public, Nov. 8, 2024. [Online]. Available:https://github.com/byu-magicc/mavsim_public (visited on 11/09/2024).
[37: MAFarooqi 2022]NCS - 25a - Relative degree, MAFarooqi, director, Nov. 3, 2022. [Online]. Available:https://www.youtube.com/watch?v=0xXMuavWFsI (visited on 11/10/2024).
[38: Khalil 2002]Hassan K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, N.J: Prentice Hall, 2002, 750 pp., ISBN: 978-0-13-067389-3.
[39: Filippov 1988]Aleksei F. Filippov, Differential Equations with Discontinuous Righthand Sides (Mathematics and Its Applications), Felix M. Arscott, Ed., red. by M. Hazewinkel. Dordrecht: Springer Netherlands, 1988, vol. 18, ISBN: 978-90-481-8449-1 978-94-015-7793-9. DOI: 10.1007/978-94-015-7793-9.
[40: MAFarooqi 2023]NCS - 34a - Sliding Mode Control - Basic Concept, MAFarooqi, director, Dec. 1, 2023. [Online]. Available: https://www.youtube.com/watch?v=AQ9BJEJ8nKw(visited on 12/19/2024).
[41: Perruquetti 2010]W Perruquetti, “From 1rst order to Higher order Sliding modes,” Sep. 2010.
[42: Dorf and Bishop 2017]Richard C. Dorf and Robert H. Bishop, Modern Control Systems, Thirteenth edition, global edition. Harlow, England London New York Boston San Francisco Toronto Sydney Dubai Singapore Hong Kong Tokyo Seoul Taipei New Delhi Cape Town São Paulo Mexico City Madrid Amsterdam Munich Paris Milan: Pearson, 2017, 1025 pp., ISBN: 978-0-13-440762-3 978-1-292-15297-4.
[43: GazeboSimulation 2024]GazeboSimulation. “Gazebo Simulation | PX4 Guide (main).” (2024), [Online]. Available: https : / / docs . px4 . io / main / en / sim _ gazebo _ gz/ (visited on 11/30/2024).
[44: Autopilot 2024]PX4 Autopilot, PX4/PX4-Autopilot, Nov. 30, 2024. [Online]. Available: https://github.com/PX4/PX4-Autopilot (visited on 11/30/2024).
[45: GazeboGarden 2024]GazeboGarden. “Getting Started with Gazebo? —Gazebo garden documentation.”(2024), [Online]. Available: https://gazebosim.org/docs/garden/getstarted/# (visited on 11/23/2024).
[46: QGC 2024]QGC. “QGroundControl User Guide | QGC Guide (master).” (2024), [Online].Available: https://docs.qgroundcontrol.com/master/en/qgc-user-guide/index.html (visited on 11/30/2024).
[47: Wikipedia 2024]Wikipedia, Pitot tube, in Wikipedia, Sep. 23, 2024.
[48: Gazebosim 2024]Gazebosim. “Gazebosim/gz-sim: Open source robotics simulator. The latest version of Gazebo.” (2024), [Online]. Available: https://github.com/gazebosim/gzsim/tree/gz-sim9 (visited on 11/30/2024).
[49: ROS2 2024]ROS2. “ROS 2 Documentation —ROS 2 Documentation: Humble documentation.”(2024), [Online]. Available: https://docs.ros.org/en/humble/index.html(visited on 11/30/2024).
[50: GazeboVehicles 2024]GazeboVehicles. “Gazebo Vehicles | PX4 User Guide (main).” (2024), [Online].Available: https://docs.px4.io/main/en/sim_gazebo_gz/vehicles.html(visited on 12/14/2024).
[51: MathWorks 2022]MathWorks, “Estimate transfer function model documentation,” 2022. [Online].Available: https : / / www . mathworks . com / help / ident / ref / tfest . html(visited on 12/23/2024).
[52: Pixhawk 2024]Pixhawk. “Pixhawk Standard Autopilots | PX4 Guide (main).” (2024), [Online].Available: https://docs.px4.io/main/en/flight_controller/autopilot_pixhawk_standard.html (visited on 12/19/2024).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97090-
dc.description.abstract旋翼無人機已被用於台灣的海防,例如海岸線監視和人員救援。但由於任務區域範圍廣,以及台灣海岸週邊強烈的季風,使得旋翼無人機有效執行任務的難度提高。本論文提出使用定翼無人機編隊飛行系統取代旋翼無人機來提高抗風能力和飛行航程。定翼無人機編隊飛行系統可以利用領導無人機 (leader UAV) 的渦流效應來延長飛行範圍。此外,本論文亦提出一風觀測器為編隊飛行系統提供預估風速和加速度的補償,以減輕變動風場的威脅。最後,透過理想的模型在環(MIL)模擬和更真實的軟體在環(SITL)模擬,成功驗證了帶風補償的定翼無人機編隊飛行系統的性能。兩種模擬結果表明,在兩種編隊飛行軌跡的不同風場環境下,透過風補償,編隊誤差可以顯著減少。所提出的系統在SITL 模擬中的成功整合也顯示了其在實際應用中的可行性。zh_TW
dc.description.abstractIn Taiwan, a rotorcraft UAV has been used for coastal defense such as the coastline surveillance and rescue of people. However, a wide-range missions area and the strong monsoon wind around Taiwan make it difficult to execute the missions effectively. This thesis proposes a fixed-wing UAVs formation flight system instead of rotorcraft UAVs to improve wind resistance and flight range. A fixed-wing UAVs formation flight system is expected to utilize the wake vortex effect from the leader UAV to extend the flight range. Additionally, a wind observer is proposed to provide the estimated wind velocity and acceleration compensating for the formation flight system to mitigate the threats posed by the variant wind field. Finally, the performance of the fixed-wing UAVs formation flight system with the wind compensation is successfully validated through an ideal model-in-the-loop (MIL) simulation and a more realistic software-in-the-loop (SITL) simulation. In both simulations, the result shows that the formation error is significantly reduced with the wind compensation under variant wind field environments in two formation flight trajectories. The successful integration of the proposed system with the SITL simulation also indicates the feasibility of real-world applications.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:24:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-26T16:24:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要i
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Lyapunov-Based Formation Controller . . . . . . . . . . . . . . . 8
1.3.2 Sliding Mode Wind Observer . . . . . . . . . . . . . . . . . . . . 9
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 2 Literature Survey 11
2.1 Formation Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Wind Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Chapter 3 Preliminaries 19
3.1 Basics of Fixed-Wing UAV . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Coordinate Definitions . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Wind Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Coordinated Turn . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Sliding Mode Control/Observer . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Relative Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 First-Order Sliding Mode . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Second-Order Sliding Mode . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Super-Twisting Controller . . . . . . . . . . . . . . . . . . . . . . 28
3.2.5 First-Order Differentiator . . . . . . . . . . . . . . . . . . . . . . 30
Chapter 4 System Overview 33
4.1 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Wind Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Fixed-Wing UAV Model . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Formation Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Control Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Chapter 5 Proposed Method 41
5.1 Lyapunov-Based Formation Controller . . . . . . . . . . . . . . . . 41
5.1.1 Desired Follower UAV States Design . . . . . . . . . . . . . . . . 42
5.1.2 Controller Command Design . . . . . . . . . . . . . . . . . . . . 45
5.2 Sliding Mode Wind Observer . . . . . . . . . . . . . . . . . . . . . 47
5.2.1 Wind Velocity Observer . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Wind Acceleration Observer . . . . . . . . . . . . . . . . . . . . . 50
5.3 LBFC-SMWO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Stability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Chapter 6 Simulations 53
6.1 Performance Indices . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 MIL Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.1 SMWO Performance Evaluation . . . . . . . . . . . . . . . . . . 54
6.2.1.1 Comparison of the Estimated Wind Velocity from Wind Velocity Observer and Acceleration Observer . . . . . . . . . 56
6.2.1.2 Initial Formation Error Influence on SMWO . . . . . . . . 57
6.2.1.3 Observer Gain Influence on SMWO . . . . . . . . . . . . . 58
6.2.2 LBFC-SMWO Performance Evaluation . . . . . . . . . . . . . . . 60
6.2.2.1 Formation Flight in Straight Line Trajectory . . . . . . . . 60
6.2.2.2 Formation Flight in Circular Orbit Trajectory . . . . . . . . 70
6.3 SITL Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.1 Fixed-wing System Overview . . . . . . . . . . . . . . . . . . . . 78
6.3.2 Three UAVs Formation Flight . . . . . . . . . . . . . . . . . . . . 80
6.3.2.1 Straight Line Trajectory . . . . . . . . . . . . . . . . . . . 83
6.3.2.2 Circular Orbit Trajectory . . . . . . . . . . . . . . . . . . 85
Chapter 7 Conclusions and Future Works 89
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
References 91
-
dc.language.isoen-
dc.subject隊形控制zh_TW
dc.subject滑動模式觀測器zh_TW
dc.subject定翼無人機zh_TW
dc.subjectSliding Mode Observeren
dc.subjectFixed-Wing UAVen
dc.subjectFormation Controlen
dc.title基於李亞普諾夫之定翼無人機群體控制器與滑動模式風觀測器設計於變動風場環境zh_TW
dc.titleLyapunov-Based Formation Controller with Sliding Mode Wind Observer Design for Fixed-Wing UAV under Variant Wind Field Environmenten
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李後燦;黃正民;江明理zh_TW
dc.contributor.oralexamcommitteeHou-Tsan Lee;Cheng-Ming Huang;Ming-Li Chiangen
dc.subject.keyword定翼無人機,隊形控制,滑動模式觀測器,zh_TW
dc.subject.keywordFixed-Wing UAV,Formation Control,Sliding Mode Observer,en
dc.relation.page99-
dc.identifier.doi10.6342/NTU202500345-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2025-02-27-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf12.05 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved