Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97085
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖國偉zh_TW
dc.contributor.advisorKuo-Wei Liaoen
dc.contributor.author劉尹婷zh_TW
dc.contributor.authorYin-Ting Liuen
dc.date.accessioned2025-02-26T16:22:46Z-
dc.date.available2025-02-27-
dc.date.copyright2025-02-26-
dc.date.issued2025-
dc.date.submitted2025-02-12-
dc.identifier.citationAtashgar, K., & Abdollahzadeh, H. (2016). Reliability optimization of wind farms considering redundancy and opportunistic maintenance strategy. Energy Conversion and Management, 112, 445-458. https://doi.org/10.1016/j.enconman.2016.01.027
Carlos, S., Sánchez, A., Martorell, S., & Marton, I. (2013). Onshore wind farms maintenance optimization using a stochastic model. Mathematical and Computer Modelling, 57(7), 1884-1890. https://doi.org/https://doi.org/10.1016/j.mcm.2011.12.025
Carroll, J., McDonald, A., Dinwoodie, I., McMillan, D., Revie, M., & Lazakis, I. (2017). Availability, operation and maintenance costs of offshore wind turbines with different drive train configurations. Wind Energy, 20(2), 361-378. https://doi.org/https://doi.org/10.1002/we.2011
Chen, J., Zhang, X., & Jing, Z. (2017). A cooperative PSO-DP approach for the maintenance planning and RBDO of deteriorating structures. Structural and Multidisciplinary Optimization, 58(1), 95-113. https://doi.org/10.1007/s00158-017-1879-x
Cheng, K.-S., Ho, C.-Y., & Teng, J.-H. (2020). Wind Characteristics in the Taiwan Strait: A Case Study of the First Offshore Wind Farm in Taiwan. Energies, 13(24). https://doi.org/10.3390/en13246492
Ding, F., & Tian, Z. (2012). Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds. Renewable Energy, 45, 175-182. https://doi.org/10.1016/j.renene.2012.02.030
Dinwoodie, I., Endrerud, O.-E. V., Hofmann, M., Martin, R., & Sperstad, I. B. (2015). Reference Cases for Verification of Operation and Maintenance Simulation Models for Offshore Wind Farms. Wind Engineering, 39(1), 1-14. https://doi.org/10.1260/0309-524X.39.1.1
ESMAP. (2019). Offshore Wind Technical Potential Analysis. https://www.esmap.org/esmap_offshorewind_techpotential_analysis_maps
Gamesa, S. SG 8.0-167 DD Offshore wind turbine. https://www.siemensgamesa.com/products-and-services/offshore/wind-turbine-sg-8-0-167-dd
Gorostidi, N., Nava, V., Aristondo, A., & Pardo, D. (2022). Predictive Maintenance of Floating Offshore Wind Turbine Mooring Lines using Deep Neural Networks. Journal of Physics: Conference Series, 2257, 012008. https://doi.org/10.1088/1742-6596/2257/1/012008
GWEC. (2023). GLOBAL OFFSHORE WIND REPORT 2023.
Hassan, G. G. (2013). A guide to UK offshore wind operations and maintenance. Scottish Enterprise.
Kiureghian, A. D., Lin, H.-Z., & Hwang, S. J. (1987). Second-Order Reliability Approximations. Journal of Engineering Mechanics-asce, 113, 1208-1225.
Li, M., Jiang, X., Carroll, J., & Negenborn, R. R. (2022). A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty. Applied Energy, 321. https://doi.org/10.1016/j.apenergy.2022.119284
Li, M., Jiang, X., & Negenborn, R. R. (2021). Opportunistic maintenance for offshore wind farms with multiple-component age-based preventive dispatch. Ocean Engineering, 231. https://doi.org/10.1016/j.oceaneng.2021.109062
Liao, K.-W., & Thedy, J. (2024). Small data-based maintenance planning for a Tainter gate using component and system reliability. Automation in Construction, 167, 105695. https://doi.org/https://doi.org/10.1016/j.autcon.2024.105695
Lu, Y., Sun, L., Zhang, X., Feng, F., Kang, J., & Fu, G. (2018). Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach. Applied Ocean Research, 74, 69-79. https://doi.org/10.1016/j.apor.2018.02.016
McMorland, J., Collu, M., McMillan, D., Carroll, J., & Coraddu, A. (2023). Opportunistic maintenance for offshore wind: A review and proposal of future framework. Renewable and Sustainable Energy Reviews, 184. https://doi.org/10.1016/j.rser.2023.113571
Nguyen, T. A. T., & Chou, S.-Y. (2018). Maintenance strategy selection for improving cost-effectiveness of offshore wind systems. Energy Conversion and Management, 157, 86-95. https://doi.org/10.1016/j.enconman.2017.11.090
Renewable Energy Development Act, (2023). https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=J0130032
Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. https://doi.org/10.1002/9780470316511
Sarker, B. R., & Faiz, T. I. (2016). Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy. Renewable Energy, 85, 104-113. https://doi.org/https://doi.org/10.1016/j.renene.2015.06.030
Shafiee, M., Finkelstein, M., & Bérenguer, C. (2015). An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks. Reliability Engineering & System Safety, 142, 463-471. https://doi.org/https://doi.org/10.1016/j.ress.2015.05.001
Shi, L., & Lin, S.-P. (2016). A new RBDO method using adaptive response surface and first-order score function for crashworthiness design. Reliability Engineering & System Safety, 156, 125-133. https://doi.org/10.1016/j.ress.2016.07.007
Shi, Y., Zhu, W., Xiang, Y., & Feng, Q. (2020). Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement. Reliability Engineering & System Safety, 202, 107042. https://doi.org/https://doi.org/10.1016/j.ress.2020.107042
Strömberg, N. (2017). Reliability-based design optimization using SORM and SQP. Structural and Multidisciplinary Optimization, 56(3), 631-645. https://doi.org/10.1007/s00158-017-1679-3
Thedy, J., Liao, K.-W., & Hung, Y.-T. (2024). Semi-Markov process-driven maintenance scheduling for Tainter gate system considering multiplelimit states. Structural Health Monitoring, 14759217241277969. https://doi.org/10.1177/14759217241277969
Wang, H., Gong, Z., Huang, H. Z., Zhang, X., & Lv, Z. (2012, 15-18 June 2012). System Reliability Based Design Optimization with Monte Carlo simulation. 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering,
Yanuar, F., Yozza, H., & Rescha, R. V. (2019). Comparison of Two Priors in Bayesian Estimation for Parameter of Weibull Distribution. Science and Technology Indonesia, 4(3), 82-87. https://doi.org/10.26554/sti.2019.4.3.82-87
Zhao, Y.-G., & Ono, T. (1999). A general procedure for first/second-order reliabilitymethod (FORM/SORM). Structural Safety, 21(2), 95-112. https://doi.org/https://doi.org/10.1016/S0167-4730(99)00008-9
經濟部. (2023). 臺灣 2050 淨零轉型「風電/光電」關鍵戰略行動計畫.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97085-
dc.description.abstract隨著全球可再生能源的需求迅速成長,離岸風力發電被視為相當具有前景的能源產生來源之一。然而,離岸風力發電場相對一般的陸上風場面臨更多挑戰與不確定性,這使得有效的運維(O&M)策略對於提升其發電效率和成本效益變得至關重要。本研究針對這些挑戰,開發符合台灣環境條件的運維(O&M)模型,並進一步尋找最佳解決策略:在最小化運維(O&M)成本情況下,同時確保充足的電力供給,本研究中以發電量不足天數計算。
利用台灣的海能離岸風力發電場(Formosa 2 OWF)作為案例研究,本研究分別蒐集海象觀測站與中央氣象局資料,整合台灣的風場特性和極端颱風事件,開發原型模型(Prototype Model)與進階模型(Proposed Model)。運維行動分為三種:失效更換、預防性更換以及預防性維修。設計變數共有三個:兩愈值及運維區間。其中設定兩閾值決定預防性維護進行之時機,運維區間則決定多久派遣一次海上運維團隊。原型模型主要參考既有文獻框架,以元件隨時間依照特定機率分布退化結合台灣氣候條件特性;而進階模型基於原型模型之上,結合一種新的元件使用壽命更新工具,稱為貝氏韋伯第一階可靠度方法(Bayesian Weibull First Order Reliability Method, BW-FORM)。進階模型結合了原型模型與BW-FORM,將一般元件僅依特定機率分布之退化,改為經偵測當下元件健康狀態後回傳數值、更新元件使用壽命的工具,以提供更即時和準確的元件健康狀態評估。針對原型和進階模型的表現在指定策略和情境下進行評估,並對差異進行了詳盡的比較和分析。
確認進階模型表現後,本研究運用基於可靠度設計最佳化(Reliability-Based Design Optimization, RBDO)來尋找最佳化的運維(O&M)策略。基於可靠度設計最佳化不同於一般的定然性最佳化在於,限制條件考慮了失效機率的概念,而非定值。故本RBDO結合蒙特卡羅模擬計算失效機率、以內點法進行最佳化搜索,找到了一些最佳解決策略。由結果可發現,這些最佳解決策略並非收斂於單一數值,而是分布在一特定範圍內:其在滿足限制條件,也就是限制發電量不足天數的前提下,產出最小化目標值。此方法能有效幫助研究在最小化運維成本和確保電力供給滿足需求之間取得平衡。最佳化結果在進行驗證過程中,同時也考慮了風速帶來的不確定性。
zh_TW
dc.description.abstractWith the rapid expansion of renewable energy all around the world, offshore wind power has become one of the most promising source of power generation. However, offshore wind farms encounter unique challenges and uncertainties, making the development of effective Operation and Maintenance (O&M) strategies crucial for improving their efficiency and cost-effectiveness. This study addresses these challenges by developing an O&M model to match the specific environmental conditions of Taiwan, and further finding the optimal solution to minimize the O&M costs while ensuring reliable electric power generation.
Using Taiwan's Formosa 2 OWF as a case study, this research integrates local wind characteristics and extreme typhoon events to develop both a prototype and an advanced proposed model. Three types of maintenance actions are considered, which are failure replacement, preventive replacement, and preventive repair. The decision variables include three elements: maximum threshold Amax, minimum threshold Amin and dispatch interval of the O&M team Tint. Amax and Amin are regarded as the criterion that influence the type of maintenance actions; and the dispatch interval determines how frequently the O&M team is deployed, impacting the overall maintenance strategy and effectiveness. The proposed model applied a novel technique for updating the useful life (UL) of components, known as the Bayesian Weibull First Order Reliability Method (BW-FORM). This advanced model combines probabilistic failure degradation with BW-FORM to provide a more immediate and accurate assessment of component health. The performance of both the prototype and the proposed model is evaluated across various designated strategies and scenarios, with a thorough comparison and analysis of the differences.
Further, the study employs Reliability-Based Design Optimization (RBDO) to formulate an optimized O&M strategy. By utilizing Monte Carlo simulation to compute the failure probability, and the interior point method for optimization, some optimal solutions are found. The solutions identified do not converge to a single value but rather fall within a certain range, while enable to balance cost minimization with the requirement for reliable power generation. Validation and uncertainty from wind speed are accounted as well.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:22:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-26T16:22:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract v
Table of Contents vii
List of Tables viii
List of Figures ix
Notations x
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 4
1.3 Research Framework 5
Chapter 2 Literature Review 8
2.1 Global Offshore Wind Operation and Maintenance (O&M) Strategies 8
2.2 Reliability analysis 14
2.3 Reliability-based design optimization 16
Chapter 3 Methodology 19
3.1 Operation and Maintenance model 19
3.2 Uncertainty 32
3.2.1 Wind Speed 32
3.2.2 Extreme Environmental Event 35
3.2.3 Maintenance quality 37
3.3 Bayesian Weibull First Order Reliability Method (BW-FORM) 39
3.4 Reliability-Based Design Optimization (RBDO) 54
Chapter 4 Result and Discussion 55
4.1 Scenario Set-up 55
4.2 Model Evaluation 57
4.2.1 Prototype model 59
4.2.2 Proposed BW-FORM model 73
4.3 Optimization 88
4.3.1 Benchmark 88
4.3.2 Result 91
Chapter 5 Conclusion 100
Reference 102
-
dc.language.isoen-
dc.subject貝氏韋伯第一階可靠度方法 (BW-FORM)zh_TW
dc.subject不確定性zh_TW
dc.subject使用壽命更新工具zh_TW
dc.subject離岸風場zh_TW
dc.subject運維策略zh_TW
dc.subject基於可靠度設計最佳化(RBDO)zh_TW
dc.subjectOffshore wind farmen
dc.subjectOperation and maintenance (O&M)en
dc.subjectBayesian Weibull First Order Reliability Method (BW-FORM)en
dc.subjectReliability-Based Design Optimization (RBDO)en
dc.subjectUncertaintyen
dc.subjectUpdating useful life techniqueen
dc.title基於可靠度設計最佳化之離岸風場運維策略評估zh_TW
dc.titleAssessment of Offshore Wind Farm Operation and Maintenance Strategies Based on Reliability-Based Design Optimization.en
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳瑞華;鄭克聲zh_TW
dc.contributor.oralexamcommitteeRwey-Hua Cherng;Ke-Sheng Chengen
dc.subject.keyword基於可靠度設計最佳化(RBDO),貝氏韋伯第一階可靠度方法 (BW-FORM),運維策略,離岸風場,使用壽命更新工具,不確定性,zh_TW
dc.subject.keywordReliability-Based Design Optimization (RBDO),Bayesian Weibull First Order Reliability Method (BW-FORM),Operation and maintenance (O&M),Offshore wind farm,Updating useful life technique,Uncertainty,en
dc.relation.page104-
dc.identifier.doi10.6342/NTU202500561-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-12-
dc.contributor.author-college共同教育中心-
dc.contributor.author-dept統計碩士學位學程-
dc.date.embargo-lift2030-02-09-
顯示於系所單位:統計碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
4.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved