請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97078
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林政道 | zh_TW |
dc.contributor.advisor | Cheng-Tao Lin | en |
dc.contributor.author | 劉又綾 | zh_TW |
dc.contributor.author | Yu-Ling Liu | en |
dc.date.accessioned | 2025-02-26T16:20:55Z | - |
dc.date.available | 2025-02-27 | - |
dc.date.copyright | 2025-02-26 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-06 | - |
dc.identifier.citation | Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences, 113(42), 11770–11775. https://doi.org/10.1073/pnas.1607171113
Abbas, S., Nichol, J. E., Fischer, G. A., Wong, M. S., & Irteza, S. M. (2020). Impact assessment of a super-typhoon on Hong Kong’s secondary vegetation and recommendations for restoration of resilience in the forest succession. Agricultural and Forest Meteorology, 280, 107784. https://doi.org/10.1016/j.agrformet.2019.107784 Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J. R., Clarke, H., Dowdy, A. J., Sharples, J. J., Nolan, R. H., Zhang, T., Wooster, M. J., Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy, B. P., Tapper, N. J., & Boer, M. M. (2021). Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2(1), Article 1. https://doi.org/10.1038/s43247-020-00065-8 Agbeshie, A. A., Abugre, S., Atta-Darkwa, T., & Awuah, R. (2022). A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33(5), 1419–1441. https://doi.org/10.1007/s11676-022-01475-4 Agee, J. (1998). The Landscape Ecology of Western Forest Fire Regimes. Northwest Science, 72, 24–34. Airey-Lauvaux, C., Pierce, A. D., Skinner, C. N., & Taylor, A. H. (2022). Changes in fire behavior caused by fire exclusion and fuel build-up vary with topography in California montane forests, USA. Journal of Environmental Management, 304, 114255. https://doi.org/10.1016/j.jenvman.2021.114255 Alayan, R., Rotich, B., & Lakner, Z. (2022). A Comprehensive Framework for Forest Restoration after Forest Fires in Theory and Practice: A Systematic Review. Forests, 13(9), Article 9. https://doi.org/10.3390/f13091354 Alencar, A. A., Brando, P. M., Asner, G. P., & Putz, F. E. (2015). Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecological Applications, 25(6), 1493–1505. https://doi.org/10.1890/14-1528.1 Assal, T. J., Anderson, P. J., & Sibold, J. (2016). Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem. Forest Ecology and Management, 365, 137–151. https://doi.org/10.1016/j.foreco.2016.01.017 Ball, P. N., MacKenzie, M. D., DeLuca, T. H., & Montana, W. E. H. (2010). Wildfire and Charcoal Enhance Nitrification and Ammonium-Oxidizing Bacterial Abundance in Dry Montane Forest Soils. Journal of Environmental Quality, 39(4), 1243–1253. https://doi.org/10.2134/jeq2009.0082 Baltacı, U., & Yıldırım, F. (2020). Effect of Slope on the Analysis of Forest Fire Risk. Hacettepe Journal of Biology and Chemistry, 48(4), Article 4. https://doi.org/10.15671/hjbc.753080 Baltzer, J. L., Day, N. J., Walker, X. J., Greene, D., Mack, M. C., Alexander, H. D., Arseneault, D., Barnes, J., Bergeron, Y., Boucher, Y., Bourgeau-Chavez, L., Brown, C. D., Carrière, S., Howard, B. K., Gauthier, S., Parisien, M.-A., Reid, K. A., Rogers, B. M., Roland, C., … Johnstone, J. F. (2021). Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proceedings of the National Academy of Sciences, 118(45), e2024872118. https://doi.org/10.1073/pnas.2024872118 Bär, A., Michaletz, S. T., & Mayr, S. (2019). Fire effects on tree physiology. New Phytologist, 223(4), 1728–1741. https://doi.org/10.1111/nph.15871 Barker, J. S., Gray, A. N., & Fried, J. S. (2022). The Effects of Crown Scorch on Post-fire Delayed Mortality Are Modified by Drought Exposure in California (USA). Fire, 5(1), Article 1. https://doi.org/10.3390/fire5010021 Batllori, E., De Cáceres, M., Brotons, L., Ackerly, D. D., Moritz, M. A., & Lloret, F. (2017). Cumulative effects of fire and drought in Mediterranean ecosystems. Ecosphere, 8(8), e01906. https://doi.org/10.1002/ecs2.1906 Beckage, B., Ellingwood, C., & University of Vermont. (2009). Fire Feedbacks with Vegetation and Alternative Stable States. Complex Systems, 18(1), 159–173. https://doi.org/10.25088/ComplexSystems.18.1.159 Bergeron, Y., Leduc, A., Harvey, B., & Gauthier, S. (2002). Natural fire regime: A guide for sustainable management of the Canadian boreal forest. Silva Fennica, 36(1), Article 1. https://doi.org/10.14214/sf.553 Bhattacharya, S., Halder, S., Nag, S., Roy, P. K., & Roy, M. B. (2021). Assessment of Drought Using Multi-parameter Indices. In P. K. Roy, M. B. Roy, & S. Pal (Eds.), Advances in Water Resources Management for Sustainable Use (pp. 243–255). Springer. https://doi.org/10.1007/978-981-33-6412-7_18 BigGIS. (2024). Landsat系列衛星簡介說明. Landsat系列衛星臺灣全島影像. https://gis.ardswc.gov.tw/themes/satellite/40 Bond, W. J., Woodward, F. I., & Midgley, G. F. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165(2), 525–538. https://doi.org/10.1111/j.1469-8137.2004.01252.x Boulanger, Y., Gauthier, S., Gray, D. R., Le Goff, H., Lefort, P., & Morissette, J. (2013). Fire regime zonation under current and future climate over eastern Canada. Ecological Applications, 23(4), 904–923. https://doi.org/10.1890/12-0698.1 Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324 Calkin, D. E., Thompson, M. P., & Finney, M. A. (2015). Negative consequences of positive feedbacks in US wildfire management. Forest Ecosystems, 2(1), 9. https://doi.org/10.1186/s40663-015-0033-8 Castro, R., & Chuvieco, E. (1998). Modeling forest fire danger from geographic information systems. Geocarto International, 13(1), 15–23. https://doi.org/10.1080/10106049809354624 Cerda, A., Imeson, A. C., & Calvo, A. (1995). Fire and aspect induced differences on the erodibility and hydrology of soils at La Costera, Valencia, southeast Spain. CATENA, 24(4), 289–304. https://doi.org/10.1016/0341-8162(95)00031-2 Chandler, C. (Ed.). (1983). Fire in forestry. 1: Forest fire behavior and effects. Wiley. chen, shi-zhong. (2015). Evaluating the effectiveness of random forest model [國立交通大學]. https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22103NCTU5337015%22.&searchmode=basic#XXX Chompuchan, C., & Lin, C.-Y. (2017). Assessment of forest recovery at Wu-Ling fire scars in Taiwan using multi-temporal Landsat imagery. Ecological Indicators, 79, 196–206. https://doi.org/10.1016/j.ecolind.2017.04.038 Chou, C.-H., & Tang, H.-Y. (2016). Conservation of Biodiversity in Taiwan. Botanica Orientalis: Journal of Plant Science, 10, 1–5. https://doi.org/10.3126/botor.v10i0.21016 Clark, J. A., Loehman, R. A., & Keane, R. E. (2017). Climate changes and wildfire alter vegetation of Yellowstone National Park, but forest cover persists. Ecosphere, 8(1), e01636. https://doi.org/10.1002/ecs2.1636 Clark, R. (2009). Mapping and Estimating Forest Fuel with Radar Remote Sensing. 57. Clarke, P. J., Lawes, M. J., Midgley, J. J., Lamont, B. B., Ojeda, F., Burrows, G. E., Enright, N. J., & Knox, K. J. E. (2013). Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytologist, 197(1), 19–35. https://doi.org/10.1111/nph.12001 Copper, J. C. (2024, October 8). Taiwan. Encyclopedia Britannica. https://www.britannica.com/place/Taiwan/Climate Courtney Mustaphi, C. J., & Pisaric, M. F. J. (2013). Varying influence of climate and aspect as controls of montane forest fire regimes during the late Holocene, south-eastern British Columbia, Canada. Journal of Biogeography, 40(10), 1983–1996. https://doi.org/10.1111/jbi.12143 Csontos, P., & Cseresnyés, I. (2015). Fire-risk evaluation of austrian pine stands in Hungary—Effects of drought conditions and slope aspect on fire spread and fire behaviour. Carpathian Journal of Earth and Environmental Sciences, 10, 247–254. Day, N. J., Cumming, S. G., Dunfield, K. E., Johnstone, J. F., Mack, M. C., Reid, K. A., Turetsky, M. R., Walker, X. J., & Baltzer, J. L. (2020). Identifying Functional Impacts of Heat-Resistant Fungi on Boreal Forest Recovery After Wildfire. Frontiers in Forests and Global Change, 3, 68. https://doi.org/10.3389/ffgc.2020.00068 Dillon, G. K., Holden, Z. A., Morgan, P., Crimmins, M. A., Heyerdahl, E. K., & Luce, C. H. (2011). Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere, 2(12), art130. https://doi.org/10.1890/ES11-00271.1 Duff, T. J., Bell, T. L., & York, A. (2012). Predicting continuous variation in forest fuel load using biophysical models: A case study in south-eastern Australia. International Journal of Wildland Fire, 22(3), 318–332. https://doi.org/10.1071/WF11087 Escuin, S., Navarro, R., & Fernández, P. (2008). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4), 1053–1073. https://doi.org/10.1080/01431160701281072 Eskandari, S., Pourghasemi, H. R., & Tiefenbacher, J. P. (2020). Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger. Forest Ecology and Management, 473, 118338. https://doi.org/10.1016/j.foreco.2020.118338 FAO. (2024). Integrated fire management voluntary guidelines. FAO. https://doi.org/10.4060/cd1090en Fernandes, P. (2010). Scientific knowledge and operational tools to support prescribed burning: Recent developments. In European Forest Institute Research Report (Vol. 23, pp. 151–159). Foster, C. N., Barton, P. S., MacGregor, C. I., Catford, J. A., Blanchard, W., & Lindenmayer, D. B. (2018). Effects of fire regime on plant species richness and composition differ among forest, woodland and heath vegetation. Applied Vegetation Science, 21(1), 132–143. https://doi.org/10.1111/avsc.12345 Gallacher, J. R. (2016). The Influence of Season, Heating Mode and Slope Angle on Wildland Fire Behavior [Ph.D.]. https://www.proquest.com/docview/2490018426/abstract/4C6E0975ABA547C4PQ/1 Gang, C., Gao, X., Peng, S., Chen, M., Guo, L., & Jin, J. (2019). Satellite Observations of the Recovery of Forests and Grasslands in Western China. Journal of Geophysical Research: Biogeosciences, 124(7), 1905–1922. https://doi.org/10.1029/2019JG005198 Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M., & Lampin, C. (2013). A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environmental Management, 51(3), 651–662. https://doi.org/10.1007/s00267-012-9961-z García-Llamas, P., Suárez-Seoane, S., Fernández-Manso, A., Quintano, C., & Calvo, L. (2020). Evaluation of fire severity in fire prone-ecosystems of Spain under two different environmental conditions. Journal of Environmental Management, 271, 110706. https://doi.org/10.1016/j.jenvman.2020.110706 Glitzenstein, J. S., Platt, W. J., & Streng, D. R. (1995). Effects of Fire Regime and Habitat on Tree Dynamics in North Florida Longleaf Pine Savannas. Ecological Monographs, 65(4), 441–476. https://doi.org/10.2307/2963498 Goubitz, S., Werger, M. J. A., & Ne’eman, G. (2002). Germination response to fire-related factors of seeds from non-serotinous and serotinous cones. Plant Ecology, 169(2), 195–204. https://doi.org/10.1023/A:1026036332277 Graham, R. T., McCaffrey, S., & Jain, T. B. (2004). Science Basis for Changing Forest Structure to Modify Wildfire Behavior and Severity. United States Department of Agriculture Forest Service, Rocky Mountain Research Station. Gravuer, K., Eskelinen, A., Winbourne, J. B., & Harrison, S. P. (2020). Vulnerability and resistance in the spatial heterogeneity of soil microbial communities under resource additions. Proceedings of the National Academy of Sciences, 117(13), 7263–7270. https://doi.org/10.1073/pnas.1908117117 Guo, X., Zhang, H., Wang, Y., Zhao, J., & Zhang, Z. (2020). The driving factors and their interactions of fire occurrence in Greater Khingan Mountains, China. Journal of Mountain Science, 17(11), 2674–2690. https://doi.org/10.1007/s11629-020-6036-0 Hardesty, J., Myers, R., & Fulks, W. (2005). Fire, Ecosystems, and People: A Preliminary Assessment of Fire as a Global Conservation Issue. The George Wright Forum, 22(4), 78–87. Hayes, J. P. (2021). Fire Suppression and the Wildfire Paradox in Contemporary China: Policies, Resilience, and Effects in Chinese Fire Regimes. Human Ecology, 49(1), 19–32. https://doi.org/10.1007/s10745-020-00183-z He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W., & Lamont, B. B. (2012). Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytologist, 194(3), 751–759. https://doi.org/10.1111/j.1469-8137.2012.04079.x Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803 Higuera, P. E., & Abatzoglou, J. T. (2021). Record‐setting climate enabled the extraordinary 2020 fire season in the western United States. Global Change Biology, 27(1), 1–2. https://doi.org/10.1111/gcb.15388 Hong, R., Liang, Y., Wang, J., Ma, C., Zhu, X., Xu, S., Yang, X., Yeerna, A., Wang, W., Wang, L., Shu, L., Wang, M., & Wang, Q. (2024). Adaptation of the Coniferous Forests to Natural Fire Disturbances in the Altai Mountains, Xinjiang, China. Forests, 15(2), Article 2. https://doi.org/10.3390/f15020296 Hsu, H.-H., & Chen, C.-T. (2002). Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics, 79(1–2), 87–104. https://doi.org/10.1007/s703-002-8230-x Hsu, H.-H., & Chen, Y.-L. (2011). Decadal to bi-decadal rainfall variation in the western Pacific: A footprint of South Pacific decadal variability?: DECADAL VARIATION, WESTERN PACIFIC, SPDO. Geophysical Research Letters, 38(3), n/a-n/a. https://doi.org/10.1029/2010GL046278 Huang, M., Wang, X., Keenan, T. F., & Piao, S. (2018). Drought timing influences the legacy of tree growth recovery. Global Change Biology, 24(8), 3546–3559. https://doi.org/10.1111/gcb.14294 Ingalsbee, T. (2017). Whither the paradigm shift? Large wildland fires and the wildfire paradox offer opportunities for a new paradigm of ecological fire management. International Journal of Wildland Fire, 26(7), 557–561. https://doi.org/10.1071/WF17062 Ireland, G., & Petropoulos, G. P. (2015). Exploring the relationships between post-fire vegetation regeneration dynamics, topography and burn severity: A case study from the Montane Cordillera Ecozones of Western Canada. Applied Geography, 56, 232–248. https://doi.org/10.1016/j.apgeog.2014.11.016 Ivits, E., Horion, S., Erhard, M., & Fensholt, R. (2016). Assessing European ecosystem stability to drought in the vegetation growing season: Ecosystem stability to drought. Global Ecology and Biogeography, 25(9), 1131–1143. https://doi.org/10.1111/geb.12472 Jaiswal, R. K., Mukherjee, S., Raju, K. D., & Saxena, R. (2002). Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation and Geoinformation, 4(1), 1–10. https://doi.org/10.1016/S0303-2434(02)00006-5 Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., & Le Quéré, C. (2022). Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 60(3), e2020RG000726. https://doi.org/10.1029/2020RG000726 Karami, A., Karimi, S., & Shahi, E. (2017). Assessment Capability Forest Regeneration in Different Geographical Aspects Approach Landscape Ecology. Open Journal of Ecology, 7(9), Article 9. https://doi.org/10.4236/oje.2017.79036 Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116. https://doi.org/10.1071/WF07049 Keyser, A., & LeRoy Westerling, A. (2017). Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States. Environmental Research Letters, 12(6), 065003. https://doi.org/10.1088/1748-9326/aa6b10 Koo, K.-S., Lee, B.-D., Lee, M.-B., Lee, S.-Y., Kim, J.-H., Park, H.-S., & ParK, G.-Y. (2010). Forest Fire Ignition Patterns Caused by Farming Activities. Fire Science and Engineering, 24(1), 103–110. Kuhn, S., Egert, B., Neumann, S., & Steinbeck, C. (2008). Building blocks for automated elucidation of metabolites: Machine learning methods for NMR prediction. BMC Bioinformatics, 9(1), 400. https://doi.org/10.1186/1471-2105-9-400 Lamont, B. B., He, T., & Yan, Z. (2019). Evolutionary history of fire‐stimulated resprouting, flowering, seed release and germination. Biological Reviews, 94(3), 903–928. https://doi.org/10.1111/brv.12483 Law, Y. K., Lee, C. K. F., Chan, A. H. Y., Mak, N. P. L., Hau, B. C. H., & Wu, J. (2024). Unveiling the role of forests in landslide occurrence, recurrence and recovery. Journal of Applied Ecology, 61(9), 2033–2046. https://doi.org/10.1111/1365-2664.14741 Li, hua-yuan. (2024). Earthquake intensity prediction using the random forest method [國立中央大學]. https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/ccd=lOJHSx/record?r1=2&h1=0#XXX Lin, C.-C., Liou, Y.-J., & Huang, S.-J. (2015). Impacts of Two-Type ENSO on Rainfall over Taiwan. Advances in Meteorology, 2015(1), 658347. https://doi.org/10.1155/2015/658347 Lin, S.-Y., Shaner, P.-J. L., & Lin, T.-C. (2018). Characteristics of Old-Growth and Secondary Forests in Relation to Age and Typhoon Disturbance. Ecosystems, 21(8), 1521–1532. https://doi.org/10.1007/s10021-018-0238-0 Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., & Luce, C. H. (2016). A review of the relationships between drought and forest fire in the United States. Global Change Biology, 22(7), 2353–2369. https://doi.org/10.1111/gcb.13275 Lloret, F., & Zedler, P. H. (2009). The Effect of Forest Fire on Vegetation. In Fire Effects on Soils and Restoration Strategies. CRC Press. Lombardero, M. J., Ayres, M. P., & Ayres, B. D. (2006). Effects of fire and mechanical wounding on Pinus resinosa resin defenses, beetle attacks, and pathogens. Forest Ecology and Management, 225(1), 349–358. https://doi.org/10.1016/j.foreco.2006.01.010 Mansuy, N., Miller, C., Parisien, M.-A., Parks, S. A., Batllori, E., & Moritz, M. A. (2019). Contrasting human influences and macro-environmental factors on fire activity inside and outside protected areas of North America. Environmental Research Letters, 14(6), 064007. https://doi.org/10.1088/1748-9326/ab1bc5 Marcolin, E., Marzano, R., Vitali, A., Garbarino, M., & Lingua, E. (2019). Post-Fire Management Impact on Natural Forest Regeneration through Altered Microsite Conditions. Forests, 10(11), Article 11. https://doi.org/10.3390/f10111014 Maringer, J., Hacket-Pain, A., Ascoli, D., Garbarino, M., & Conedera, M. (2021). A new approach for modeling delayed fire-induced tree mortality. Ecosphere, 12(5), e03458. https://doi.org/10.1002/ecs2.3458 Martell, D. L. (2007). Forest Fire Management. In A. Weintraub, C. Romero, T. Bjørndal, R. Epstein, & J. Miranda (Eds.), Handbook Of Operations Research In Natural Resources (pp. 489–509). Springer US. https://doi.org/10.1007/978-0-387-71815-6_26 McLauchlan, K. K., Higuera, P. E., Miesel, J., Rogers, B. M., Schweitzer, J., Shuman, J. K., Tepley, A. J., Varner, J. M., Veblen, T. T., Adalsteinsson, S. A., Balch, J. K., Baker, P., Batllori, E., Bigio, E., Brando, P., Cattau, M., Chipman, M. L., Coen, J., Crandall, R., … Watts, A. C. (2020). Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 108(5), 2047–2069. https://doi.org/10.1111/1365-2745.13403 Meli, P., Holl, K. D., Rey Benayas, J. M., Jones, H. P., Jones, P. C., Montoya, D., & Moreno Mateos, D. (2017). A global review of past land use, climate, and active vs. Passive restoration effects on forest recovery. PLOS ONE, 12(2), e0171368. https://doi.org/10.1371/journal.pone.0171368 Michaletz, S. T., & Johnson, E. A. (2008). A biophysical process model of tree mortality in surface fires. Canadian Journal of Forest Research, 38(7), 2013–2029. https://doi.org/10.1139/X08-024 Miller, J. D., & Thode, A. E. (2007). Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment, 109(1), 66–80. https://doi.org/10.1016/j.rse.2006.12.006 Moreira, F., Arianoutsou, M., Vallejo, V. R., De Las Heras, J., Corona, P., Xanthopoulos, G., Fernandes, P., & Papageorgiou, K. (2012). Setting the Scene for Post-Fire Management. In F. Moreira, M. Arianoutsou, P. Corona, & J. De Las Heras (Eds.), Post-Fire Management and Restoration of Southern European Forests (Vol. 24, pp. 1–19). Springer Netherlands. https://doi.org/10.1007/978-94-007-2208-8_1 Moreira, F., Viedma, O., Arianoutsou, M., Curt, T., Koutsias, N., Rigolot, E., Barbati, A., Corona, P., Vaz, P., Xanthopoulos, G., Mouillot, F., & Bilgili, E. (2011). Landscape – wildfire interactions in southern Europe: Implications for landscape management. Journal of Environmental Management, 92(10), 2389–2402. https://doi.org/10.1016/j.jenvman.2011.06.028 Nitschke, C., & Innes, J. (2007). Interactions between fire, climate change and forest biodiversity. CABI Reviews, 2006, 9 pp. https://doi.org/10.1079/PAVSNNR20061060 Ojha, S. S., Singh, V., & Roshni, T. (2021). Comparison of Meteorological Drought using SPI and SPEI. Civil Engineering Journal, 7(12), 2130–2149. https://doi.org/10.28991/cej-2021-03091783 Östlund, L., Zackrisson, O., & Axelsson, A.-L. (1997). The history and transformation of a Scandinavian boreal forest landscape since the 19th century. Canadian Journal of Forest Research, 27(8), 1198–1206. https://doi.org/10.1139/x97-070 Parajuli, A., Gautam, A. P., Sharma, S. P., Bhujel, K. B., Sharma, G., Thapa, P. B., Bist, B. S., & Poudel, S. (2020). Forest fire risk mapping using GIS and remote sensing in two major landscapes of Nepal. Geomatics, Natural Hazards and Risk. https://www.tandfonline.com/doi/abs/10.1080/19475705.2020.1853251 Parker, T. J., Clancy, K. M., & Mathiasen, R. L. (2006). Interactions among fire, insects and pathogens in coniferous forests of the interior western United States and Canada. Agricultural and Forest Entomology, 8(3), 167–189. https://doi.org/10.1111/j.1461-9563.2006.00305.x Parks, S. A., Holsinger, L. M., Panunto, M. H., Jolly, W. M., Dobrowski, S. Z., & Dillon, G. K. (2018). High-severity fire: Evaluating its key drivers and mapping its probability across western US forests. Environmental Research Letters, 13(4), 044037. https://doi.org/10.1088/1748-9326/aab791 Paul, A., Mukherjee, D. P., Das, P., Gangopadhyay, A., Chintha, A. R., & Kundu, S. (2018). Improved Random Forest for Classification. IEEE Transactions on Image Processing, 27(8), 4012–4024. IEEE Transactions on Image Processing. https://doi.org/10.1109/TIP.2018.2834830 Pausas, J. G., Alessio, G. A., Moreira, B., & Segarra-Moragues, J. G. (2016). Secondary compounds enhance flammability in a Mediterranean plant. Oecologia, 180(1), 103–110. https://doi.org/10.1007/s00442-015-3454-8 Pereira, P., Cerdà, A., Lopez, A. J., Zavala, L. M., Mataix-Solera, J., Arcenegui, V., Misiune, I., Keesstra, S., & Novara, A. (2016). Short-Term Vegetation Recovery after a Grassland Fire in Lithuania: The Effects of Fire Severity, Slope Position and Aspect. Land Degradation & Development, 27(5), 1523–1534. https://doi.org/10.1002/ldr.2498 Pérez-Cabello, F., Montorio, R., & Alves, D. B. (2021). Remote sensing techniques to assess post-fire vegetation recovery. Current Opinion in Environmental Science & Health, 21, 100251. https://doi.org/10.1016/j.coesh.2021.100251 Pfadenhauer, J. S., & Klotzli, F. A. (2020). Global Vegetation: Fundamentals, Ecology and Distribution—Jörg S. Pfadenhauer, Frank A. Klötzli—Google 圖書. Springer Nature. https://books.google.com.tw/books?hl=zh-TW&lr=&id=bD_8DwAAQBAJ&oi=fnd&pg=PR5&dq=Pfadenhauer,+J.+S.+%26+Kl%C3%B6tzli,+F.+A.+(2020).+Global+Vegetation,+Fundamentals,+Ecology+and+Distribution.&ots=wsrn3PFVOk&sig=a0jqticjVuHU8j7a65vw4DpaFI4&redir_esc=y#v=onepage&q=Pfadenhauer%2C%20J.%20S.%20%26%20Kl%C3%B6tzli%2C%20F.%20A.%20(2020).%20Global%20Vegetation%2C%20Fundamentals%2C%20Ecology%20and%20Distribution.&f=false Potopová, V., Štěpánek, P., Možný, M., Türkott, L., & Soukup, J. (2015). Performance of the standardised precipitation evapotranspiration index at various lags for agricultural drought risk assessment in the Czech Republic. Agricultural and Forest Meteorology, 202, 26–38. https://doi.org/10.1016/j.agrformet.2014.11.022 Pourtaghi, Z. S., Pourghasemi, H. R., & Rossi, M. (2015). Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environmental Earth Sciences, 73(4), 1515–1533. https://doi.org/10.1007/s12665-014-3502-4 Pyrke, A. F., & Marsden-Smedley, J. B. (2005). Fire-attributes categories, fire sensitivity, and flammability of Tasmanian vegetation communities. https://www.cabidigitallibrary.org/doi/full/10.5555/20063027805 Quiring, S. M. (2009). Monitoring Drought: An Evaluation of Meteorological Drought Indices. Geography Compass, 3(1), 64–88. https://doi.org/10.1111/j.1749-8198.2008.00207.x Rehfeldt, G. E., Crookston, N. L., Warwell, M. V., & Evans, J. S. (2006). Empirical Analyses of Plant‐Climate Relationships for the Western United States. International Journal of Plant Sciences, 167(6), 1123–1150. https://doi.org/10.1086/507711 Resco de Dios, V. (2020). Plant-Fire Interactions: Applying Ecophysiology to Wildfire Management. Springer International Publishing. Roberts, S. L., Kelt, D. A., Van Wagtendonk, J. W., Miles, A. K., & Meyer, M. D. (2015). Effects of fire on small mammal communities in frequent-fire forests in California. Journal of Mammalogy, 96(1), 107–119. https://doi.org/10.1093/jmammal/gyu011 Saglam, B., Bilgili, E., Dincdurmaz, B., Kadiogulari, A. I., & Kücük, Ö. (2008). Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery. Sensors, 8(6), Article 6. https://doi.org/10.3390/s8063970 Saidi, S., Younes, A. B., & Anselme, B. (2021). A GIS-remote sensing approach for forest fire risk assessment: Case of Bizerte region, Tunisia. Applied Geomatics, 13(4), 587–603. https://doi.org/10.1007/s12518-021-00369-0 San-Miguel-Ayanz, J., Carlson, J. D., Alexander, M., Tolhurst, K., Morgan, G., Sneeuwjagt, R., & Dudley, M. (2003). Current Methods to Assess Fire Danger Potential. In E. Chuvieco, Series in Remote Sensing (Vol. 4, pp. 21–61). WORLD SCIENTIFIC. https://doi.org/10.1142/9789812791177_0002 Santolamazza-Carbone, S., Pestaña, M., & Vega, J. A. (2011). Post-fire attractiveness of maritime pines (Pinus pinaster Ait.) to xylophagous insects. Journal of Pest Science, 84(3), 343–353. https://doi.org/10.1007/s10340-011-0359-0 Sheehan, T., Bachelet, D., & Ferschweiler, K. (2015). Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures. Ecological Modelling, 317, 16–29. https://doi.org/10.1016/j.ecolmodel.2015.08.023 Shiau, J.-T., & Hsiao, Y.-Y. (2012). Water-deficit-based drought risk assessments in Taiwan. Natural Hazards, 64(1), 237–257. https://doi.org/10.1007/s11069-012-0239-9 Souza-Alonso, P., Saiz, G., García, R. A., Pauchard, A., Ferreira, A., & Merino, A. (2022). Post-fire ecological restoration in Latin American forest ecosystems: Insights and lessons from the last two decades. Forest Ecology and Management, 509, 120083. https://doi.org/10.1016/j.foreco.2022.120083 Su, H.-J. (1985). Studies on the Climate and Vegetation Types of the Natrual Forests in Taiwan:(III) A Scheme of Geographical Climatic Regions. Quarterly Journal Chinese Forestry, v.18 n.3 pp.33–44. http://140.112.114.62/handle/246246/142795 Sunar, F., & Özkan, C. (2001). Forest fire analysis with remote sensing data. International Journal of Remote Sensing, 22(12), 2265–2277. https://doi.org/10.1080/01431160118510 Swanson, M. E., Franklin, J. F., Beschta, R. L., Crisafulli, C. M., DellaSala, D. A., Hutto, R. L., Lindenmayer, D. B., & Swanson, F. J. (2011). The forgotten stage of forest succession: Early-successional ecosystems on forest sites. Frontiers in Ecology and the Environment, 9(2), 117–125. https://doi.org/10.1890/090157 Szpakowski, D., & Jensen, J. (2019). A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sensing, 11(22), 2638. https://doi.org/10.3390/rs11222638 Tesha, D. L., Madundo, S. D., & Mauya, E. W. (2024). Post-fire assessment of recovery of montane forest composition and stand parameters using in situ measurements and remote sensing data. Trees, Forests and People, 15, 100464. https://doi.org/10.1016/j.tfp.2023.100464 Thomas, P., & LePage, B. (2011). The end of an era? (1–2). Japanese Association of Historical Botany. https://doi.org/10.34596/hisbot.19.1-2_89 Turner, M. G., Baker, W. L., Peterson, C. J., & Peet, R. K. (1998). Factors Influencing Succession: Lessons from Large, Infrequent Natural Disturbances. Ecosystems, 1(6), 511–523. https://doi.org/10.1007/s100219900047 Veraverbeke, S., Lhermitte, S., Verstraeten, W. W., & Goossens, R. (2011). Evaluation of pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment with Landsat Thematic Mapper. International Journal of Remote Sensing, 32(12), 3521–3537. https://doi.org/10.1080/01431161003752430 Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1 Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I., Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E., & Sanchez-Lorenzo, A. (2013). Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences, 110(1), 52–57. https://doi.org/10.1073/pnas.1207068110 Wagner, C. E. V. (1988). Effect of slope on fires spreading downhill. Canadian Journal of Forest Research, 18(6), 820–822. https://doi.org/10.1139/x88-125 Wei, W., Liu, T., Zhou, L., Wang, J., Yan, P., Xie, B., & Zhou, J. (2023). Drought-Related Spatiotemporal Cumulative and Time-Lag Effects on Terrestrial Vegetation across China. Remote Sensing, 15(18), 4362. https://doi.org/10.3390/rs15184362 Weise, D., & Biging, G. (1994). Effects Of Wind Velocity And Slope On Fire Behavior. Fire Safety Science, 4, 1041–1051. https://doi.org/10.3801/IAFSS.FSS.4-1041 White, J. D., Ryan, K. C., Key, C. C., & Running, S. W. (1996). Remote Sensing of Forest Fire Severity and Vegetation Recovery. International Journal of Wildland Fire, 6(3), 125–136. https://doi.org/10.1071/wf9960125 Wotton, B. M., Nock, C. A., & Flannigan, M. D. (2010). Forest fire occurrence and climate change in Canada. International Journal of Wildland Fire, 19(3), 253. https://doi.org/10.1071/WF09002 Yang, C. P., Wang, Y. Q., Wu, J. J., Shen, H. Z., & Ma, X. Y. (2022). SPATIOTEMPORAL EVOLUTION AND LAG EFFECT OF DROUGHT AND VEGETATION DYNAMICS IN SOUTHWEST CHINA. Applied Ecology and Environmental Research, 20(4), 3447–3466. https://doi.org/10.15666/aeer/2004_34473466 Yap, S. L., Davies, S. J., & Condit, R. (2016). Dynamic response of a Philippine dipterocarp forest to typhoon disturbance. Journal of Vegetation Science, 27(1), 133–143. https://doi.org/10.1111/jvs.12358 Yimer, F., Ledin, S., & Abdelkadir, A. (2006). Soil property variations in relation to topographic aspect and vegetation community in the south-eastern highlands of Ethiopia. Forest Ecology and Management, 232(1), 90–99. https://doi.org/10.1016/j.foreco.2006.05.055 Youcef, F., Khalladi, M., Mohamed, L., Amine, H. M., & Djamel, A. (2020). ASSESSMENT OF FOREST FIRE RISK AND FORESTRY SPECIES DEGRADATION USING GIS AND REMOTE SENSING IN WESTERN OF ALGERIA. 呂長澤、林政道 (2023) 雪霸國家公園園區指標生物長期生態監測規劃。內政部國家公園署雪霸國家公園管理處委託辦理報告。 林俊全 (2023) 雪見地區自然地景資源調查。內政部國家公園署雪霸國家公園管理處委託辦理報告。 林昭遠、陳明義、呂金誠 (1986) 林火對於東卯山區台灣二葉松林地土壤冲蝕量及養分流失量之影響。中華水土保持學報 17(2)。 https://doi.org/10.29417/JCSWC.198611_17(2).0005 林朝欽、邱祈榮、陳明義、蕭其文、曾仁鍵 (2005) 大肚山地區林火危險預測模式之推導。中華林學季刊 38(1): 83–94。https://doi.org/10.30064/QJCF.200503.0006 林朝欽 (1992) 臺灣地區國有林之森林火分析(1963-1991年。林業試驗所研究報告季刊 7(2): 169–178。 https://doi.org/10.7075/BTFRI.199206.0169 邱清安、陳韋志、曾彥學、廖敏君、王偉、曾喜育 (2015) 雪山東峰亞高山草生地火燒後植群之回復。林業研究季刊 37(1): 5 – 18。 陳震宇 (2021) 臺灣國家公園避難型山屋之建築構法研究。https://nckur.lib.ncku.edu.tw/handle/987654321/300918 曾喜育、曾彥學 (2018) 107年度雪山高山生態系指標植物物候調查成果報告。雪霸國家公園委託研究報告。 黃兆立 (2020) 不同林火適應策略之松針分解過程微生物相研究。 https://nckur.lib.ncku.edu.tw/handle/987654321/208150 歐辰雄、呂金誠、林鴻志 (2003) 大雪山地區植群生態之調查研究。國家公園學報13(1): 33-61。 歷史森林火災點位分布儀表板 (2024) https://mapportal.forest.gov.tw/portal/apps/opsdashboard/index.html#/f912faeb33614c3f85ba304d3566faca | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97078 | - |
dc.description.abstract | 隨氣候變遷的影響加劇,火燒頻率及強度逐漸增加,直接影響動植物多樣性及分布、生態系服務功能 (ecosystem service)等,以保護生態而成立的國家公園及保護區之經營管理策略顯得更加重要。過去在經營管理中以預測及撲滅火勢為主要行動,經常忽略掉後續生態的回復監測。然而,在生態系中,自發生干擾到植群逐漸演替至穩定狀態,才是完整的生態系循環過程。臺灣過去許多研究多針對火燒後短期的植被變化或火燒前及火燒當下引發嚴重火燒的關鍵因子,但長期以來卻鮮少有整合性的研究關於誘發嚴重火燒的風險評估及林火後長期植被復原之研究。因此,本研究以兩個章節針對 1984 – 2021年間高山型國家公園境內及周邊的歷史火燒事件,第一章節以隨機森林 (random forest)分析歷史火燒的嚴重度與火燒發生前環境因子間的關係,了解促發嚴重火燒的環境因子,並在第二章以差異常態化燃燒指標 (differenced normalized burn ratio, dNBR)監測大面積歷史火燒 (>10 ha)跡地的植被覆蓋至今是否已恢復到火燒前狀態,整合過往現地調查結果,了解火燒跡地回復過程中的自然及人為阻礙。研究結果表示,以氣候及植被為最重要的火燒嚴重度關鍵因子,其餘因子為火行為及火源供給的重要因素。火燒後的森林復原與生育地環境及火燒嚴重度具有相關性,除了其生長立地條件外,人為引發的重複火燒、復育行為及大型天然災害的發生也會影響森林覆蓋之復原速率。 | zh_TW |
dc.description.abstract | The intensification of climate change has led to an increase in the frequency and severity of wildfires, resulting in significant impacts on biodiversity, species distribution, and ecosystem services. This highlights the urgent need for comprehensive management strategies in national parks and protected areas, emphasizing not only fire prediction and suppression but also the monitoring of post-fire ecological recovery. Historically, management efforts have focused predominantly on wildfire prediction and firefighting, often neglecting the critical processes of long-term ecological recovery, including vegetation succession and stabilization. In Taiwan, research has largely centered on short-term vegetation changes following wildfires or the factors triggering severe fires. However, there remains a gap in integrated studies addressing risk assessment for severe wildfires and the long-term recovery of post-fire ecosystems. This study investigates wildfire events between 1984 – 2021 within and surrounding high-mountain national parks. The research is divided into two key components: the first employs a random forest (RF) algorithm to analyze the relationship between wildfire severity and pre-fire environmental factors, identifying critical determinants of severe wildfire events. The second component assesses vegetation recovery in large burn scars (>10 ha) using the differenced normalized burn ratio (dNBR) to evaluate whether vegetation has returned to pre-fire conditions. The findings reveal that climate and vegetation are the most influential factors determining wildfire severity, with fire behavior and fuel supply also playing significant roles. Post-fire forest recovery is closely associated with site conditions and fire severity, while repeated anthropogenic fires, restoration activities, and large-scale natural disasters further affect recovery rates. By integrating historical field survey data, this study elucidates the natural and anthropogenic factors that hinder post-fire recovery processes and provides valuable insights to inform adaptive management and restoration strategies in fire-affected ecosystems. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:20:55Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-26T16:20:55Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii Abstract iii 圖次 vii 表次 viii 總論 (Forest fire ) 1 第一章、林火嚴重度 3 (一) 前言 3 (二) 材料方法 8 1. 資料來源 8 2. 歷史火燒點位及範圍重新界定 8 3. 動態因子 9 4. 靜態因子 10 a. 人為影響 10 b. 地理因子 10 5. 分析方法 10 (三) 結果與討論 15 1. 歷史林火資料解析 15 2. 火燒跡地之dNBR與環境因子間的關係 21 a. 動態因子 21 b. 靜態因子 23 第二章、火燒後的復原 28 (一) 前言 28 (二) 材料方法 29 1. 火燒後的復原分析 29 2. 火燒復原時間影響因子分析 30 (三) 結果與討論 30 1. 歷史火燒事件dNBR變化結果 30 2. 火燒復原時間與環境因子的關係 35 3. 火燒復原過程中的干擾 40 總結 43 參考文獻 44 附錄 74 附錄一 歷史火燒事件基礎資料表 74 附錄二 玉山國家公園高嚴重度火燒事件逐年dNBR變化圖 78 附錄三 雪霸國家公園高嚴重度火燒事件逐年dNBR變化圖 81 附錄四 GEE script 84 附錄五 R code 89 | - |
dc.language.iso | zh_TW | - |
dc.title | 臺灣高山型國家公園歷史火燒嚴重度評估及復原狀態分析 | zh_TW |
dc.title | Historical fire severity assessment and post-fire vegetation restoration analysis of the high-mountain National Parks in Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 宋國彰;林奐宇 | zh_TW |
dc.contributor.oralexamcommittee | Guo-Zhang Song;Huan-Yu Lin | en |
dc.subject.keyword | 臺灣高山型國家公園,火燒嚴重度,常態化燃燒指標,火燒復原,隨機森林, | zh_TW |
dc.subject.keyword | Taiwan high-mountain national park,fire severity,normalized burn ratio,post fire recovery,random forest, | en |
dc.relation.page | 102 | - |
dc.identifier.doi | 10.6342/NTU202500444 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-02-06 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 森林環境暨資源學系 | - |
dc.date.embargo-lift | 2028-12-31 | - |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 4.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。