請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97076
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳凱儀 | zh_TW |
dc.contributor.advisor | Kai-Yi Chen | en |
dc.contributor.author | 劉又嘉 | zh_TW |
dc.contributor.author | Yu-Chia Liu | en |
dc.date.accessioned | 2025-02-26T16:20:23Z | - |
dc.date.available | 2025-02-27 | - |
dc.date.copyright | 2025-02-26 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-13 | - |
dc.identifier.citation | 方昱富 (2018)。高溫下番茄花粉數量及花粉活性之數量性狀基因座定位以及轉錄體分析。臺灣大學農藝學研究所學位論文。
林晏丞 (2019)。以番茄重組自交系進行數量性狀基因座定位及 RNA 定序資料分析探討耐熱性的候選基因。臺灣大學農藝學研究所學位論文。 楊雅涵 (2023)。高溫逆境下維持花粉活性的番茄數量性狀基因座 PV03 之精細定位。臺灣大學農藝學研究所學位論文。 FAO (2022). FAOSTAT. https://www.fao.org/faostat/en/#data/QCL/visualize IPCC (2021). Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/ Ali, M. Y., Sina, A. A. I., Khandker, S. S., Neesa, L., Tanvir, E. M., Kabir, A., Khalil, M. I., & Gan, S. H. (2021) Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods 10(1): 45. Ascari, L., Novara, C., Dusio, V., Oddi, L., & Siniscalco, C. (2020) Quantitative methods in microscopy to assess pollen viability in different plant taxa. Plant Reproduction 33: 205-219. Balyan, S., Rao, S., Jha, S., Bansal, C., Das, J. R., & Mathur, S. (2020) Characterization of novel regulators for heat stress tolerance in tomato from Indian sub‐continent. Plant Biotechnology Journal 18(10): 2118–2132. Comlekcioglu, N. & Kemal Soylu, M. (2010) Determination of high temperature tolerance via screening of flower and fruit formation in tomato. Journal of Agricultural Sciences 20(2): 123-130. Cui, X., Liu, S., Zhang, L., Guo, X., Li, T., Zhang, X., Wang, Q., Zeng, W., Huang, J., Duan, Q., & Cao, Y. (2022) Endophytic extract Zhinengcong alleviates heat stress-induced reproductive defect in Solanum lycopersicum. Frontiers in Plant Science 13: 977881. De Boeck, H. J., Dreesen, F. E., Janssens, I. A., & Nijs, I. (2010) Climatic characteristics of heat waves and their simulation in plant experiments. Global Change Biology 16: 1992–2000. Driedonks, N., Wolters-Arts, M., Huber, H., et al. (2018) Exploring the natural variation for reproductive thermotolerance in wild tomato species. Euphytica 214: 67. Edwards, K., Johnstone, C., & Thompson, C. (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research 19(6): 1349. Firon, N., Shaked, R., Peet, M. M., Pharr, D. M., Zamski, E., Rosenfeld, K., Althan, L., & Pressman, E. (2006) Pollen grains of heat-tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Scientia Horticulturae 109(3): 212-217. Fulton, T.M., Chunwongse, J., & Tanksley, S.D. (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Molecular Biology Reporter 13(3): 207-209. Geisenberg, C., & Stewart, K. (1986) Field crop management. In: Atherton, J. G., & Rudich, J. (Eds) The Tomato Crop, A Scientific Basis for Improvement. Chapman and Hall, New York, pp. 511–557. Gerszberg, A., & Hnatuszko-Konka, K. (2017) Tomato tolerance to abiotic stress: A review of most often engineered target sequences. Plant Growth Regulation 83: 175-198. Hazra, P., Samsul, H. A., Sikder, D., & Peter, K. V. (2007) Breeding tomato (Lycopersicon esculentum Mill.) resistant to high temperature stress. International Journal of Plant Breeding 1: 31–40. He, C., Holme, J., & Anthony, J. (2014) SNP genotyping: The KASP assay. Methods in Molecular Biology 1145: 75–86. Hernández-Carranza, P., Avila-Sosa, R., Vera-López, O., Navarro-Cruz, A. R., Ruíz-Espinosa, H., Ruiz-López, I. I., & Ochoa-Velasco, C. E. (2023) Uncovering the role of hormones in enhancing antioxidant defense systems in stressed tomato (Solanum lycopersicum) plants. Plants 12(20): 3648. Hosmani, P. S., Flores-Gonzalez, M., van de Geest, H., Maumus, F., Bakker, L. V., Schijlen, E., van Haarst, J., Cordewener, J., Sanchez-Perez, G., Peters, S., Fei, Z., Giovannoni, J. J., Mueller, L. A., & Saha, S. (2019) An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. bioRxiv 767764. Jagadish, S. K., Way, D. A., & Sharkey, T. D. (2021) Plant heat stress: Concepts directing future research. Plant, Cell & Environment 44(7): 1992-2005. Jaffri, S. R. F., & MacAlister, C. A. (2021) Sequential deposition and remodeling of cell wall polymers during tomato pollen development. Frontiers in Plant Science 12: 703713. Jansma, S. Y., Sergeeva, L. I., Tikunov, Y. M., Kohlen, W., Ligterink, W., & Rieu, I. (2022) Low salicylic acid level improves pollen development under long-term mild heat conditions in tomato. Frontiers in Plant Science 13: 828743. Kimura, S., & Sinha, N. (2008) Tomato (Solanum lycopersicum): A model fruit-bearing crop. CSH Protocols 2008. Konieczny, A., & Ausubel, F. M. (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal 4(2): 403–410. Muhlemann, J. K., Younts, T. L. B., & Muday, G. K. (2018) Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proceedings of the National Academy of Sciences, USA 115(47): E11188-E11197. Nagasaki, H., Shirasawa, K., Hoshikawa, K., Isobe, I., Ezura, H., Aoki, K., Hirakawa, H. (2024) Genomic variation across distribution of Micro-Tom, a model cultivar of tomato (Solanum lycopersicum). DNA Research, 31: dsae016. Osorio, S., Ruan, Y.-L., & Fernie, A. R. (2014) An update on source-to-sink carbon partitioning in tomato. Frontiers in Plant Science 5: 516. Paran, I., Goldman, I., Tanksley, S. D., & Zamir, D. (1995) Recombinant inbred lines for genetic mapping in tomato. Theoretical and Applied Genetics 90(3-4): 542-548. Paupière, M. J., Müller, F., Li, H., Rieu, I., Tikunov, Y. M., Visser, R. G. F., & Bovy, A. G. (2017) Untargeted metabolomic analysis of tomato pollen development and heat stress response. Plant Reproduction 30(2): 81-94. Peet, M. M., & Bartholemew, M. (1996) Effect of night temperature on pollen characteristics, growth and fruit set in tomato. Journal of the American Society for Horticultural Science 121: 514–519. Peet, M. M., Willits, D. H., & Gardner, R. (1997) Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. Journal of Experimental Botany 48(1): 101-111. Peet, M. M., Sato, S., & Gardner, R. G. (1998) Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant, Cell & Environment 21(2): 225-231. Peet, M., Sato, S., Clément, C., & Pressman, E. (2003) Heat stress increases sensitivity of pollen, fruit and seed production in tomatoes (Lycopersicon esculentum Mill.) to non-optimal vapor pressure deficits. Acta Horticulturae 618: 209-215. Postiglione, A.E., Delange, A.M., Foteh Ali, M., Wang E.Y., Houben, M., Hahn, S.L., Khoury, M.G., Roark, C.M., Davis, M., Reid, R.W., Pease, J.B., Loraine, A.E., & Muday, G.K. (2024) Flavonols improve tomato pollen thermotolerance during germination and tube elongation by maintaining reactive oxygen species homeostasis. Plant Cell 36: 4511-4534. Rutley, N., Miller, G., Wang, F., Harper, J.F., Miller, G., & Lieberman-Lazarovich, M. (2021) Enhanced reproductive thermotolerance of the tomato high pigment 2 mutant is associated with increased accumulation of flavonols in pollen. Frontiers in Plant Science 12: 672368. Sato, S., Peet, M. M., & Thomas, J. F. (2002) Determining critical pre - and post -anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. Journal of Experimental Botany 53(371): 1187–1195. Semagn, K., Babu, R., Hearne, S., Olsen, M. (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Molecular Breeding 33: 1-14. The Tomato Genome Consortium. (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635–641. Vierling, E. (1991) The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology 42: 579–620. Vitale, L., Francesca, S., Arena, C., D’Agostino, N., Principio, L., Vitale, E., Cirillo, V., Pinto, M. C., Barone, A., Rigano, M. M., & Franken, P. (2023) Multitraits evaluation of a Solanum pennellii introgression tomato line challenged by combined abiotic stress. Plant Biology 25(4): 518-528. Wickham, H. (2016) ggplot2 ‒ elegant graphics for data analysis. 2nd edition. Springer-Verlag, New York. Xu, J., Driedonks, N., Rutten, M. J. M., Vriezen, W. H., de Boer, G. J., & Rieu, I. (2017) Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding 37(5): 58. Xu, J., Wolters-Arts, M., Mariani, C., et al. (2017) Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica 213: 156. Xu, J., Jansma, S. Y., Wolters-Arts, M., de Groot, P. F. M., Jansen, M. J., & Rieu, I. (2022) Long-term mild heat causes post-mitotic pollen abortion through a local effect on flowers. Frontiers in Plant Science 13: 925754. Zhou, R., Yu, X., Ottosen, C. O., Rosenqvist, E., Zhao, L., Wang, Y., Yu, W., Zhao, T., & Wu, Z. (2017) Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biology 17: 24. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97076 | - |
dc.description.abstract | 番茄 (Solanum lycopersicum) 為茄科 (Solanaceae) 草本植物,起源於南美洲西部。除了作為重要經濟作物外,番茄亦能作為模式植物,具備極高的研究潛力與學術價值。在氣候變遷下,番茄花粉對高溫相當敏感。因此,本研究使用 RIL_41 和 CA4 之番茄雜交族群,對高溫下維持花粉活性的數量性狀基因座pollen viability 03 (PV03) 進行精細定位。種植 1500 株 F2 世代植株,利用 KASP 基因型檢測方法篩選在 PV03 區間遺傳重組之植株,並利用 CAPS 分子標記檢測植株在更小區間的重組情形。於 F3 世代篩選同型結合基因型植株後,推進至 F4 世代。並測量 10 種不同基因型共 81 個家系,以及四個對照組 24TS201、24TS202、24TS203和 24TS204 之活性花粉數目 (viable pollen number)、總花粉數目 (total pollen number) 和花粉活性比例 (percentage of viable pollen)。花粉活性比例外表型之結果顯示,24TS201 (CA4) 和 24TS204 (RIL_41 x CA4 F1) 為不耐熱家系;24TS202 (CLN1621L) 和 24TS203 (RIL_41) 為耐熱家系。但在 81 個控制組家系中,僅 33 個家系可被歸類為耐熱或不耐熱家系。同時,在 PV03 區間基因型相同之植株外表型卻不盡相同,因而無法精細定位 PV03 所在的區間。未來 PV03 之精細定位研究應考量自然光照因素、增加實驗重複數,並控制試驗族群中其他可能影響花粉活性之基因,以達到更好的精細定位效果。 | zh_TW |
dc.description.abstract | Tomato (Solanum lycopersicum) is an herbaceous plant originating from the western region of South America. In addition to being an important economic crop, tomato serves as a model plant with significant academic research value. Tomato pollen is highly sensitive to heat stress while facing climate change. This study utilized the tomato recombinant inbred lines (RILs) RIL_41 and CA4 to fine-map the pollen viability 03 (PV03) QTL which confers maintenance of pollen viability under heat stress. A total of 1,500 F2 plants were screened using the KASP genotyping method to identify recombinants within the PV03 region. Subsequently, five CAPS markers within the PV03 region were used to genotype these plants in the F2 generation, followed by the selection of homozygous genotypes in the F3 generation. A total of 81 F4 lines with different genotypes, along with 4 control lines 24TS201, 24TS202, 24TS203, and 24TS204, were evaluated for viable pollen number (VPN), total pollen number (TPN) and percentage of viable pollen (PVP). The results showed that 24TS201 (CA4) and 24TS204 (RIL_41 x CA4 F1) are heat-sensitive lines, while 24TS202 (CLN1621L) and 24TS203 (RIL_41) are heat-tolerant lines. However, only 33 out of 81 F4 lines could be categorized as heat-sensitive or heat-tolerant. Furthermore, plants with identical genotypes within the PV03 region exhibited different phenotypes of VPN and PVP, resulting in the failure of PV03 fine mapping. Future studies are suggested to consider the effects of natural light conditions, increase experimental replicates, and stabilize the genetic background by controlling for other genes that may influence pollen viability under heat stress. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:20:23Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-26T16:20:23Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目次 IV 圖次 VII 表次 IX 外表型性狀縮寫表 X 第一章 前言 1 1.1 番茄 1 1.2 植物逆境 2 1.3 熱逆境的類別 3 1.4 溫度與濕度對番茄結果率影響的研究 4 1.5 和緩高溫逆境下番茄花粉活性的研究 5 1.6 和緩高溫逆境下花粉活性數量性狀基因座的遺傳定位研究 6 第二章 材料與方法 8 2.1 試驗材料 8 2.2 栽種環境與栽培管理 8 2.2.1 幼苗時期 8 2.2.2 F2-F4 族群成株栽種於溫室 9 2.2.3 自交種子之收穫與保存 10 2.3 DNA 萃取 10 2.3.1 gDNA 快抽法 10 2.3.2 CTAB 抽取方法 11 2.4 遺傳精細定位族群的建立及個體篩選 12 2.4.1 以 KASP 分子標記的基因型分型技術篩選遺傳重組個體 12 2.4.2 以 CAPS 分子標記的基因型分型結果將遺傳重組個體依其染色體重組位置分群 14 2.5 花粉活性檢測 18 2.6 統計分析及繪圖 19 第三章 結果 20 3.1 篩選 F2 族群遺傳重組植株與世代推進 20 3.2 將遺傳重組個體依據其於 PV03 區間的染色體重組位置分群 23 3.3 F3家系中同型結合基因型個體的篩選與世代推進 25 3.4 F4 花粉活性外表型調查 25 3.4.1 採樣環境 25 3.4.2 去除離群值與性狀相關性 29 3.4.3 家系與對照組於「活性花粉數目」性狀的差異比較 44 3.4.4 家系與對照組於「活性花粉比例」性狀的差異比較 46 第四章 討論 49 4.1 篩選 F2 遺傳重組植株與世代推進 49 4.2 花粉活性檢測 49 4.3 F4 精細定位 51 4.3.1 親本性狀表現 51 4.3.2 各家系性狀表現 51 第五章 結論 52 引用文獻 53 附錄一 結果圖之 R 程式碼 58 | - |
dc.language.iso | zh_TW | - |
dc.title | 高溫下番茄花粉活性數量性狀基因座 PV03 之精細定位 | zh_TW |
dc.title | Fine Mapping of PV03, the Quantitative Trait Locus for Pollen Viability under Heat Stress | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡育彰;楊雯如 | zh_TW |
dc.contributor.oralexamcommittee | Yu-Chang Tsai;Wen-Ju Yang | en |
dc.subject.keyword | 番茄,耐熱性,花粉活性,數量性狀基因座,精細定位, | zh_TW |
dc.subject.keyword | Tomato,Heat tolerance,Pollen viability,Quantitative trait locus,Fine mapping, | en |
dc.relation.page | 77 | - |
dc.identifier.doi | 10.6342/NTU202500632 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-13 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農藝學系 | - |
dc.date.embargo-lift | 2025-02-27 | - |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 5.98 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。