Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97074
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁啟惠zh_TW
dc.contributor.advisorChi-Huey Wongen
dc.contributor.author江澤光zh_TW
dc.contributor.authorAlmanzo Aeterna Kangartaputraen
dc.date.accessioned2025-02-26T16:19:51Z-
dc.date.available2025-03-08-
dc.date.copyright2025-02-26-
dc.date.issued2025-
dc.date.submitted2025-02-20-
dc.identifier.citation1. Johnson, D. (2018). Biotherapeutics: Challenges and Opportunities for Predictive Toxicology of Monoclonal Antibodies. International Journal of Molecular Sciences, 19(11), 3685.
2. Gül, N., Van Egmond, M. (2015). Antibody-Dependent phagocytosis of tumor cells by macrophages: a potent effector mechanism of monoclonal antibody therapy of cancer. Cancer Research, 75(23), 5008–5013.
3. Van Der Horst, H. J., Nijhof, I. S., Mutis, T., Chamuleau, M. E. D. (2020). Fc-Engineered Antibodies with Enhanced Fc-Effector Function for the Treatment of B-Cell Malignancies. Cancers, 12(10), 3041.
4. Van Der Horst, H. J., Mutis, T. (2024). Enhancing Fc‐mediated effector functions of monoclonal antibodies: The example of HexaBodies. Immunological Reviews.
5. Wada, R., Matsui, M., Kawasaki, N. (2018). Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. mAbs, 11(2), 350–372.
6. Chung, A. W., Crispin, M., Pritchard, L., Robinson, H., Gorny, M. K., Yu, X., Bailey-Kellogg, C., Ackerman, M. E., Scanlan, C., Zolla-Pazner, S., Alter, G. (2014). Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function. AIDS, 28(17), 2523–2530.
7. Shivatare, V. S., Chuang, P., Tseng, T., Zeng, Y., Huang, H., Veeranjaneyulu, G., Wu, H., Wong, C. (2023). Study on antibody Fc-glycosylation for optimal effector functions. Chemical Communications, 59(37), 5555–5558.
8. Mitra, S., Tomar, P. C. (2021). Hybridoma technology; advancements, clinical significance, and future aspects. Journal of Genetic Engineering and Biotechnology, 19(1), 159.
9. Nissim, A., Chernajovsky, Y. (2007). Historical development of monoclonal antibody therapeutics. Handbook of Experimental Pharmacology, 3–18.
10. Shepard, H. M., Phillips, G. L., Thanos, C. D., Feldmann, M. (2017). Developments in therapy with monoclonal antibodies and related proteins. Clinical Medicine, 17(3), 220–232.
11. Damelang, T., Brinkhaus, M., Van Osch, T. L. J., Schuurman, J., Labrijn, A. F., Rispens, T., Vidarsson, G. (2024). Impact of structural modifications of IgG antibodies on effector functions. Frontiers in Immunology, 14.
12. Chames, P., Van Regenmortel, M., Weiss, E., Baty, D. (2009). Therapeutic antibodies: successes, limitations and hopes for the future. British Journal of Pharmacology, 157(2), 220–233.
13. Lu, L. L., Suscovich, T. J., Fortune, S. M., Alter, G. (2017). Beyond binding: antibody effector functions in infectious diseases. Nature Reviews. Immunology, 18(1), 46–61.
14. Kang, T. H., & Jung, S. T. (2019). Boosting therapeutic potency of antibodies by taming Fc domain functions. Experimental & Molecular Medicine, 51(11), 1–9.
15. Cao, X., Chen, J., Li, B., Dang, J., Zhang, W., Zhong, X., Wang, C., Raoof, M., Sun, Z., Yu, J., Fakih, M. G., Feng, M. (2022). Promoting antibody-dependent cellular phagocytosis for effective macrophage-based cancer immunotherapy. Science Advances, 8(11).
16. Nagashima, H., Ootsubo, M., Fukazawa, M., Motoi, S., Konakahara, S., Masuho, Y. (2011). Enhanced antibody-dependent cellular phagocytosis by chimeric monoclonal antibodies with tandemly repeated Fc domains. Journal of Bioscience and Bioengineering, 111(4), 391–396.
17. Chu, C. C., Pinney, J. J., VanDerMeid, K. R., Izumi, R., Munugalavadla, V., Barr, P. M., Elliott, M. R., Zent, C. S. (2019). Anti-CD20 therapy reliance on Antibody-Dependent cellular phagocytosis affects combination drug choice. Blood, 134(Supplement 1), 682.
18. Uchida, J., Hamaguchi, Y., Oliver, J. A., Ravetch, J. V., Poe, J. C., Haas, K. M., Tedder, T. F. (2004). The Innate Mononuclear Phagocyte Network Depletes B Lymphocytes through Fc Receptor–dependent Mechanisms during Anti-CD20 Antibody Immunotherapy. The Journal of Experimental Medicine, 199(12), 1659–1669.
19. Van Wagoner, C. M., Rivera‐Escalera, F., Jaimes‐Delgadillo, N. C., Chu, C. C., Zent, C. S., Elliott, M. R. (2023). Antibody‐mediated phagocytosis in cancer immunotherapy. Immunological Reviews, 319(1), 128–141.
20. Gong, Q., Ou, Q., Ye, S., Lee, W. P., Cornelius, J., Diehl, L., Lin, W. Y., Hu, Z., Lu, Y., Chen, Y., Wu, Y., Meng, Y. G., Gribling, P., Lin, Z., Nguyen, K., Tran, T., Zhang, Y., Rosen, H., Martin, F., Chan, A. C. (2005). Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. The Journal of Immunology, 174(2), 817–826.
21. Tipton, T. R. W., Roghanian, A., Oldham, R. J., Carter, M. J., Cox, K. L., Mockridge, C. I., French, R. R., Dahal, L. N., Duriez, P. J., Hargreaves, P. G., Cragg, M. S., Beers, S. A. (2015). Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies. Blood, 125(12), 1901–1909.
22. Abès, R., Teillaud, J. (2010). Impact of glycosylation on effector functions of therapeutic IGG. Pharmaceuticals, 3(1), 146–157.
23. Liu, C., Tsai, T., Cheng, T., Shivatare, V. S., Wu, C., Wu, C., Wong, C. (2018). Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation. Proceedings of the National Academy of Sciences, 115(4), 720–725.
24. Lin, C., Tsai, M., Li, S., Tsai, T., Chu, K., Liu, Y., Lai, M., Wu, C., Tseng, Y., Shivatare, S. S., Wang, C., Chao, P., Wang, S., Shih, H., Zeng, Y., You, T., Liao, J., Tu, Y., Lin, Y., Chuang, H, Chena,C, Tsai, C, Huang, C, Lind, N, Ma, C, Wu, C, Wong, C. (2015). A common glycan structure on immunoglobulin G for enhancement of effector functions. Proceedings of the National Academy of Sciences, 112(34), 10611–10616.
25. Shields, R. L., Lai, J., Keck, R., O’Connell, L. Y., Hong, K., Meng, Y. G., Weikert, S. H., Presta, L. G. (2002). Lack of fucose on human IgG1 N-Linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. Journal of Biological Chemistry, 277(30), 26733–26740.
26. Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., Sakurada, M., Uchida, K., Anazawa, H., Satoh, M., Yamasaki, M., Hanai, N., Shitara, K. (2003). The absence of fucose but not the presence of galactose or bisecting N-Acetylglucosamine of human IGG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. Journal of Biological Chemistry, 278(5), 3466–3473.
27. Peschke, B., Keller, C. W., Weber, P., Quast, I., & Lünemann, J. D. (2017). FC-Galactosylation of human immunoglobulin gamma isotypes improves C1Q binding and enhances Complement-Dependent cytotoxicity. Frontiers in Immunology, 8.
28. Quast, I., Keller, C. W., Maurer, M. A., Giddens, J. P., Tackenberg, B., Wang, L., Münz, C., Nimmerjahn, F., Dalakas, M. C., Lünemann, J. D. (2015). Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. Journal of Clinical Investigation, 125(11), 4160–4170.
29. VanDerMeid, K. R., Elliott, M. R., Baran, A. M., Barr, P. M., Chu, C. C., Zent, C. S. (2018). Cellular cytotoxicity of Next-Generation CD20 monoclonal antibodies. Cancer Immunology Research, 6(10), 1150–1160.
30. Shi, Y., Sun, Y., Seki, A., Rutz, S., Koerber, J. T., Wang, J. (2024). A real-time antibody-dependent cellular phagocytosis assay by live cell imaging. Journal of Immunological Methods, 531, 113715.
31. Klein, C., Bacac, M., Umaña, P., Wenger, M. (2014). Obinutuzumab (Gazyva®), a Novel Glycoengineered Type II CD20 Antibody for the Treatment of Chronic Lymphocytic Leukemia and Non‐Hodgkin’s Lymphoma. Handbook of Therapeutic Antibodies, 1695–1732.
32. Kuhns, S., Shu, J., Xiang, C., De Guzman, R., Zhang, Q., Bretzlaff, W., Miscalichi, N., Kalenian, K., Joubert, M. (2020). Differential influence on antibody dependent cellular phagocytosis by different glycoforms on therapeutic Monoclonal antibodies. Journal of Biotechnology, 317, 5–15.
33. Subedi, G. P., Barb, A. W. (2016). The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc γ receptor. mAbs, 8(8), 1512–1524.
34. Vermi, W., Micheletti, A., Finotti, G., Tecchio, C., Calzetti, F., Costa, S., Bugatti, M., Calza, S., Agostinelli, C., Pileri, S., Balzarini, P., Tucci, A., Rossi, G., Furlani, L., Todeschini, G., Zamò, A., Facchetti, F., Lorenzi, L., Lonardi, S., Cassatella, M. A. (2018). slan+ Monocytes and Macrophages Mediate CD20-Dependent B-cell Lymphoma Elimination via ADCC and ADCP. Cancer Research, 78(13), 3544–3559.
35. Kao, M., Ma, T., Chou, H., Chang, S., Cheng, L., Liao, K., Shie, J., Harris, P. J., Wong, C., Hsieh, Y. S. Y. (2024). A Robust α-l-Fucosidase from Prevotella nigrescens for Glycoengineering Therapeutic Antibodies. ACS Chemical Biology, 19(7), 1515–1524.
36. Wingert, S., Reusch, U., Beez, A., Pahl, J., Cerwenka, A., Koch, J., Treder, M. (2018). CD16A-Specific tetravalent bispecific immune cell engagers potently induce Antibody-Dependent Cellular phagocytosis (ADCP) on macrophages. Blood, 132(Supplement 1), 1111.
37. Kurogochi, M., Mori, M., Osumi, K., Tojino, M., Sugawara, S., Takashima, S., Hirose, Y., Tsukimura, W., Mizuno, M., Amano, J., Matsuda, A., Tomita, M., Takayanagi, A., Shoda, S., & Shirai, T. (2015). Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities. PLoS ONE, 10(7).
38. Su, S., Zhao, J., Xing, Y., Zhang, X., Liu, J., Ouyang, Q., Chen, J., Su, F., Liu, Q., & Song, E. (2018). Immune checkpoint inhibition overcomes ADCP-Induced immunosuppression by macrophages. Cell, 175(2), 442-457.e23.
39. Leidi, M., Gotti, E., Bologna, L., Miranda, E., Rimoldi, M., Sica, A., Roncalli, M., Palumbo, G. A., Introna, M., Golay, J. (2009). M2 Macrophages Phagocytose Rituximab-Opsonized Leukemic Targets More Efficiently than M1 Cells In Vitro. The Journal of Immunology, 182(7), 4415–4422.
40. Hao, N., Lü, M., Fan, Y., Cao, Y., Zhang, Z., Yang, S. (2012). Macrophages in tumor microenvironments and the progression of tumors. Clinical and Developmental Immunology, 2012, 1–11.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97074-
dc.description.abstract治療性單株抗體(Monoclonal Antibodies, mAbs)被設計用來特異性定位並中和抗原,如癌細胞表達的抗原。通過其片段抗原結合(Fragment Antigen-Binding, Fab)域,mAbs可以誘導癌細胞凋亡或阻斷抑制性信號。此外,mAbs還能通過其片段結晶化(Fc)域觸發其他效應功能。 其中一種效應功能是抗體依賴性細胞吞噬作用(Antibody-Dependent Cellular Phagocytosis, ADCP),由抗體的Fc區域促進。ADCP在具有CD32受體的巨噬細胞中發生。當CD32受體與連接到靶細胞的治療性mAb的Fc區域結合時,巨噬細胞會吞噬並消化mAb結合的細胞。這一過程取決於CD受體與Fc區域的結合能力,而這種結合能力受Fc區域上糖基的影響。糖基工程通過改變這些糖基來增強結合強度,並改善在靶細胞中誘導的效應功能。 Rituximab 被設計為在其 Asn297 糖基化位點具有均一的雙分支 α2,6-唾液酸化複合型糖鏈(α2,6-SCT)、均一的末端半乳糖糖鏈或均一的單葡糖胺(mono-GlcNAc)。我們建立了一種以巨噬細胞為基礎的檢測方法,使用流式細胞術和影像分析來篩選對於抗體依賴性吞噬作用(ADCP)有益的糖型。流式細胞術檢測顯示,α2,6-SCT Rituximab 或末端半乳糖 Rituximab 均能增加 ADCP 活性,相較於原生型 Rituximab。然而,無論是糖工程化的 Rituximab 還是原生型 Rituximab,其 ADCP 活性均高於去糖基化的單葡糖胺(mono-GlcNAc)Rituximab。影像分析檢測同樣顯示,糖基化的抗體(包括糖工程化的或原生型 Rituximab)比單葡糖胺 Rituximab 有更高的 ADCP 活性。這表明糖基化確實在 ADCP 中起作用,但需要進一步研究以確定哪種糖型能誘導最高的 ADCP 活性。zh_TW
dc.description.abstractTherapeutic mAbs are designed to specifically locate and neutralize antigens, such as those expressed by cancer cells. Through their fragment antigen-binding (Fab) domain, mAbs can induce apoptosis or block inhibitory signaling in cancer cells. Additionally, mAbs can trigger other effector functions through their fragment crystallizable (Fc) domain. One such effector function is Antibody-Dependent Cellular Phagocytosis (ADCP), facilitated by the Fc region of an antibody. ADCP occurs in macrophages, which have CD32 receptors. When the CD32 receptor binds to the Fc region of a therapeutic mAb attached to a target cell, the macrophage engulfs and digests the mAb-bound cell. This process depends on the ability of the CD receptors to bind to the Fc region, which is influenced by the glycans attached to the Fc region. Glycoengineering modifies these glycans to enhance binding strength and improve the effector functions induced in target cells. Rituximab was engineered to have homogeneous bi-antennary α2,6-sialyl complex-type (α2,6-SCT) glycan, homogeneous terminal galactose glycan, or homogeneous mono-GlcNAc on their Asn297 glycosylation site. We established a macrophage-based assay to screen for glycoforms that are beneficial for ADCP, using both flow cytometry and imaging-based analysis. The flow cytometry-based assay showed that either α2,6-SCT Rituximab or terminal galactose Rituximab increase ADCP activity compared to native Rituximab. However, both glycoengineered Rituximab and native Rituximab has higher ADCP activity compared to deglycosylated mono-GlcNAc Rituximab. The imaging-based assay also showed that glycosylated antibody, both glycoengineered or native Rituximab, has increase ADCP activity compared to mono-GlcNAc Rituximab. This shows that glycosylation does play a role in ADCP, although further study needs to be conducted in order to understand which glycoform is the most effective in elucidating the highest ADCP activity.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:19:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-26T16:19:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgement ii
摘要 iii
Abstract iv
Table of Contents v
List of Figures vii
List of Schemes viii
Abbreviations ix
1. Introduction 1
1.1 Monoclonal Antibody Therapy 1
1.1.1 Antibody-Mediated Effector Function 4
1.1.2 Antibody-Dependent Cellular Phagocytosis (ADCP) 5
1.1.3 Glycosylation on Effector Function 6
1.2 Specific Aims 8
2. Materials and Methods 9
2.1 Materials 9
2.1.1 Cells 9
2.1.2 Antibodies 9
2.2 Methods 10
2.2.1 Enzyme Expression and Purification 10
2.2.2 Cell Culture 11
2.2.2.1 Cancer cell line 11
2.2.2.2 Primary human monocyte purification and cell culture 11
2.2.3 Cell Labeling 12
2.2.4 Homogeneous Antibody Production 12
2.2.4.1 Generation of mono-GlcNAc anti-CD20 Rituximab 12
2.2.4.2 Preparation of α2,6-SCT glycan and terminal galactose glycan 13
2.2.4.3 Glycan-oxazoline synthesis 13
2.2.4.4 Transglycosylation of α2,6-SCT Rituximab and terminal galactose glycan 14
2.2.4.5 Glycoform analysis of homogeneous antibody using mass spectrometry (MS) 14
2.2.5 Cell-based Assay 15
2.2.5.1 Flow cytometry-based antibody-dependent cellular phagocytosis assay (ADCP) 15
2.2.5.2 Image-based Antibody-dependent Cellular Phagocytosis Assay (ADCP) 16
2.2.5.3 Data Analysis 17
3. Results and Discussion 18
3.1 Monocyte Purification and Macrophage Differentiation 19
3.2 Enzyme Expression and Purification 21
3.3 Production of Homogeneously Glycosylated Rituximab 22
3.3.1 Mono-GlcNAc Rituximab Production 23
3.3.2 Synthesis of α2,6-SCT-oxazoline and terminal galactose-oxazoline 24
3.3.3 Transglycosylation of α2,6-SCT Rituximab and terminal galactose-Rituximab 25
3.4 Confirmation of Native Rituximab Glycosylation 28
3.5 Effects of Antibody Glycosylation on ADCP 29
3.5.1 Antibody Increases Phagocytosis Event in a Dose-Dependent Manner 29
3.5.2 α2,6-SCT and Terminal Galactose Does Not Improve ADCP Compared to Native Rituximab 32
3.5.3 Imaging data confirms Flow-Cytometry-based ADCP assay’s Results 34
4. Discussion and Conclusion 38
5. References 41
-
dc.language.isoen-
dc.title抗體糖基工程對巨噬細胞介導的抗體依賴性細胞吞噬作用的影響zh_TW
dc.titleThe Effects of Antibody Glycoengineering on Macrophage-Mediated Antibody-Dependent Cellular Phagocytosisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝尚逸;張雅貞zh_TW
dc.contributor.oralexamcommitteeYves Hsieh;Ya-Jen Changen
dc.subject.keyword單株抗體,抗體依賴性細胞吞噬作用,抗體糖基工程,巨噬細胞,zh_TW
dc.subject.keywordMonoclonal Antibody (mAb),Antibody-Dependent Cellular Phagocytosis (ADCP),Antibody Glycoengineering,Macrophage,en
dc.relation.page48-
dc.identifier.doi10.6342/NTU202500163-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-21-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物科技研究所-
dc.date.embargo-lift2025-03-08-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved