請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97067完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐宏民 | zh_TW |
| dc.contributor.advisor | Winston H. Hsu | en |
| dc.contributor.author | 莫易喆 | zh_TW |
| dc.contributor.author | Igor Morawski | en |
| dc.date.accessioned | 2025-02-26T16:17:59Z | - |
| dc.date.available | 2025-02-27 | - |
| dc.date.copyright | 2025-02-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-10 | - |
| dc.identifier.citation | [1] A. Aakerberg, A. S. Johansen, K. Nasrollahi, and T. B. Moeslund. Semantic segmentation guided real-world super-resolution. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 449–458, 2022.
[2] M. Afifi and M. S. Brown. What else can fool deep learning? addressing colorconstancy errors on deep neural network performance. In Proceedings of theIEEE/CVF international conference on computer vision, pages 243–252, 2019. [3] G. Buchsbaum. A spatial processor model for object colour perception. Journal ofthe Franklin institute, 310(1):1–26, 1980. [4] J. Cai, S. Gu, and L. Zhang. Learning a deep single image contrast enhancer frommulti-exposure images. IEEE Transactions on Image Processing, 27(4):2049–2062,2018. [5] C. Chen, Q. Chen, M. N. Do, and V. Koltun. Seeing motion in the dark. In Proceedings of the IEEE/CVF International conference on computer vision, pages3185–3194, 2019. [6] C. Chen, Q. Chen, J. Xu, and V. Koltun. Learning to see in the dark. In Proceedingsof the IEEE conference on computer vision and pattern recognition, pages 3291–3300, 2018. [7] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu,Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai,J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin. MMDetection: Open mmlabdetection toolbox and benchmark. arXiv preprint arXiv:1906.07155, 2019. [8] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and Y. Shan. Yolo-world: Real-timeopen-vocabulary object detection. arXiv preprint arXiv:2401.17270, 2024. [9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A largescale hierarchical image database. In 2009 IEEE conference on computer visionand pattern recognition, pages 248–255. Ieee, 2009. [10] X. Dong, W. Xu, Z. Miao, L. Ma, C. Zhang, J. Yang, Z. Jin, A. B. J. Teoh, andJ. Shen. Abandoning the bayer-filter to see in the dark. In Proceedings of theIEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 17431–17440, 2022. [11] C.-M. Fan, T.-J. Liu, and K.-H. Liu. Half wavelet attention on m-net+ for low-lightimage enhancement. In 2022 IEEE International Conference on Image Processing(ICIP), pages 3878–3882. IEEE, 2022. [12] Y. Feng, S. Hou, H. Lin, Y. Zhu, P. Wu, W. Dong, J. Sun, Q. Yan, and Y. Zhang.Difflight: Integrating content and detail for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition (CVPR) Workshops, pages 6143–6152, June 2024. [13] H. Fu, W. Zheng, X. Meng, X. Wang, C. Wang, and H. Ma. You do not needadditional priors or regularizers in retinex-based low-light image enhancement.In Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition, pages 18125–18134, 2023. [14] X. Fu, D. Zeng, Y. Huang, Y. Liao, X. Ding, and J. Paisley. A fusion-basedenhancing method for weakly illuminated images. Signal Processing, 129:82–96,2016. [15] Z. Fu, Y. Yang, X. Tu, Y. Huang, X. Ding, and K.-K. Ma. Learning a simplelow-light image enhancer from paired low-light instances. In Proceedings ofthe IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),pages 22252–22261, June 2023. [16] C. Guo, C. Li, J. Guo, C. C. Loy, J. Hou, S. Kwong, and R. Cong. Zero-referencedeep curve estimation for low-light image enhancement. In Proceedings of theIEEE/CVF conference on computer vision and pattern recognition, pages 1780–1789, 2020. [17] X. Guo, Y. Li, and H. Ling. Lime: Low-light image enhancement via illuminationmap estimation. IEEE Transactions on image processing, 26(2):982–993, 2016. [18] J. Hai, Z. Xuan, R. Yang, Y. Hao, F. Zou, F. Lin, and S. Han. R2rnet: Lowlight image enhancement via real-low to real-normal network. Journal of VisualCommunication and Image Representation, 90:103712, 2023. [19] K. A. Hashmi, G. Kallempudi, D. Stricker, and M. Z. Afzal. Featenhancer:Enhancing hierarchical features for object detection and beyond under low-lightvision. In Proceedings of the IEEE/CVF International Conference on ComputerVision, pages 6725–6735, 2023. [20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.In Proceedings of the IEEE conference on computer vision and pattern recognition,pages 770–778, 2016. [21] Y. Hong, K. Wei, L. Chen, and Y. Fu. Crafting object detection in very low light.In BMVC, volume 1, page 3, 2021. [22] T. Huang, S. Li, X. Jia, H. Lu, and J. Liu. Neighbor2neighbor: Self-superviseddenoising from single noisy images. In Proceedings of the IEEE/CVF conferenceon computer vision and pattern recognition, pages 14781–14790, 2021. [23] A. Ignatov, L. Van Gool, and R. Timofte. Replacing mobile camera isp with a singledeep learning model. In Proceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition Workshops, pages 536–537, 2020. [24] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network trainingby reducing internal covariate shift. In International conference on machinelearning, pages 448–456. pmlr, 2015. [25] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu. Spatial transformernetworks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,editors, Advances in Neural Information Processing Systems, volume 28. CurranAssociates, Inc., 2015. [26] H. Jiang, A. Luo, H. Fan, S. Han, and S. Liu. Low-light image enhancement withwavelet-based diffusion models. ACM Transactions on Graphics (TOG), 42(6):1–14, 2023. [27] H. Jiang and Y. Zheng. Learning to see moving objects in the dark. In Proceedingsof the IEEE/CVF International Conference on Computer Vision, pages 7324–7333,2019. [28] Y. Jiang, X. Gong, D. Liu, Y. Cheng, C. Fang, X. Shen, J. Yang, P. Zhou, andZ. Wang. Enlightengan: Deep light enhancement without paired supervision. IEEEtransactions on image processing, 30:2340–2349, 2021. [29] D. J. Jobson, Z.-u. Rahman, and G. A. Woodell. A multiscale retinex for bridgingthe gap between color images and the human observation of scenes. IEEETransactions on Image processing, 6(7):965–976, 1997. [30] D. J. Jobson, Z.-u. Rahman, and G. A. Woodell. Properties and performance ofa center/surround retinex. IEEE transactions on image processing, 6(3):451–462,1997. [31] K. Kim and H. S. Lee. Probabilistic anchor assignment with iou prediction forobject detection. In ECCV, 2020. [32] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXivpreprint arXiv:1412.6980, 2014. [33] W. Kuo, Y. Cui, X. Gu, A. Piergiovanni, and A. Angelova. F-vlm: Openvocabulary object detection upon frozen vision and language models. arXiv preprintarXiv:2209.15639, 2022. [34] M. Lamba, A. Balaji, and K. Mitra. Towards fast and light-weight restoration ofdark images. arXiv preprint arXiv:2011.14133, 2020. [35] M. Lamba and K. Mitra. Restoring extremely dark images in real time. In Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition, pages 3487–3497, 2021. [36] E. H. Land. The retinex theory of color vision. Scientific american, 237(6):108–129, 1977. [37] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single image super-resolutionusing a generative adversarial network. In Proceedings of the IEEE conference oncomputer vision and pattern recognition, pages 4681–4690, 2017. [38] S. Lee, J. Rim, B. Jeong, G. Kim, B. Woo, H. Lee, and S. K. Sunghyun Cho. Humanpose estimation in extremely low-light conditions. In Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition (CVPR), 2023. [39] C. Li, C. Guo, and C. C. Loy. Learning to enhance low-light image via zeroreference deep curve estimation. IEEE Transactions on Pattern Analysis andMachine Intelligence, 44(8):4225–4238, 2021. [40] M. Li, J. Liu, W. Yang, and Z. Guo. Joint denoising and enhancement for lowlight images via retinex model. In International Forum on Digital TV and WirelessMultimedia Communications, pages 91–99. Springer, 2017. [41] M. Li, J. Liu, W. Yang, X. Sun, and Z. Guo. Structure-revealing low-light imageenhancement via robust retinex model. IEEE Transactions on Image Processing,27(6):2828–2841, 2018. [42] X. Li, C. Chen, S. Zhou, X. Lin, W. Zuo, and L. Zhang. Blind face restorationvia deep multi-scale component dictionaries. In European conference on computervision, pages 399–415. Springer, 2020. [43] Z. Li, Y. Wang, and J. Zhang. Low-light image enhancement with knowledgedistillation. Neurocomputing, 518:332–343, 2023. [44] D. Liang, Z. Xu, L. Li, M. Wei, and S. Chen. Pie: Physics-inspired low-lightenhancement. International Journal of Computer Vision, pages 1–22, 2024. [45] J. Liang, J. Wang, Y. Quan, T. Chen, J. Liu, H. Ling, and Y. Xu. Recurrent exposuregeneration for low-light face detection. IEEE Transactions on Multimedia,24:1609–1621, 2021. [46] Z. Liang, J. Cai, Z. Cao, and L. Zhang. Cameranet: A two-stage framework foreffective camera isp learning. IEEE Transactions on Image Processing, 30:2248–2262, 2021. [47] Z. Liang, C. Li, S. Zhou, R. Feng, and C. C. Loy. Iterative prompt learningfor unsupervised backlit image enhancement. In Proceedings of the IEEE/CVFInternational Conference on Computer Vision, pages 8094–8103, 2023. [48] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense objectdetection. In Proceedings of the IEEE international conference on computer vision,pages 2980–2988, 2017. [49] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, andC. L. Zitnick. Microsoft coco: Common objects in context. In European conferenceon computer vision, pages 740–755. Springer, 2014. [50] D. Liu, B. Wen, X. Liu, Z. Wang, and T. S. Huang. When image denoisingmeets high-level vision tasks: A deep learning approach. arXiv preprintarXiv:1706.04284, 2017. [51] J. Liu, D. Xu, W. Yang, M. Fan, and H. Huang. Benchmarking low-light imageenhancement and beyond. International Journal of Computer Vision, 129:1153–1184, 2021. [52] L. Liu, X. Jia, J. Liu, and Q. Tian. Joint demosaicing and denoising with selfguidance. In Proceedings of the IEEE/CVF Conference on Computer Vision andPattern Recognition, pages 2240–2249, 2020. [53] R. Liu, L. Ma, J. Zhang, X. Fan, and Z. Luo. Retinex-inspired unrollingwith cooperative prior architecture search for low-light image enhancement.In Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition, pages 10561–10570, 2021. [54] W. Ljungbergh, J. Johnander, C. Petersson, and M. Felsberg. Raw or cooked? objectdetection on raw images. In Scandinavian Conference on Image Analysis, pages374–385. Springer, 2023. [55] Y. P. Loh and C. S. Chan. Getting to know low-light images with the exclusivelydark dataset. Computer Vision and Image Understanding, 178:30–42, 2019. [56] F. Lv, F. Lu, J. Wu, and C. Lim. Mbllen: Low-light image/video enhancement usingcnns. In BMVC, page 220, 2018. [57] X. Lv, S. Zhang, Q. Liu, H. Xie, B. Zhong, and H. Zhou. Backlitnet: Adataset and network for backlit image enhancement. Computer Vision and ImageUnderstanding, 218:103403, 2022. [58] L. Ma, T. Ma, R. Liu, X. Fan, and Z. Luo. Toward fast, flexible, and robust low-lightimage enhancement. In Proceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition, pages 5637–5646, 2022. [59] D. Misra. Mish: A self regularized non-monotonic activation function. arXivpreprint arXiv:1908.08681, 2019. [60] I. Morawski, Y.-A. Chen, Y.-S. Lin, S. Dangi, K. He, and W. H. Hsu. Genisp: neuralisp for low-light machine cognition. In Proceedings of the IEEE/CVF Conferenceon Computer Vision and Pattern Recognition, pages 630–639, 2022. [61] I. Morawski, Y.-A. Chen, Y.-S. Lin, and W. H. Hsu. Nod: Taking a closer look atdetection under extreme low-light conditions with night object detection dataset.arXiv preprint arXiv:2110.10364, 2021. [62] I. Morawski, K. He, S. Dangi, and W. H. Hsu. Unsupervised image prior viaprompt learning and clip semantic guidance for low-light image enhancement.In Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition, pages 5971–5981, 2024. [63] A. Mosleh, A. Sharma, E. Onzon, F. Mannan, N. Robidoux, and F. Heide.Hardware-in-the-loop end-to-end optimization of camera image processingpipelines. In Proceedings of the IEEE/CVF Conference on Computer Vision andPattern Recognition, pages 7529–7538, 2020. [64] A. Omid-Zohoor, D. Ta, and B. Murmann. Pascalraw: raw image database forobject detection, 2014. [65] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performancedeep learning library. Advancesin neural information processing systems, 32, 2019. [66] D. Qi, W. Tan, Q. Yao, and J. Liu. Yolo5face: Why reinventing a face detector.ArXiv preprint ArXiv:2105.12931, 2021. [67] G. Qian, Y. Wang, C. Dong, J. S. Ren, W. Heidrich, B. Ghanem, and J. Gu.Rethinking the pipeline of demosaicing, denoising and super-resolution. arXivpreprint arXiv:1905.02538, 2019. [68] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models fromnatural language supervision. In International conference on machine learning,pages 8748–8763. PMLR, 2021. [69] S. Ratnasingam. Deep camera: A fully convolutional neural network for imagesignal processing. In Proceedings of the IEEE/CVF International Conference onComputer Vision Workshops, pages 0–0, 2019. [70] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time objectdetection with region proposal networks. IEEE Transactions on Pattern Analysisand Machine Intelligence, Jun 2017. [71] M. Riechert. Raw image processing for python, a wrapper for libraw. https://github.com/letmaik/rawpy, 2021. [72] N. Robidoux, L. E. G. Capel, D.-e. Seo, A. Sharma, F. Ariza, and F. Heide. Endto-end high dynamic range camera pipeline optimization. In Proceedings of theIEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6297–6307, 2021. [73] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks forbiomedical image segmentation. In International Conference on Medical imagecomputing and computer-assisted intervention, pages 234–241. Springer, 2015. [74] Y. Sasagawa and H. Nagahara. Yolo in the dark-domain adaptation method formerging multiple models. In Computer Vision–ECCV 2020: 16th EuropeanConference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16, pages345–359. Springer, 2020. [75] E. Schwartz, R. Giryes, and A. M. Bronstein. Deepisp: Toward learning anend-to-end image processing pipeline. IEEE Transactions on Image Processing,28(2):912–923, 2018. [76] S. Shao, Z. Li, T. Zhang, C. Peng, G. Yu, X. Zhang, J. Li, and J. Sun. Objects365:A large-scale, high-quality dataset for object detection. In Proceedings of theIEEE/CVF international conference on computer vision, pages 8430–8439, 2019. [77] A. Sharma and R. T. Tan. Nighttime visibility enhancement by increasing thedynamic range and suppression of light effects. In Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition, pages 11977–11986,2021. [78] Z. Tian, C. Shen, H. Chen, and T. He. Fcos: Fully convolutional one-stage objectdetection. arXiv preprint arXiv:1904.01355, 2019. [79] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance normalization: The missingingredient for fast stylization. CoRR, abs/1607.08022, 2016. [80] J. Wang, K. C. Chan, and C. C. Loy. Exploring clip for assessing the look andfeel of images. In Proceedings of the AAAI Conference on Artificial Intelligence,volume 37, pages 2555–2563, 2023. [81] S. Wang, J. Zheng, H.-M. Hu, and B. Li. Naturalness preserved enhancementalgorithm for non-uniform illumination images. IEEE transactions on imageprocessing, 22(9):3538–3548, 2013. [82] W. Wang, D. Yan, X. Wu, W. He, Z. Chen, X. Yuan, and L. Li. Low-light imageenhancement based on virtual exposure. Signal Processing: Image Communication,118:117016, 2023. [83] W. Wang, H. Yang, J. Fu, and J. Liu. Zero-reference low-light enhancementvia physixcal quadruple priors. In Proceedings of the IEEE/CVF Conference onComputer Vision and Pattern Recognition, pages 26057–26066, 2024. [84] W. Wang, W. Yang, and J. Liu. Hla-face: Joint high-low adaptation for low lightface detection. In Proceedings of the IEEE/CVF Conference on Computer Visionand Pattern Recognition, pages 16195–16204, 2021. [85] X. Wang, K. Yu, C. Dong, and C. C. Loy. Recovering realistic texture in imagesuper-resolution by deep spatial feature transform. In Proceedings of the IEEEconference on computer vision and pattern recognition, pages 606–615, 2018. [86] Y. Wang, J. Guo, R. Wang, W. He, and C. Li. Tienet: task-oriented imageenhancement network for degraded object detection. Signal, Image and VideoProcessing, pages 1–8, 2023. [87] Y. Wang, R. Wan, W. Yang, H. Li, L.-P. Chau, and A. Kot. Low-light imageenhancement with normalizing flow. In Proceedings of the AAAI conference onartificial intelligence, volume 36, pages 2604–2612, 2022. [88] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment: fromerror visibility to structural similarity. IEEE Transactions on Image Processing,13(4):600–612, 2004. [89] C. Wei, W. Wang, W. Yang, and J. Liu. Deep retinex decomposition for low-lightenhancement. arXiv preprint arXiv:1808.04560, 2018. [90] W. Wu, J. Weng, P. Zhang, X. Wang, W. Yang, and J. Jiang. Uretinex-net: Retinexbased deep unfolding network for low-light image enhancement. In Proceedingsof the IEEE/CVF conference on computer vision and pattern recognition, pages5901–5910, 2022. [91] Y. Wu, C. Pan, G. Wang, Y. Yang, J. Wei, C. Li, and H. T. Shen. Learning semanticaware knowledge guidance for low-light image enhancement. In Proceedings ofthe IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),pages 1662–1671, June 2023. [92] W. Xing and K. Egiazarian. End-to-end learning for joint image demosaicing,denoising and super-resolution. In Proceedings of the IEEE/CVF Conference onComputer Vision and Pattern Recognition, pages 3507–3516, 2021. [93] K. Xu, X. Yang, B. Yin, and R. W. Lau. Learning to restore low-light images viadecomposition-and-enhancement. In Proceedings of the IEEE/CVF conference oncomputer vision and pattern recognition, pages 2281–2290, 2020. [94] X. Xu, R. Wang, C.-W. Fu, and J. Jia. Snr-aware low-light image enhancement. In2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),pages 17693–17703, 2022. [95] X. Xu, R. Wang, and J. Lu. Low-light image enhancement via structure modelingand guidance. In Proceedings of the IEEE/CVF Conference on Computer Visionand Pattern Recognition (CVPR), pages 9893–9903, June 2023 [96] Y. Xu, J. Yang, H. Cao, K. Mao, J. Yin, and S. See. Arid: A new datasetfor recognizing action in the dark. In Deep Learning for Human ActivityRecognition: Second International Workshop, DL-HAR 2020, Held in Conjunctionwith IJCAI-PRICAI 2020, Kyoto, Japan, January 8, 2021, Proceedings 2, pages70–84. Springer, 2021. [97] W. Yang, S. Wang, Y. Fang, Y. Wang, and J. Liu. From fidelity to perceptual quality:A semi-supervised approach for low-light image enhancement. In Proceedings ofthe IEEE/CVF conference on computer vision and pattern recognition, pages 3063–3072, 2020. [98] W. Yang, W. Wang, H. Huang, S. Wang, and J. Liu. Sparse gradient regularizeddeep retinex network for robust low-light image enhancement. IEEE Transactionson Image Processing, 30:2072–2086, 2021. [99] W. Yang, Y. Yuan, W. Ren, J. Liu, W. J. Scheirer, Z. Wang, Zhang, and et al.Advancing image understanding in poor visibility environments: A collectivebenchmark study. IEEE Transactions on Image Processing, 29:5737–5752, 2020. [100] X. Yi, H. Xu, H. Zhang, L. Tang, and J. Ma. Diff-retinex: Rethinking lowlight image enhancement with a generative diffusion model. In Proceedings ofthe IEEE/CVF International Conference on Computer Vision, pages 12302–12311,2023. [101] M. Yoshimura, J. Otsuka, A. Irie, and T. Ohashi. Dynamicisp: dynamicallycontrolled image signal processor for image recognition. In Proceedings of theIEEE/CVF International Conference on Computer Vision, pages 12866–12876,2023. [102] Y. Zang, W. Li, K. Zhou, C. Huang, and C. C. Loy. Open-vocabulary detr withconditional matching. In European Conference on Computer Vision, pages 106–122. Springer, 2022. [103] B. Zhang, Y. Guo, R. Yang, Z. Zhang, J. Xie, J. Suo, and Q. Dai. Darkvision: abenchmark for low-light image/video perception. arXiv preprint arXiv:2301.06269,2023. [104] Y. Zhang, X. Guo, J. Ma, W. Liu, and J. Zhang. Beyond brightening low-lightimages. International Journal of Computer Vision, 129:1013–1037, 2021. [105] Y. Zhang, J. Zhang, and X. Guo. Kindling the darkness: A practical low-light imageenhancer. In Proceedings of the 27th ACM international conference on multimedia,pages 1632–1640, 2019. [106] Z. Zhang, H. Zheng, R. Hong, M. Xu, S. Yan, and M. Wang. Deep color consistentnetwork for low-light image enhancement. In Proceedings of the IEEE/CVFconference on computer vision and pattern recognition, pages 1899–1908, 2022. [107] C. Zheng, D. Shi, and W. Shi. Adaptive unfolding total variation network forlow-light image enhancement. In Proceedings of the IEEE/CVF internationalconference on computer vision, pages 4439–4448, 2021. [108] S. Zheng and G. Gupta. Semantic-guided zero-shot learning for low-light image/video enhancement. In Proceedings of the IEEE/CVF Winter conference onapplications of computer vision, pages 581–590, 2022. [109] C. Zhou, C. C. Loy, and B. Dai. Extract free dense labels from clip. In EuropeanConference on Computer Vision, pages 696–712. Springer, 2022. [110] D. Zhou, Z. Yang, and Y. Yang. Pyramid diffusion models for low-light image enhancement. arXiv preprint arXiv:2305.10028, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97067 | - |
| dc.description.abstract | 深度學習雖然有效地提升了機器感知的穩健性,但是在低光源或是視覺環境不佳的情況下,目前的方法仍然具有挑戰性。本論文重點在探討低光源條件下,使用傳統 RGB相機的機器感知。 基於RGB相機系統對許多現實應用來說很重要,例如自動駕駛和混合實境。
在低光源的環境下,相機捕捉到的光子數量少,導致成像與感知的困難與低訊噪比。常見增加光子數量的策略,例如增加曝光時間、增加光圈大小或使用閃光燈,會導致偽影與成像成像品質下降。雖然在大量低光源圖像上進行訓練是提升性能的直接方法,但是這種方法不總是可行的,特別是在有許多下游任務的模型需要單獨訓練的情況下。此外,低光源資料的收集和標註通常很費工且昂貴。在本論文中,我們提出了解決這些問題的策略與方法。 首先,我們提出增強圖像品質的框架,並展示此圖像增強模型可以在物件偵測模型的監督下進行訓練。與需要成對的圖像數據集的方法相比,我們提出的方法使用物件偵測的標註,以及不需要在限制場景多樣性或是在特定靜態或受控環境下產生嚴格對齊的配對圖像。 其次,我們提出了利用RAW圖像作為比傳統sRGB圖像更穩健的模態。由於傳統ISP在極端低光源條件下容易出現錯誤,我們提出了一個在物件偵測模型的監督下進行訓練的類神經ISP。此外,我們提出了一個高計算效率的模型架構,引入傳統ISP的專家知識,可以改善對其他相機傳感器的泛化能力。 第三,我們提出了一個利用預訓練的視覺語言對比模型的訓練方法,在不需要任何配對或未配對的低光源與正常光源圖像的情況下,從語義上引導圖像增強模型,提升低光源條件下的圖像增強表現。我們提出的方法利用預訓練的視覺語言模型的零樣本和開放詞彙能力,能夠很有效地擴展到不同的數據集,且不受物件類別的限制。 我們透過廣泛的研究來驗證每個提出的模組的有效性。此外,我們提供了一個大型且高品質的RAW和sRGB的配對圖像數據集,並針對低光源物件偵測做標註。此開源數據集包含在非受控環境中捕捉的戶外場景,適合用來評估未來低光源影像增強與物件偵測方法的性能。 | zh_TW |
| dc.description.abstract | Deep learning greatly advanced the robustness of machine cognition. Still, adverse visual conditions, such as low light and various atmospheric conditions, remain challenging for existing methods. Our work focuses on machine cognition under low-light conditions using ubiquitous traditional RGB cameras, crucial in many real-life applications, such as autonomous driving or mixed reality.
Fundamentally, low-light imaging and perception difficulties are caused by a low photon count sensed by the camera, resulting in low SNR. Common strategies to increase the photon count — increasing exposure time, aperture size or using flash — lead to artifacts and further performance degradation. While directly training on large amounts of low-light data is a straightforward way to improve performance, it is not always feasible, especially if there are many downstream-task models that require separate training. Moreover, low-light dataset collection and annotation are often prohibitively laborious and expensive. In this thesis, we propose several strategies to address these issues. First, we present an image-with-enhancement framework and demonstrate that the enhancement model can be optimized under the guidance of an object detector. In contrast with methods using paired image datasets, our proposed method relies on object detection annotation and thus does not require strictly aligned data that would limit the scene diversity to controlled or static environments. Second, we propose to leverage raw sensor data as a more robust modality than traditional sRGB data. As traditional ISPs often break down under extreme low-light conditions, we propose a dedicated neural ISP that is optimized under the guidance of a downstream object detector. Furthermore, we propose a computationally efficient architecture integrating expert knowledge about traditional ISP to improve generalization to unseen sensors. Third, we propose a training strategy leveraging a pre-trained contrastive vision and language model to semantically guide the enhancement model in a way that improves low-light performance without any need for paired or unpaired normal-light images. The proposed method is effective and scales well to include many datasets without constraining the object category set by leveraging zero-shot open-vocabulary capabilities of pre-trained visual-linguistic models. We present extensive studies to validate the effectiveness of each of the proposed components and provide a large, high-quality dataset of processed and raw images annotated for low-light object detection, consisting of outdoor scenes captured in an uncontrolled environment, made publicly available for task-based comparison and benchmarking of future low-light enhancement and detection methods. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:17:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-26T16:17:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents xi List of Figures xv List of Tables xix Chapter 1 Introduction 1 Chapter 2 Jointly Optimizing Enhancement and Detection 7 2.1 Introduction 7 2.2 Related Work 9 2.3 Our Collected Night Object Detection (NOD) Dataset 11 2.3.1 Extreme and non-extreme low-light annotation 15 2.4 Dataset and Baseline Analysis 17 2.5 Proposed Method 22 2.5.1 Image Enhancement Module Pre-Training Strategy 23 2.5.2 Patch-Wise Light Augmentation 24 2.5.3 Block Shuffle Augmentation 25 2.6 Experiments 26 2.6.1 Implementation Details 26 2.6.2 Experiments and Discussion 27 2.7 Chapter Conclusion 32 Chapter 3 Neural Image Signal Processing Pipeline for Machine Cognition 35 3.1 Introduction 35 3.2 Related Work 38 3.2.1 Low-Light Detection 39 3.2.1.1 sRGB Object Detection under Low-Light Conditions 39 3.2.1.2 RAW Object Detection under Low-Light Conditions 40 3.2.2 Neural ISPs 41 3.2.2.1 Neural ISPs for low-light conditions 41 3.3 Our Raw Sensor Images Dataset 43 3.4 Proposed Method 43 3.4.1 Color Space Transformation (CST) 45 3.4.2 Neural Color Processing 46 3.4.3 Loss Function 48 3.5 Experimental Results 49 3.5.1 Implementation Details 50 3.5.2 Quantitative Results 51 3.5.3 Capabilities to Generalize to Other Sensors and Datasets 52 3.5.4 Capabilities to Generalize to Other Detectors 54 3.5.5 Ablation Study 55 3.5.6 Qualitative Results 56 3.6 Conclusion 58 Chapter 4 Open-Vocabulary Semantic Guidance for Zero-Reference LowLight Enhancement 59 4.1 Introduction 59 4.2 Related Work 62 4.2.1 Low-Light Enhancement 62 4.2.2 Low-Light Image Understanding 66 4.2.3 CLIP for Image Enhancement 68 4.3 Proposed Method 69 4.3.1 Unsupervised Image Prior via Prompt Learning 72 4.3.2 Zero-Reference Low-Light Enhancement 76 4.3.3 Leveraging CLIP for Image Enhancement 78 4.4 Experimental Results 81 4.4.1 Implementation Details 81 4.4.2 Ablation Study 84 4.4.3 Comparison of Guidance Methods 85 4.4.4 Comparison with Related Methods 86 4.4.5 Impact of Low Light on Object Detection 91 4.4.6 Generalization of Our Training Strategy to Other Baseline Models 93 4.5 Discussion and Future Work 94 4.6 Conclusion 95 Chapter 5 Conclusion 97 References 101 | - |
| dc.language.iso | en | - |
| dc.subject | 語義引導 | zh_TW |
| dc.subject | RAW圖像處理 | zh_TW |
| dc.subject | 低光圖像處理 | zh_TW |
| dc.subject | 低光機器認知 | zh_TW |
| dc.subject | semantic guidance | en |
| dc.subject | low-light machine cognition | en |
| dc.subject | low-light image processing | en |
| dc.subject | raw image processing | en |
| dc.title | 在低光條件下機器感知 | zh_TW |
| dc.title | Machine Perception under Low Light Conditions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳奕廷;葉梅珍;李濬屹;歐陽明;王蒞君;賴尚宏 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Ting Chen;Mei-Chen Yeh;Chun-Yi Lee ;Ouhyoung Ming;Li-Chun Wang;Shang-Hong Lai | en |
| dc.subject.keyword | 低光機器認知,低光圖像處理,RAW圖像處理,語義引導, | zh_TW |
| dc.subject.keyword | low-light machine cognition,low-light image processing,raw image processing,semantic guidance, | en |
| dc.relation.page | 116 | - |
| dc.identifier.doi | 10.6342/NTU202401143 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-02-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | 2025-02-27 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 67.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
