Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97056
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳玲玲zh_TW
dc.contributor.advisorLing-Ling Wuen
dc.contributor.author蘇奕丞zh_TW
dc.contributor.authorYi-Cheng Suen
dc.date.accessioned2025-02-26T16:15:03Z-
dc.date.available2025-02-27-
dc.date.copyright2025-02-26-
dc.date.issued2025-
dc.date.submitted2025-02-07-
dc.identifier.citationAllcott, H., & Gentzkow, M. (2017). Social Media and Fake News in the 2016 Election. Journal of Economic Perspectives, 31(2), 211-235. https://doi.org/10.1257/jep.31.2.211
Andrews, J. C., & Shimp, T. A. (1990). Effects of involvement, argument strength, and source characteristics on central and peripheral processing of advertising. Psychology & Marketing, 7(3), 195-214. https://doi.org/10.1002/mar.4220070305
Austin, E. W., & Dong, Q. (1994). Source v. content effects on judgments of news believability. Journalism quarterly, 71(4), 973-983. https://doi.org/10.1177/107769909407100420
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173
Bitner, M. J., & Obermiller, C. (1985). The elaboration likelihood model: Limitations and extensions in marketing. Advances in consumer research, 12(1), 420-425.
Blumenstock, J. E. (2008). Size matters: word count as a measure of quality on wikipedia. Proceedings of the 17th international conference on World Wide Web, 1095-1096. https://doi.org/10.1145/1367497.1367673
Borah, P., & Xiao, X. (2018). The importance of ‘likes’: The interplay of message framing, source, and social endorsement on credibility perceptions of health information on Facebook. Journal of health communication, 23(4), 399-411. https://doi.org/10.1080/10810730.2018.1455770
Chauhan, K., & Pillai, A. (2013). Role of content strategy in social media brand communities: a case of higher education institutes in India. Journal of Product & Brand Management, 22(1), 40-51. https://doi.org/10.1108/10610421311298687
Chen, Y. P., Chen, Y. Y., Yang, K. C., Lai, F. P., Huang, C. H., Chen, Y. N., & Tu, Y. C. (2022). The Prevalence and Impact of Fake News on COVID-19 Vaccination in Taiwan: Retrospective Study of Digital Media. Journal of Medical Internet Research, 24(4), Article e36830. https://doi.org/10.2196/36830
Cheung, C. M.-Y., Sia, C.-L., & Kuan, K. K. (2012). Is this review believable? A study of factors affecting the credibility of online consumer reviews from an ELM perspective. Journal of the Association for Information Systems, 13(8), 2. https://doi.org/10.17705/1jais.00305
Chu, S.-C., & Kamal, S. (2008). The effect of perceived blogger credibility and argument quality on message elaboration and brand attitudes: An exploratory study. Journal of interactive Advertising, 8(2), 26-37. https://doi.org/10.1080/15252019.2008.10722140
El Hedhli, K., & Zourrig, H. (2023). Dual routes or a one-way to persuasion? The elaboration likelihood model versus the unimodel. Journal of Marketing Communications, 29(5), 433-454. https://doi.org/10.1080/13527266.2022.2034033
Falagas, M. E., Zarkali, A., Karageorgopoulos, D. E., Bardakas, V., & Mavros, M. N. (2013). The impact of article length on the number of future citations: a bibliometric analysis of general medicine journals. PLoS One, 8(2), e49476. https://doi.org/10.1371/journal.pone.0049476
Fischer, E., & Reuber, A. R. (2011). Social interaction via new social media:(How) can interactions on Twitter affect effectual thinking and behavior? Journal of business venturing, 26(1), 1-18. https://doi.org/10.1016/j.jbusvent.2010.09.002
Flaxman, S., Goel, S., & Rao, J. M. (2013). Ideological segregation and the effects of social media on news consumption. SSRN Electronic Journal, 2363701. https://doi.org/10.2139/ssrn.2363701
Gimpel, H., Heger, S., Olenberger, C., & Utz, L. (2021). The Effectiveness of Social Norms in Fighting Fake News on Social Media. Journal of Management Information Systems, 38(1), 196-221. https://doi.org/10.1080/07421222.2021.1870389
Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B., & Lazer, D. (2019). Fake news on Twitter during the 2016 US presidential election. science, 363(6425), 374-378. https://doi.org/10.1126/science.aau2706
Harmon, R. R., & Coney, K. A. (1982). The persuasive effects of source credibility in buy and lease situations. Journal of Marketing research, 19(2), 255-260. https://doi.org/10.1177/002224378201900209
J. Kitchen, P., Kerr, G., E. Schultz, D., McColl, R., & Pals, H. (2014). The elaboration likelihood model: review, critique and research agenda. European Journal of marketing, 48(11/12), 2033-2050. https://doi.org/10.1108/EJM-12-2011-0776
Johnson, T. J., & Kaye, B. K. (2015). Reasons to believe: Influence of credibility on motivations for using social networks. Computers in human behavior, 50, 544-555. https://doi.org/10.1016/j.chb.2015.04.002
Jones, L. W., Sinclair, R. C., & Courneya, K. S. (2003). The effects of source credibility and message framing on exercise intentions, behaviors, and attitudes: An integration of the elaboration likelihood model and prospect theory 1. Journal of applied social psychology, 33(1), 179-196. https://doi.org/10.1111/j.1559-1816.2003.tb02078.x
Kaliyar, R. K., Goswami, A., & Narang, P. (2021). FakeBERT: Fake news detection in social media with a BERT-based deep learning approach. Multimedia tools and applications, 80(8), 11765-11788. https://doi.org/10.1007/s11042-020-10183-2
Kim, A., & Dennis, A. R. (2019). Says who? The effects of presentation format and source rating on fake news in social media. MIS quarterly, 43(3), 1025-1039. https://doi.org/10.2139/ssrn.2987866
Kim, A., Moravec, P. L., & Dennis, A. R. (2019). Combating Fake News on Social Media with Source Ratings: The Effects of User and Expert Reputation Ratings. Journal of Management Information Systems, 36(3), 931-968. https://doi.org/10.1080/07421222.2019.1628921
Kim, C., & Yang, S.-U. (2017). Like, comment, and share on Facebook: How each behavior differs from the other. Public relations review, 43(2), 441-449. https://doi.org/10.1016/j.pubrev.2017.02.006
King, K. K., Wang, B., Escobari, D., & Oraby, T. (2021). Dynamic Effects of Falsehoods and Corrections on Social Media: A Theoretical Modeling and Empirical Evidence. Journal of Management Information Systems, 38(4), 989-1010. https://doi.org/10.1080/07421222.2021.1990611
Kruglanski, A. W., & Thompson, E. P. (1999). Persuasion by a single route: A view from the unimodel. Psychological Inquiry, 10(2), 83-109. https://doi.org/10.1207/S15327965PL100201
Kunda, Z. (1990). The case for motivated reasoning. Psychological bulletin, 108(3), 480–498. https://doi.org/10.1037/0033-2909.108.3.480
Li, C.-Y. (2013). Persuasive messages on information system acceptance: A theoretical extension of elaboration likelihood model and social influence theory. Computers in human behavior, 29(1), 264-275. https://doi.org/10.1016/j.chb.2012.09.003
Monti, F., Frasca, F., Eynard, D., Mannion, D., & Bronstein, M. M. (2019). Fake news detection on social media using geometric deep learning. arXiv preprint arXiv:1902.06673.
Moravec, P., Minas, R., & Dennis, A. R. (2018). Fake news on social media: People believe what they want to believe when it makes no sense at all. Kelley School of Business research paper(18-87). https://doi.org/10.2139/ssrn.3269541
Moravec, P. L., Kim, A., & Dennis, A. R. (2020). Appealing to Sense and Sensibility: System 1 and System 2 Interventions for Fake News on Social Media. Information Systems Research, 31(3), 987-1006. https://doi.org/10.1287/isre.2020.0927
Moravec, P. L., Kim, A., Dennis, A. R., & Minas, R. K. (2022). Do you really know if it’s true? How asking users to rate stories affects belief in fake news on social media. Information Systems Research, 33(3). https://doi.org/10.1287/isre.2021.1090
Mun, Y. Y., Yoon, J. J., Davis, J. M., & Lee, T. (2013). Untangling the antecedents of initial trust in Web-based health information: The roles of argument quality, source expertise, and user perceptions of information quality and risk. Decision support systems, 55(1), 284-295. https://doi.org/10.1016/j.dss.2013.01.029
Nasir, J. A., Khan, O. S., & Varlamis, I. (2021). Fake news detection: A hybrid CNN-RNN based deep learning approach. International Journal of Information Management Data Insights, 1(1), 100007. https://doi.org/10.1016/j.jjimei.2020.100007
Nemeth, C. J. (1986). Differential contributions of majority and minority influence. Psychological review, 93(1), 23. https://doi.org/10.1037/0033-295X.93.1.23
Newman, N., Fletcher, R., Schulz, A., Andi, S., Robertson, C. T., & Nielsen, R. K. (2021). Reuters Institute digital news report 2021. https://ssrn.com/abstract=3873260
Oppenheimer, D. M., Meyvis, T., & Davidenko, N. (2009). Instructional manipulation checks: Detecting satisficing to increase statistical power. Journal of experimental social psychology, 45(4), 867-872. https://doi.org/10.1016/j.jesp.2009.03.009
Opview. (2022). 公眾議題網路洞察報告. https://www.opview.com.tw/wp-content/file/20220714_2022publicissue.pdf
Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. penguin UK.
Pennycook, G., Bear, A., Collins, E. T., & Rand, D. G. (2020). The Implied Truth Effect: Attaching Warnings to a Subset of Fake News Headlines Increases Perceived Accuracy of Headlines Without Warnings. Management Science, 66(11), 4944-4957. https://doi.org/10.1287/mnsc.2019.3478
Petty, R. E., & Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion. In Communication and persuasion (pp. 1-24). Springer. https://doi.org/10.1007/978-1-4612-4964-1_1
Petty, R. E., Cacioppo, J. T., & Goldman, R. (1981). Personal involvement as a determinant of argument-based persuasion. Journal of personality and social psychology, 41(5), 847. https://doi.org/10.1037/0022-3514.41.5.847
Petty, R. E., Cacioppo, J. T., & Heesacker, M. (1981). Effects of rhetorical questions on persuasion: A cognitive response analysis. Journal of personality and social psychology, 40(3), 432. https://doi.org/10.1037/0022-3514.40.3.432
Petty, R. E., Kasmer, J. A., Haugtvedt, C. P., & Cacioppo, J. T. (1987). Source and message factors in persuasion: A reply to Stiff's critique of the elaboration likelihood model. Communication Monographs(54(3)), 233–249. https://doi.org/10.1080/03637758709390229
Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1), 22-36. https://doi.org/10.1145/3137597.3137600
Stiff, J. B. (1986). Cognitive processing of persuasive message cues: A meta‐analytic review of the effects of supporting information on attitudes. Communications Monographs, 53(1), 75-89. https://doi.org/10.1080/03637758609376128
Taiwan Network Information Center. (2022). 2022台灣網路報告. https://www.twnic.tw/doc/twrp/202207e.pdf
Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap9559
Yaqub, W., Kakhidze, O., Brockman, M. L., Memon, N., & Patil, S. (2020). Effects of credibility indicators on social media news sharing intent. Proceedings of the 2020 chi conference on human factors in computing systems, 1-14. https://doi.org/10.1145/3313831.3376213
Zhao, S., Grasmuck, S., & Martin, J. (2008). Identity construction on Facebook: Digital empowerment in anchored relationships. Computers in human behavior, 24(5), 1816-1836. https://doi.org/10.1016/j.chb.2008.02.012.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97056-
dc.description.abstract社群媒體上的假新聞傳播已經成為一個嚴重的問題。雖然社群媒體讓任何人都可以輕易地創作並分享新聞,但這樣的過程缺乏了傳統新聞媒體的品質管控機制,因而導致新聞品質下降,使人們更容易相信並傳播假新聞。
為了理解人們為何會相信假新聞,進一步預防假新聞的傳播,我們利用推敲可行性模型(Elaboration likelihood model)來解釋影響社群媒體上假新聞可信度的因素。我們假設中央線索(central cue)和周邊線索(peripheral cue)都會對新聞的感知可信度(news perceived believability)產生正向影響,進而影響用戶在社群媒體上的參與行為。另外我們也探討了社群媒體使用者的動機,如何調節這些線索與新聞可信度。
我們的研究結果顯示,中央線索和周邊線索都顯著影響新聞的感知可信度,且用戶的動機也會對新聞的可信度有直接影響。然而,與我們的假設不同,動機並未調節中央線索和周邊線索對新聞感知可信度的影響。這表明用戶在評估新聞感知可信度時,會依據內容、動機對新聞可信度做出判斷。最後,研究發現感知可信度在中央線索與社群媒體行為之間起到了中介作用,並在周邊線索與部分社群媒體行為(點讚、正面評論)之間起到了中介作用。
zh_TW
dc.description.abstractThe spread of fake news on social media has become a serious problem. Social media allows anyone to create and share news easily without traditional quality control by journalism, leading to a decrease in news quality and making fake news more believable and widely shared.
To address this issue, we apply the well-known Elaboration Likelihood Model (ELM) to explain the factors influencing the perceived believability of fake news on social media. We hypothesize that both central and peripheral cues positively impact news believability, which in turn affects user behavior on social media. Additionally, we investigate how user motivation moderates the relationship between these cues and the believability of news.
Our findings indicate that both central and peripheral cues significantly influence news perceived believability, and user motivation has an impact on believability. However, motivation does not moderate the effects of central and peripheral cues on believability as hypothesized. This suggests that users rely more on their motivation rather than just the content when evaluating news believability. The study also revealed that perceived believability serves as a mediator in the relationship between central cues and social media behaviors, including liking, positive commenting, sharing, and negative commenting. Additionally, perceived believability mediates the relationship between peripheral cues and social media behaviors such as liking and posting positive comments.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:15:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-26T16:15:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract IV
Table of Contents VI
List of Figures VIII
List of Tables IX
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Previous research on fake news 3
2.2 A news post on social media 5
2.3 Elaboration Likelihood Model (ELM) 6
2.4 Central cue 9
2.5 Peripheral cue 10
2.6 Motivation 12
2.7 Mediating effect of perceived believability 14
Chapter 3 Methodology 16
3.1 Participants 16
3.2 Procedures 17
3.3 Treatment 18
3.4 Independent variable 19
3.5 Moderating variable 22
3.6 Dependent variable 23
Chapter 4 Result 24
4.1 Data cleaning 24
4.2 Manipulation check 24
4.3 Measurement reliability and validity 26
4.4 Test of hypothesis 29
Chapter 5 Discussion and Conclusion 41
5.1 Discussion 41
5.2 Managerial implication 43
5.3 Limitation and future work 44
Reference 46
Appendix A Pilot test of experiment material 51
Appendix B Experiment material 53
Appendix C Sample cleaning 58
-
dc.language.isoen-
dc.subject新聞感知可信度zh_TW
dc.subject社群媒體行為zh_TW
dc.subject推敲可行性模型zh_TW
dc.subject社群媒體zh_TW
dc.subject假新聞zh_TW
dc.subjectsocial media behavioren
dc.subjectFake newsen
dc.subjectsocial mediaen
dc.subjectElaboration Likelihood Model (ELM)en
dc.subjectnews perceived believabilityen
dc.title社群媒體上假新聞的感知可信度zh_TW
dc.titlePerceived believability of fake news on social mediaen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee畢南怡;簡怡雯zh_TW
dc.contributor.oralexamcommitteeNan-Yi Bi;Yi-Wen Chienen
dc.subject.keyword假新聞,社群媒體,推敲可行性模型,新聞感知可信度,社群媒體行為,zh_TW
dc.subject.keywordFake news,social media,Elaboration Likelihood Model (ELM),news perceived believability,social media behavior,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202500509-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-08-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2025-02-27-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf2.36 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved