Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97055
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳健輝zh_TW
dc.contributor.advisorGen-Huey Chenen
dc.contributor.author穆大有zh_TW
dc.contributor.authorTa-Yu Muen
dc.date.accessioned2025-02-26T16:14:48Z-
dc.date.available2025-02-27-
dc.date.copyright2025-02-26-
dc.date.issued2025-
dc.date.submitted2025-02-07-
dc.identifier.citation[1] J. Amjadi and M. Chellali. Complexity of the paired domination subdivision problem. Commun. Comb. Optim., 7(2):177–182, 2022.
[2] B. Bjorkman. Infectious power domination of hypergraphs. Discrete Math., 343(3):111724, 12, 2020.
[3] G. J. Chang. Algorithmic aspects of domination in graphs. In Handbook of Combinatorial Optimization, pages 339–405. Springer-Verlag, New York, second edition, 2013.
[4] M.-S. Chang. Weighted domination of cocomparability graphs. Discrete Appl. Math., 80(2-3):135–148, 1997.
[5] M.-S. Chang, S.-y. Hsieh, and G.-H. Chen. Dynamic programming on distancehereditary graphs. In Algorithms and computation, volume 1350 of Lecture Notes in Comput. Sci., pages 344–353. Springer, Berlin, 1997.
[6] M.-S. Chang, S.-C. Wu, G. J. Chang, and H.-G. Yeh. Domination in distancehereditary graphs. Discrete Appl. Math., 116(1-2):103–113, 2002.
[7] M. R. Chithra and A. Vijayakumar. Domination criticality in product graphs. AKCE Int. J. Graphs Comb., 12(1):19–25, 2015.
[8] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi. Total domination in graphs. Networks, 10(3):211–219, 1980.
[9] P. Damaschke. The Hamiltonian circuit problem for circle graphs is NP-complete. Inform. Process. Lett., 32(1):1–2, 1989.
[10] M. Damian-Iordache and S. V. Pemmaraju. A (2 + ϵ)-approximation scheme for minimum domination on circle graphs. J. Algorithms, 42(2):255–276, 2002.
[11] M. Dettlaff, D. Gözüpek, and J. Raczek. Paired domination versus domination and packing number in graphs. J. Comb. Optim., 44(2):921–933, 2022.
[12] D.-Z. Du and P.-J. Wan. Connected dominating set: theory and applications, volume 77. Springer Science & Business Media, 2012.
[13] G. Durán, L. N. Grippo, and M. D. Safe. Structural results on circular-arc graphs and circle graphs: a survey and the main open problems. Discrete Appl. Math., 164(part 2):427–443, 2014.
[14] P. Eakawinrujee and N. Trakultraipruk. Total and paired domination numbers of windmill graphs. Asian-Eur. J. Math., 16(7):Paper No. 2350123, 14, 2023.
[15] J. Edmonds. Paths, trees, and flowers. Canadian J. Math., 17:449–467, 1965.
[16] E. S. El-Mallah and L. K. Stewart. Independence and domination in polygon graphs. Discrete Appl. Math., 44(1-3):65–77, 1993.
[17] E. S. Elmallah and L. K. Stewart. Polygon graph recognition. J. Algorithms, 26(1):101–140, 1998.
[18] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theoret. Comput. Sci., 1(3):237–267, 1976.
[19] F. Gavril. Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks, 3:261–273, 1973.
[20] E. Gioan, C. Paul, M. Tedder, and D. Corneil. Practical and efficient circle graph recognition. Algorithmica, 69(4):759–788, 2014.
[21] W. Goddard and M. A. Henning. A characterization of cubic graphs with paireddomination number three-fifths their order. Graphs Combin., 25(5):675–692, 2009.
[22] W. Goddard and M. A. Henning. Independent domination in graphs: a survey and recent results. Discrete Math., 313(7):839–854, 2013.
[23] A. Gorzkowska, M. A. Henning, M. Pilśniak, and E. Tumidajewicz. Total and paired domination stability in prisms. Discuss. Math. Graph Theory, 43(4):1147–1169, 2023.
[24] A. D. Gray and M. A. Henning. Paired-domination game played on cycles. Discrete Appl. Math., 336:132–140, 2023.
[25] J. Guo, R. Niedermeier, and D. Raible. Improved algorithms and complexity results for power domination in graphs. Algorithmica, 52(2):177–202, 2008.
[26] P. Gupta. Domination in graph with application. Indian J. Res, 2(3):115–117, 2013.
[27] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Domination in Graphs: Advanced Topics. Marcel Dekker Inc., New York, 1998.
[28] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker Inc., New York, 1998.
[29] T. W. Haynes and P. J. Slater. Paired-domination in graphs. Networks: An International Journal, 32(3):199–206, 1998.
[30] S. T. Hedetniemi and R. C. Laskar. Bibliography on domination in graphs and some basic definitions of domination parameters. Discrete Math., 86(1-3):257–277, 1990.
[31] S. T. Hedetniemi and R. C. Laskar, editors. Topics on domination. Annals of Discrete Mathematics. North-Holland Publishing Co., Amsterdam, 1991.
[32] M. A. Henning. A survey of selected recent results on total domination in graphs. Discrete Math., 309(1):32–63, 2009.
[33] M. A. Henning and D. Pradhan. Algorithmic aspects of upper paired-domination in graphs. Theoret. Comput. Sci., 804:98–114, 2020.
[34] S.-Y. Hsieh, C.-W. Ho, T.-S. Hsu, M.-T. Ko, and G.-H. Chen. Characterization of efficiently parallel solvable problems on distance-hereditary graphs. SIAM J. Discrete Math., 15(4):488–518, 2002.
[35] J. M. Keil. The complexity of domination problems in circle graphs. Discrete Appl. Math., 42(1):51–63, 1993.
[36] T. Kloks. Treewidth of circle graphs. In Algorithms and computation (Hong Kong, 1993), volume 762 of Lecture Notes in Comput. Sci., pages 108–117. Springer, Berlin, 1993.
[37] T. Kloks, D. Kratsch, and C. K. Wong. Minimum fill-in on circle and circular-arc graphs. J. Algorithms, 28(2):272–289, 1998.
[38] S. Kosari, Z. Shao, X. Shi, S. M. Sheikholeslami, M. Chellali, R. Khoeilar, and H. Karami. Cubic graphs have paired-domination number at most four-seventh of their orders. Discrete Math., 345(12):Paper No. 113086, 18, 2022.
[39] D. Kratsch and L. Stewart. Total domination and transformation. Inform. Process. Lett., 63(3):167–170, 1997.
[40] E. Lappas, S. D. Nikolopoulos, and L. Palios. An O(n)-time algorithm for the paired domination problem on permutation graphs. European J. Combin., 34(3):593–608, 2013.
[41] C.-C. Lin, C.-Y. Hsieh, and T.-Y. Mu. A linear-time algorithm for weighted paireddomination on block graphs. J. Comb. Optim., 44(1):269–286, 2022.
[42] C.-C. Lin, K.-C. Ku, and C.-H. Hsu. Paired-domination problem on distancehereditary graphs. Algorithmica, 82(10):2809–2840, 2020.
[43] C. Lu, C. Wang, and K. Wang. Upper bounds for the paired-domination numbers of graphs. Graphs Combin., 32(4):1489–1494, 2016.
[44] S. Shen and J. C. Smith. A decomposition approach for solving a broadcast domination network design problem. Ann. Oper. Res., 210:333–360, 2013.
[45] H. Tuncel Golpek and A. Aytac. Paired domination in transformation graphs: Gxy+ and Gxy−. Bull. Int. Math. Virtual Inst., 13(3):429–438, 2023.
[46] W. Unger. On the k-colouring of circle-graphs. In STACS 88 (Bordeaux, 1988), volume 294 of Lecture Notes in Comput. Sci., pages 61–72. Springer, Berlin, 1988.
[47] D. B. West. Introduction to Graph Theory. Prentice-Hall, 2 edition, 2001.
[48] J. Wu and H. Li. A dominating-set-based routing scheme in ad hoc wireless networks. Telecommunication Systems, 18:13–36, 2001.
[49] H.-G. Yeh and G. J. Chang. Weighted connected domination and Steiner trees in distance-hereditary graphs. Discrete Appl. Math., 87(1-3):245–253, 1998.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97055-
dc.description.abstract支配問題是圖論中一個研究已久的重要領域,並且在多個圖類中已有相關研究。本論文聚焦於圓形圖及其兩個子類別:k-多邊形圖和保距圖,我們為解決這些圖類中的支配問題提供了新的見解和成果。

在圓形圖的研究中,我們透過將該問題歸約到漢密頓路徑問題,證明了成對支配問題的NP完全性。此外,我們設計了一個O(n+m)時間的演算法來計算圓形圖的最小葉區覆蓋。在Damian和Pemmaraju的成果基礎上,我們擴展了其應用,設計了針對完全支配問題的10倍近似演算法和成對支配問題的12倍近似演算法。接著我們更進一步為完全支配和成對支配問題分別提出了(2+ε)和(4+ε)的近似演算法。

對於k-多邊形圖,我們提出了多項式時間解決支配、完全支配和成對支配問題的演算法。我們設計了一個高效的O(n^(3k-5))時間複雜度的演算法來解決支配和完全支配問題,以及一個O(n(n/(k^2-k))^(2k^2-2k))時間複雜度的演算法來解決成對支配問題。

在保距圖的研究中,我們提出了一個O(n+m)時間的演算法來尋找最小成對支配集,並在已知分解樹的情況下將其時間複雜度降低至O(n)。我們的方法基於動態規劃,通過在分解樹上自下而上的計算關鍵值,並利用建立新的數學關係式使得計算過程更加高效。

總的來說,本論文貢獻了創新的演算法和理論結果,推動了圓形圖及其子類上支配相關問題的研究,為未來相關領域的研究提供了有價值的工具。
zh_TW
dc.description.abstractThe domination problems across specific classes of graphs are an important topic in graph theory and have been studied in various graph classes. This thesis focuses on circle graphs and two of their subclasses: k-polygon graphs and distance-hereditary graphs. Through innovative approaches and efficient algorithm designs, we contribute new insights and results for addressing domination-related issues in these graph classes.

In the case of circle graphs, we establish the NP-completeness of the paired-domination problem through a reduction from the Hamiltonian path problem. Additionally, we design an O(n+m)-time algorithm to compute a minimum leaf sector cover on circle graphs. Building upon prior work, we extend the leaf sector cover to develop 10-approximation and 12-approximation algorithms for the total domination and paired-domination problems, respectively. Then, we further propose (2+ε)- and (4+ε)-approximation schemes for these problems.

For k-polygon graphs, we present polynomial-time algorithms to solve the domination, total domination, and paired-domination problems. These results are refined with a more efficient O(n^(3k-5))-time algorithm for the domination and total problem, and an O(n(n/(k^2-k))^(2k^2-2k))-time algorithm for paired-domination.

In the realm of distance-hereditary graphs, we improve the efficiency of finding minimum paired-dominating sets by given an O(n+m)-time algorithm, which can be reduced to O(n) when a decomposition tree is available. Our approach, based on dynamic programming, computes key values on the decomposition tree in a bottom-up manner by establishing new mathematical equations that streamline the computation process.

Overall, this thesis contributes novel algorithms and theoretical results that advance the study of domination-related problems on circle graphs and its subcalsses, offering valuable tools for future research in this area.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:14:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-26T16:14:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
Chapter 1 Introduction 1
1.1 Domination Problem and its Variants . . . . . . . . . . . . . . . . . 2
1.2 Circle Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 k-polygon Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Distance-Hereditary Graphs . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 2 Domination Problems on Circle Graphs 9
2.1 NP-completeness for Circle Graphs . . . . . . . . . . . . . . . . . . 10
2.2 Leaf Sector Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Approximation Algorithms for Domination Problems . . . . . . . . . 20
2.3.1 An approximation algorithm for the total domination problem . . . . 22
2.3.2 Correctness and approximation ratio . . . . . . . . . . . . . . . . . 24
2.4 Approximation Schemes for Domination Problems . . . . . . . . . . 28
Chapter 3 Domination Problems on k-polygon Graphs 33
3.1 Domination between Two Sides . . . . . . . . . . . . . . . . . . . . 33
3.2 Algorithms for k-polygon graphs . . . . . . . . . . . . . . . . . . . 35
3.3 Improved Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Chapter 4 Paired Domination on Distance-Hereditary Graphs 43
4.1 Algorithm for Distance-Hereditary Graphs . . . . . . . . . . . . . . 43
4.1.1 Decomposition Trees . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Correctness and Implementation Details . . . . . . . . . . . . . . . . 53
4.2.1 Key properties of ˆγk(v) . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 True Twin Operation (G = Gl ⊗ Gr) . . . . . . . . . . . . . . . . . 55
4.2.2.1 Determine mˆin(v), αˆ(v), and βˆ(v) for true twin operation 55
4.2.2.2 Equation (4.2) holds for true twin operation ⊗ . . . . . 59
4.2.3 False Twin Operation (G = Gl ⊙ Gr) . . . . . . . . . . . . . . . . 62
4.2.3.1 Determine mˆin(v), αˆ(v), and βˆ(v) for false twin operation. . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.3.2 Equation (4.2) holds for false twin operation ⊙ . . . . . 67
4.2.4 Attachment Operation (G = Gl ⊕ Gr) . . . . . . . . . . . . . . . . 69
4.2.4.1 Case C1: conditions D1 and D2 are false . . . . . . . . 71
4.2.4.2 Case C2: condition D1 is true . . . . . . . . . . . . . . 76
4.2.4.3 Case C3: condition D2 is true . . . . . . . . . . . . . . 79
4.3 Determine mˆtypr(v) and mˆtyts(v) . . . . . . . . . . . . . . . . . . . 86
4.3.1 Determine mˆtypr(v) and mˆtyts(v) for true twin operation ⊗ . . . . 87
4.3.2 Determine mˆtypr(v) and mˆtyts(v) for false twin operation ⊙ . . . . 92
4.3.3 Determine mˆtypr(v) and mˆtyts(v) for attachment operation ⊕ . . . 94
Chapter 5 Conclusion and Future Works 99
References 101
-
dc.language.isoen-
dc.title圓形圖上的支配相關問題zh_TW
dc.titleDomination-Related Problems on Circle Graphsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee劉邦鋒;趙坤茂;林清池;張貴雲;傅榮勝zh_TW
dc.contributor.oralexamcommitteePang-Feng Liu;Kun-Mao Chao;Ching-Chi Lin;Guey-Yun Chang;Jung-Sheng Fuen
dc.subject.keyword支配,成對支配,完全支配,圓形圖,k-多邊形圖,保距圖,zh_TW
dc.subject.keywordDomination,Paired Domination,Total Domination,Circle Graphs,k-polygon Graphs,Distance-hereditary Graphs,en
dc.relation.page105-
dc.identifier.doi10.6342/NTU202500477-
dc.rights.note未授權-
dc.date.accepted2025-02-08-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
1.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved