請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97052完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃念祖 | zh_TW |
| dc.contributor.advisor | Nien-Tsu Huang | en |
| dc.contributor.author | 黃宣融 | zh_TW |
| dc.contributor.author | Syuan-Rong Huang | en |
| dc.date.accessioned | 2025-02-26T16:14:00Z | - |
| dc.date.available | 2025-02-27 | - |
| dc.date.copyright | 2025-02-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-09-23 | - |
| dc.identifier.citation | [1] M. Di Cesare et al., "The Heart of the World," Global Heart, vol. 19, no. 1, 2024, doi: 10.5334/gh.1288.
[2] S. Szunerits, V. Mishyn, I. Grabowska, and R. Boukherroub, "Electrochemical cardiovascular platforms: Current state of the art and beyond," Biosensors and Bioelectronics, vol. 131, pp. 287-298, 2019/04/15/ 2019, doi: https://doi.org/10.1016/j.bios.2019.02.010. [3] A. Campu, I. Muresan, A.-M. Craciun, S. Cainap, S. Astilean, and M. Focsan, "Cardiac Troponin Biosensor Designs: Current Developments and Remaining Challenges," International Journal of Molecular Sciences, vol. 23, no. 14, p. 7728, 2022. [Online]. Available: https://www.mdpi.com/1422-0067/23/14/7728. [4] R. Dhingra and R. S. Vasan, "Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers," Trends in Cardiovascular Medicine, vol. 27, no. 2, pp. 123-133, 2017/02/01/ 2017, doi: https://doi.org/10.1016/j.tcm.2016.07.005. [5] M. F. M. Fathil et al., "Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers," Biosensors and Bioelectronics, vol. 70, pp. 209-220, 2015/08/15/ 2015, doi: https://doi.org/10.1016/j.bios.2015.03.037. [6] X.-W. Chen and N.-T. Huang, "Dual Ion-Selective Membrane Deposited Ion-Sensitive Field-Effect Transistor Integrating a Whole Blood Processing Microchamber for In Situ Blood Ion Testing," ACS Sensors, vol. 8, no. 2, pp. 904-913, 2023/02/24 2023, doi: 10.1021/acssensors.2c02603. [7] "Troponin testing in the primary care setting," Australian Journal for General Practitioners, vol. 46, pp. 823-826, 09/18 2017. [Online]. Available: https://www.racgp.org.au/afp/2017/november/troponin-testing. [8] M. Savonnet, T. Rolland, M. Cubizolles, Y. Roupioz, and A. Buhot, "Recent advances in cardiac biomarkers detection: From commercial devices to emerging technologies," Journal of Pharmaceutical and Biomedical Analysis, vol. 194, p. 113777, 2021/02/05/ 2021, doi: https://doi.org/10.1016/j.jpba.2020.113777. [9] R. Shave et al., "Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications," J Am Coll Cardiol, vol. 56, no. 3, pp. 169-76, Jul 13 2010, doi: 10.1016/j.jacc.2010.03.037. [10] S. Y. Song, Y. D. Han, K. Kim, S. S. Yang, and H. C. Yoon, "A fluoro-microbead guiding chip for simple and quantifiable immunoassay of cardiac troponin I (cTnI)," Biosensors and Bioelectronics, vol. 26, no. 9, pp. 3818-3824, 2011/05/15/ 2011, doi: https://doi.org/10.1016/j.bios.2011.02.036. [11] Y. Cai, K. Kang, Q. Li, Y. Wang, and X. He, "Rapid and Sensitive Detection of Cardiac Troponin I for Point-of-Care Tests Based on Red Fluorescent Microspheres," Molecules, vol. 23, no. 5, p. 1102, 2018, doi: 10.3390/molecules23051102. [12] C. Hu et al., "SERS-based magnetic immunoassay for simultaneous detection of cTnI and H-FABP using core–shell nanotags," Analytical Methods, vol. 12, no. 45, pp. 5442-5449, 2020, doi: 10.1039/d0ay01564d. [13] C. Hu et al., "SERS-based immunoassay using core–shell nanotags and magnetic separation for rapid and sensitive detection of cTnI," New Journal of Chemistry, vol. 45, no. 6, pp. 3088-3094, 2021, doi: 10.1039/d0nj05774f. [14] Q. Wu et al., "Ultrasensitive magnetic field-assisted surface plasmon resonance immunoassay for human cardiac troponin I," Biosensors and Bioelectronics, vol. 96, pp. 288-293, 2017/10/15/ 2017, doi: https://doi.org/10.1016/j.bios.2017.05.023. [15] D. Çimen, N. Bereli, S. Günaydın, and A. Denizli, "Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody," Talanta, vol. 219, p. 121259, 2020/11/01/ 2020, doi: https://doi.org/10.1016/j.talanta.2020.121259. [16] E. Spain et al., "Cardiac Troponin I: Ultrasensitive Detection Using Faradaic Electrochemical Impedance," ACS Omega, vol. 3, no. 12, pp. 17116-17124, 2018, doi: 10.1021/acsomega.8b01758. [17] I. Grabowska et al., "Electrochemical Aptamer-Based Biosensors for the Detection of Cardiac Biomarkers," ACS Omega, vol. 3, no. 9, pp. 12010-12018, 2018, doi: 10.1021/acsomega.8b01558. [18] T. Lee et al., "Fabrication of electrochemical biosensor composed of multi-functional DNA structure/Au nanospike on micro-gap/PCB system for detecting troponin I in human serum," Colloids and Surfaces B: Biointerfaces, vol. 175, pp. 343-350, 2019/03/01/ 2019, doi: https://doi.org/10.1016/j.colsurfb.2018.11.078. [19] T.-M. Pan et al., "Rapid and label-free detection of the troponin in human serum by a TiN-based extended-gate field-effect transistor biosensor," Biosensors and Bioelectronics, vol. 201, p. 113977, 2022/04/01/ 2022, doi: https://doi.org/10.1016/j.bios.2022.113977. [20] J. Kwon, Y. Lee, T. Lee, and J.-H. Ahn, "Aptamer-Based Field-Effect Transistor for Detection of Avian Influenza Virus in Chicken Serum," Analytical Chemistry, vol. 92, no. 7, pp. 5524-5531, 2020/04/07 2020, doi: 10.1021/acs.analchem.0c00348. [21] J. An et al., "Extended-Gate Field-Effect Transistor Consisted of a CD9 Aptamer and MXene for Exosome Detection in Human Serum," ACS Sensors, 2023, doi: 10.1021/acssensors.3c00879. [22] N. C. S. Vieira, A. Figueiredo, J. F. dos Santos, S. M. Aoki, F. E. G. Guimarães, and V. Zucolotto, "Label-free electrical recognition of a dengue virus protein using the SEGFET simplified measurement system," Analytical Methods, 10.1039/C4AY01803F vol. 6, no. 22, pp. 8882-8885, 2014, doi: 10.1039/C4AY01803F. [23] P. Saengdee et al., "A silicon nitride ISFET based immunosensor for Ag85B detection of tuberculosis," Analyst, 10.1039/C6AN00568C vol. 141, no. 20, pp. 5767-5775, 2016, doi: 10.1039/C6AN00568C. [24] T. Minamiki, T. Minami, P. Koutnik, P. Anzenbacher, Jr., and S. Tokito, "Antibody- and Label-Free Phosphoprotein Sensor Device Based on an Organic Transistor," Analytical Chemistry, vol. 88, no. 2, pp. 1092-1095, 2016/01/19 2016, doi: 10.1021/acs.analchem.5b04618. [25] Y. Wang et al., "A handheld testing device for the fast and ultrasensitive recognition of cardiac troponin I via an ion-sensitive field-effect transistor," Biosensors and Bioelectronics, vol. 193, p. 113554, 2021/12/01/ 2021, doi: https://doi.org/10.1016/j.bios.2021.113554. [26] S. Hou et al., "Ultrasensitive Detection of SARS‐CoV‑2 by Flexible Metal Oxide Field‐Effect Transistors," Advanced Functional Materials, vol. 33, no. 41, 2023, doi: 10.1002/adfm.202301268. [27] S. Wang et al., "Ultrasensitive Antibiotic Perceiving Based on Aptamer-Functionalized Ultraclean Graphene Field-Effect Transistor Biosensor," Analytical Chemistry, vol. 94, no. 42, pp. 14785-14793, 2022/10/25 2022, doi: 10.1021/acs.analchem.2c03732. [28] Y. Chen et al., "Artificial Nucleotide Aptamer-Based Field-Effect Transistor for Ultrasensitive Detection of Hepatoma Exosomes," Analytical Chemistry, vol. 95, no. 2, pp. 1446-1453, 2023/01/17 2023, doi: 10.1021/acs.analchem.2c04433. [29] M. S. Andrianova, V. P. Grudtsov, N. V. Komarova, E. V. Kuznetsov, and A. E. Kuznetsov, "ISFET-based Aptasensor for Thrombin Detection Using Horseradish Peroxidase," Procedia Engineering, vol. 174, pp. 1084-1092, 2017, doi: 10.1016/j.proeng.2017.01.261. [30] S. M. b. Fakhruddin, K. Y. Inoue, M. Esashi, and H. Shiku, "C-reactive Protein Detection Using an Ion-sensitive Field-effect Transistor (ISFET)-based Aptasensor with a Chemically Modified Gate Surface for Improved Sensitivity," Sensors and Materials, vol. 35, no. 10, 2023, doi: 10.18494/sam4570. [31] S. Arshavsky‐Graham, C. Heuer, X. Jiang, and E. Segal, "Aptasensors versus immunosensors—Which will prevail?," Engineering in Life Sciences, vol. 22, no. 3-4, pp. 319-333, 2022, doi: 10.1002/elsc.202100148. [32] B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, and K. W. Plaxco, "An Electronic, Aptamer-Based Small-Molecule Sensor for the Rapid, Label-Free Detection of Cocaine in Adulterated Samples and Biological Fluids," Journal of the American Chemical Society, vol. 128, no. 10, pp. 3138-3139, 2006/03/01 2006, doi: 10.1021/ja056957p. [33] M. Debiais, A. Lelievre, M. Smietana, and S. Müller, "Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors," Nucleic Acids Research, vol. 48, no. 7, pp. 3400-3422, 2020, doi: 10.1093/nar/gkaa132. [34] L. Hao et al., "A Fluorescent DNA Hydrogel Aptasensor Based on the Self-Assembly of Rolling Circle Amplification Products for Sensitive Detection of Ochratoxin A," Journal of Agricultural and Food Chemistry, vol. 68, no. 1, pp. 369-375, 2020/01/08 2020, doi: 10.1021/acs.jafc.9b06021. [35] H. Jo et al., "Electrochemical Aptasensor of Cardiac Troponin I for the Early Diagnosis of Acute Myocardial Infarction," Analytical Chemistry, vol. 87, no. 19, pp. 9869-9875, 2015, doi: 10.1021/acs.analchem.5b02312. [36] H. Jo, J. Her, H. Lee, Y.-B. Shim, and C. Ban, "Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes," Talanta, vol. 165, pp. 442-448, 2017/04/01/ 2017, doi: https://doi.org/10.1016/j.talanta.2016.12.091. [37] P. Gopinathan, A. Sinha, Y.-D. Chung, S.-C. Shiesh, and G.-B. Lee, "Optimization of an enzyme linked DNA aptamer assay for cardiac troponin I detection: synchronous multiple sample analysis on an integrated microfluidic platform," The Analyst, vol. 144, no. 16, pp. 4943-4951, 2019, doi: 10.1039/c9an00779b. [38] B. Wu et al., "Detection of C-reactive protein using nanoparticle-enhanced surface plasmon resonance using an aptamer-antibody sandwich assay," Chemical Communications, 10.1039/C5CC10486F vol. 52, no. 17, pp. 3568-3571, 2016, doi: 10.1039/C5CC10486F. [39] X. Qiao et al., "Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-MoS2 nanoconjugates," Biosensors and Bioelectronics, vol. 113, pp. 142-147, 2018/08/15/ 2018, doi: https://doi.org/10.1016/j.bios.2018.05.003. [40] A. Sinha, P. Gopinathan, Y.-D. Chung, S.-C. Shiesh, and G.-B. Lee, "Simultaneous detection of multiple NT-proBNP clinical samples utilizing an aptamer-based sandwich assay on an integrated microfluidic system," Lab on a Chip, 10.1039/C9LC00115H vol. 19, no. 9, pp. 1676-1685, 2019, doi: 10.1039/C9LC00115H. [41] M. Negahdary, M. Behjati-Ardakani, H. Heli, and N. Sattarahmady, "A Cardiac Troponin T Biosensor Based on Aptamer Self-assembling on Gold," ijmcmed, vol. 8, no. 4, pp. 271-282, 2019, doi: 10.22088/IJMCM.BUMS.8.4.271. [42] Z. Luo, D. Sun, Y. Tong, Y. Zhong, and Z. Chen, "DNA nanotetrahedron linked dual-aptamer based voltammetric aptasensor for cardiac troponin I using a magnetic metal-organic framework as a label," Microchimica Acta, vol. 186, no. 6, p. 374, 2019/05/23 2019, doi: 10.1007/s00604-019-3470-1. [43] J. Zhao, D. Liang, S. Gao, X. Hu, K. Koh, and H. Chen, "Analyte-resolved magnetoplasmonic nanocomposite to enhance SPR signals and dual recognition strategy for detection of BNP in serum samples," Biosensors and Bioelectronics, vol. 141, p. 111440, 2019/09/15/ 2019, doi: https://doi.org/10.1016/j.bios.2019.111440. [44] T. Lee et al., "Fabrication of Troponin I Biosensor Composed of Multi-Functional DNA Structure/Au Nanocrystal Using Electrochemical and Localized Surface Plasmon Resonance Dual-Detection Method," Nanomaterials, vol. 9, no. 7, doi: 10.3390/nano9071000. [45] M. António, R. Ferreira, R. Vitorino, and A. L. Daniel-da-Silva, "A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles," Talanta, vol. 214, p. 120868, 2020/07/01/ 2020, doi: https://doi.org/10.1016/j.talanta.2020.120868. [46] J. Zhang, T. Lakshmipriya, and S. C. B. Gopinath, "Electroanalysis on an Interdigitated Electrode for High-Affinity Cardiac Troponin I Biomarker Detection by Aptamer–Gold Conjugates," ACS Omega, vol. 5, no. 40, pp. 25899-25905, 2020/10/13 2020, doi: 10.1021/acsomega.0c03260. [47] T. Rodrigues et al., "Highly performing graphene-based field effect transistor for the differentiation between mild-moderate-severe myocardial injury," Nano Today, vol. 43, p. 101391, 2022/04/01/ 2022, doi: https://doi.org/10.1016/j.nantod.2022.101391. [48] S. Kakkar, S. Chauhan, Bharti, M. Rohit, and V. Bhalla, "Conformational switching of aptamer biointerfacing graphene-gold nanohybrid for ultrasensitive label-free sensing of cardiac Troponin I," Bioelectrochemistry, vol. 150, p. 108348, 2023/04/01/ 2023, doi: https://doi.org/10.1016/j.bioelechem.2022.108348. [49] G. Park et al., "Rapid electrical biosensor consisting of DNA aptamer/carbon nanonetwork on microelectrode array for cardiac troponin I in human serum," Sensors and Actuators B: Chemical, vol. 393, p. 134295, 2023/10/15/ 2023, doi: https://doi.org/10.1016/j.snb.2023.134295. [50] "<Thirty years of ISFETOLOGY What happened in the past 30 years and what may happenin the next 30 years.pdf>." [51] S. A. Pullano et al., "Deep Submicron EGFET Based on Transistor Association Technique for Chemical Sensing," Sensors, vol. 19, no. 5, p. 1063, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/5/1063. [52] T. Wang et al., "Development of nucleic acid aptamer-based lateral flow assays: A robust platform for cost-effective point-of-care diagnosis," Theranostics, vol. 11, pp. 5174-5196, 03/05 2021, doi: 10.7150/thno.56471. [53] N. Nakatsuka et al., "Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing," Science, vol. 362, no. 6412, pp. 319-324, 2018, doi: doi:10.1126/science.aao6750. [54] c. Wikipedia, "Hill equation (biochemistry)," in Wikipedia, The Free Encyclopedia., ed. [55] A. Sinha et al., "An integrated microfluidic platform to perform uninterrupted SELEX cycles to screen affinity reagents specific to cardiovascular biomarkers," Biosensors and Bioelectronics, vol. 122, pp. 104-112, 2018/12/30/ 2018, doi: https://doi.org/10.1016/j.bios.2018.09.040. [56] c. Wikimedia Commons, "File:TCEP reaction reducing a disulfide bond.svg," in Wikipedia, The Free Encyclopedia., ed. [57] M. Zuker, "Mfold web server for nucleic acid folding and hybridization prediction," Nucleic Acids Research, vol. 31, no. 13, pp. 3406-3415, 2003, doi: 10.1093/nar/gkg595. [58] J. Baranwal, B. Barse, G. Gatto, G. Broncova, and A. Kumar, "Electrochemical Sensors and Their Applications: A Review," Chemosensors, vol. 10, no. 9, p. 363, 2022, doi: 10.3390/chemosensors10090363. [59] H. Khateb, G. Klös, R. L. Meyer, and D. S. Sutherland, "Development of a Label-Free LSPR-Apta Sensor for Staphylococcus aureus Detection," ACS Applied Bio Materials, vol. 3, no. 5, pp. 3066-3077, 2020/05/18 2020, doi: 10.1021/acsabm.0c00110. [60] X.-Q. Feng et al., "Ferrocene-Labelled Electroactive Aptamer-Based Sensors (Aptasensors) for Glycated Haemoglobin," Molecules, vol. 26, no. 23, p. 7077, 2021. [Online]. Available: https://www.mdpi.com/1420-3049/26/23/7077. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97052 | - |
| dc.description.abstract | 急性心肌梗塞 (AMI) 是指冠狀動脈突然阻塞的情況。作為急性冠狀動脈綜合症 (ACS) 的一種嚴重形式,即時檢測AMI對於防止永久性心臟損傷和心衰竭至關重要。在臨床環境中,免疫分析是疑似心血管疾病(CVDs)生物標誌物分析的主要方法,使用的技術包括化學發光、螢光和酵素結合免疫吸附法(ELISA)。然而,這些方法面臨著非特異性吸附、高溫下有限的耐久性以及用於生物檢測中複雜的抗體修飾等困難。為了克服這些挑戰,我們建立了一種功能化適體的延伸式閘極場效電晶體(EGFET),並結合一個全血處理的微流體平台用於檢測心肌旋轉蛋白(cTnI)。透過與目標抗原結合並引起適體結構的構象變化來提高感測性能。我們的EGFET-適體感測器能夠在0.1 pg/mL到1000 pg/mL的廣泛動態範圍內顯示出良好的對數線性性能。此外,我們有效地使用了氯化銀銀膠(Ag/AgCl)作為參考電極,它可以方便地整合到我們的微流體平台中。我們也透過微流體系統控制樣本與檢測溶液的流動來改進了檢測過程,使操作更加簡單有序。延伸閘極場效應電晶體-適體感測器和微流體平台的結合減少了處理血液所需的時間,並能夠精確測量全血中的心肌旋轉蛋白,顯示出在臨床檢測應用中的巨大潛力。 | zh_TW |
| dc.description.abstract | Acute myocardial infarction (AMI) occurs when a coronary artery is suddenly blocked. As a severe form of acute coronary syndrome (ACS), timely detection of AMI is crucial to prevent permanent cardiac damage and heart failure. In clinical settings, immunoanalysis is the primary method for biomarker analysis in suspected cardiovascular diseases (CVDs), using techniques such as chemiluminescence, fluorescence, and ELISA. However, these methods face difficulties such as nonspecific adsorption, limited durability at high temperatures, and complex antibody modifications for biological detection. To overcome these challenges, we established an aptamer-functionalized Extended Gate Field-Effect Transistor (EGFET) integrated with a whole-blood processing microfluidic platform for troponin I (cTnI) detection. This decision improves sensing performance by increasing target binding and causing conformational changes in the aptamer structure. Our EGFET-aptasensor showed good log-linear performance over a broad dynamic range of 0.1 pg/mL to 1000 pg/mL. Additionally, we effectively used reference electrode silver chloride (Ag/AgCl) paste, which is conveniently incorporated into our microfluidic platform. We enhanced the process of detection for more straightforward and organized operations by managing the flow of samples and detection buffers. The combination of the EGFET-aptasensor and microfluidic platform reduced the time required for processing blood and allowed for precise measurement of cTnI spiked in whole blood, showing great promise for point-of-care applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:14:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-26T16:14:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 ii
誌謝 iii 摘要 v ABSTRACT vi Chapter 1 Introduction 1 1-1 Research Background 1 1-2 Literature Review 4 1-2-1 Cardiac Biomarkers for Myocardial Infarction 4 1-2-2 The Development of cTnI Biosensor 6 1-2-3 Applications of EGFET 11 1-2-4 Applications of Aptamer-based Biosensors 15 1-2-5 Research Motivation 21 Chapter 2 Experimental Design 23 2-1 The Principle of Extended Gate Field-Effect Transistor (EGFET) 23 2-2 Systematic Evolution of Ligands by Exponential Enrichment (SELEX) 25 2-3 The Working Principle of Aptamer-based EGFET 26 2-4 Determination of Aptamer Binding Affinity 28 Chapter 3 Materials and Methods 30 3-1 Experimental Setup 30 3-2 PMMA Microfluidic Device Fabrication 32 3-3 The Integration of Au Electrode with Microfluidic Device 32 3-4 Operation Procedures of the EGFET-aptasensor 34 3-5 Operation Procedures of the Microfluidic Platform 36 3-6 Biomarkers and Blood Sample Preparation 39 Chapter 4 Results and Discussion 40 4-1 Aptamer-Based EGFET Sensor - Standard Reference Electrode Probe 41 4-1-1 EGFET pH Performance 41 4-1-2 Sensitivity 42 4-1-3 Specificity 45 4-1-4 Stability 46 4-2 Aptamer-Based EGFET Sensor - Ag/AgCl Paste Reference Electrode 47 4-2-1 EGFET pH Performance 47 4-2-2 Sensitivity 49 4-2-3 Specificity 51 4-2-4 Stability 52 4-2-5 Repetitive test 54 4-2-6 Regeneration test 56 4-3 Microfluidic Chip Integrated with Piezoelectric Micropump 59 4-3-1 Flow Rate and Time Control 59 4-3-2 Filter Efficiency 61 4-4 On-Chip Performance 62 4-4-1 cTnI Spiked in Serum Measurement 62 4-4-2 Whole Blood Processing Performance 63 4-4-3 cTnI Spiked in Whole-blood Measurement 64 Chapter 5 Conclusion 66 Chapter 6 Future work 67 Chapter 7 References 69 | - |
| dc.language.iso | en | - |
| dc.subject | 急性心肌梗塞 | zh_TW |
| dc.subject | 全血處理 | zh_TW |
| dc.subject | 微流體平台 | zh_TW |
| dc.subject | EGFET | zh_TW |
| dc.subject | 適體感測器 | zh_TW |
| dc.subject | 心肌旋轉蛋白 | zh_TW |
| dc.subject | EGFET | en |
| dc.subject | aptasensor | en |
| dc.subject | Acute Myocardial Infarction | en |
| dc.subject | Cardiac-Troponin I | en |
| dc.subject | whole-blood processing | en |
| dc.subject | Microfluidic Platform | en |
| dc.title | 使用適體修飾之延伸閘極場效應電晶體結合壓電微泵驅動微流體系統進行全血處理及心肌旋轉蛋白檢測 | zh_TW |
| dc.title | Aptamer-based Extended Gate Field-Effect Transistor (EGFET) Integrating Piezoelectric Micropump-Powered Microfluidic System for Whole Blood Processing and Detection of Cardiac Troponin I | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林致廷;盧彥文;林宗宏 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Ting Lin;Yen-Wen Lu;Zong-Hong Lin | en |
| dc.subject.keyword | 心肌旋轉蛋白,急性心肌梗塞,適體感測器,EGFET,微流體平台,全血處理, | zh_TW |
| dc.subject.keyword | Cardiac-Troponin I,Acute Myocardial Infarction,aptasensor,EGFET,Microfluidic Platform,whole-blood processing, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202404395 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-09-24 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2025-02-27 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 11.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
