Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97044
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志平zh_TW
dc.contributor.advisorChih-Ping Weien
dc.contributor.author侯宗佑zh_TW
dc.contributor.authorTsung-Yu Houen
dc.date.accessioned2025-02-26T16:11:52Z-
dc.date.available2025-02-27-
dc.date.copyright2025-02-26-
dc.date.issued2025-
dc.date.submitted2025-02-09-
dc.identifier.citationMinistry of Health and Welfare. (2024, June). 112年國人死因統計結果. From https://www.mohw.gov.tw/cp-16-79055-1.html
Aggarwal, S., Verma, S. S., Aggarwal, S., & Gupta, S. C. (2021). Drug repurposing for breast cancer therapy: Old weapon for new battle. Seminars in cancer biology, 68, pp. 8–20.
Ashley, E. A. (2015). The precision medicine initiative: a new national effort. Jama, 313, 2119–2120.
Balažević, I., Allen, C., & Hospedales, T. M. (2019). Tucker: Tensor factorization for knowledge graph completion. arXiv preprint arXiv:1901.09590.
Bethune, G., Bethune, D., Ridgway, N., & Xu, Z. (2010). Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. Journal of thoracic disease, 2, 48.
Biomarkers Definitions Working Group. (2001). Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical pharmacology & therapeutics, 69, 89–95.
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. Advances in neural information processing systems, 26.
Bordi, P., Del Re, M., Danesi, R., & Tiseo, M. (2015). Circulating DNA in diagnosis and monitoring EGFR gene mutations in advanced non-small cell lung cancer. Translational lung cancer research, 4, 584.
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 74, 229–263.
Cai, L., & Wang, W. Y. (2017). Kbgan: Adversarial learning for knowledge graph embeddings. arXiv preprint arXiv:1711.04071.
Califf, R. M. (2018). Biomarker definitions and their applications. Experimental biology and medicine, 243, 213–221.
Che, F., Zhang, D., Tao, J., Niu, M., & Zhao, B. (2020). Parame: Regarding neural network parameters as relation embeddings for knowledge graph completion. Proceedings of the AAAI conference on artificial intelligence, 34, pp. 2774–2781.
Davidson, K. W., Barry, M. J., Mangione, C. M., Cabana, M., Caughey, A. B., Davis, E. M., . . . others. (2021). Screening for prediabetes and type 2 diabetes: US Preventive Services Task Force recommendation statement. Jama, 326, 736–743.
Dettmers, T., Minervini, P., Stenetorp, P., & Riedel, S. (2018). Convolutional 2d knowledge graph embeddings. Proceedings of the AAAI conference on artificial intelligence, 32.
Fang, S., & Wang, Z. (2014). EGFR mutations as a prognostic and predictive marker in non-small-cell lung cancer. Drug design, development and therapy, 1595–1611.
Henry, N. L., & Hayes, D. F. (2012). Cancer biomarkers. Molecular oncology, 6, 140–146.
Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D., Gutierrez, C., . . . others. (2021). Knowledge graphs. ACM Computing Surveys (Csur), 54, 1–37.
Hong, G., Kim, Y., Choi, Y., & Song, M. (2021). BioPREP: deep learning-based predicate classification with SemMedDB. Journal of biomedical informatics, 122, 103888.
Jakovljević, M., & Ostojić, L. (2013). Comorbidity and multimorbidity in medicine today: challenges and opportunities for bringing separated branches of medicine closer to each other. Psychiatria Danubina, 25, 18–28.
Jin, T. Y., Park, K. S., Nam, S. E., Yoo, Y. B., Park, W. S., & Yun, I. J. (2022). BRCA1/2 serves as a biomarker for poor prognosis in breast carcinoma. International Journal of Molecular Sciences, 23, 3754.
Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., & Rindflesch, T. C. (2012). SemMedDB: a PubMed-scale repository of biomedical semantic predications. Bioinformatics, 28, 3158–3160.
Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Krasinskas, A. M. (2011). EGFR signaling in colorectal carcinoma. Pathology research international, 2011, 932932.
Krist, A. H., Davidson, K. W., Mangione, C. M., Cabana, M., Caughey, A. B., Davis, E. M., . . . others. (2021). Screening for hypertension in adults: US Preventive Services Task Force reaffirmation recommendation statement. Jama, 325, 1650–1656.
Kuchenbaecker, K. B., Hopper, J. L., Barnes, D. R., Phillips, K.-A., Mooij, T. M., Roos-Blom, M.-J., . . . others. (2017). Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. Jama, 317, 2402–2416.
Kulkarni, V. S., Alagarsamy, V., Solomon, V. R., Jose, P. A., & Murugesan, S. (2023). Drug repurposing: an effective tool in modern drug discovery. Russian Journal of Bioorganic Chemistry, 49, 157–166.
Kumar, S., Mohan, A., & Guleria, R. (2006). Biomarkers in cancer screening, research and detection: present and future: a review. Biomarkers, 11, 385–405.
Lamm, D. L. (1992). Carcinoma in situ. The Urologic clinics of North America, 19, 499–508.
Lin, Y., Liu, Z., Sun, M., Liu, Y., & Zhu, X. (2015). Learning entity and relation embeddings for knowledge graph completion. Proceedings of the AAAI conference on artificial intelligence, 29.
Mok, T. S., Wu, Y.-L., Thongprasert, S., Yang, C.-H., Chu, D.-T., Saijo, N., . . . others. (2009). Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. New England Journal of Medicine, 361, 947–957.
National Cancer Institute, N. I. (2024, March). Cancer Trends Progress Report. Cancer Trends Progress Report. From https://progressreport.cancer.gov/after/economic_burden
Nguyen, D. Q., Vu, T., Nguyen, T. D., Nguyen, D. Q., & Phung, D. (2018). A capsule network-based embedding model for knowledge graph completion and search personalization. arXiv preprint arXiv:1808.04122.
Nickel, M., Tresp, V., Kriegel, H.-P., & others. (2011). A three-way model for collective learning on multi-relational data. Icml, 11, pp. 3104482–3104584.
Ording, A. G., & Sørensen, H. T. (2013). Concepts of comorbidities, multiple morbidities, complications, and their clinical epidemiologic analogs. Clinical epidemiology, 199–203.
Poste, G. (2011). Bring on the biomarkers. Nature, 469, 156–157.
Qin, P., Wang, X., Chen, W., Zhang, C., Xu, W., & Wang, W. Y. (2020). Generative adversarial zero-shot relational learning for knowledge graphs. Proceedings of the AAAI Conference on Artificial Intelligence, 34, pp. 8673–8680.
Rindflesch, T. C., & Fiszman, M. (2003). The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. Journal of biomedical informatics, 36, 462–477.
Sanyaolu, A., Okorie, C., Marinkovic, A., Patidar, R., Younis, K., Desai, P., . . . Altaf, M. (2020). Comorbidity and its impact on patients with COVID-19. SN comprehensive clinical medicine, 2, 1069–1076.
Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., & Welling, M. (2018). Modeling relational data with graph convolutional networks. The semantic web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15, (pp. 593–607).
Shen, T., Zhang, F., & Cheng, J. (2022). A comprehensive overview of knowledge graph completion. Knowledge-Based Systems, 255, 109597.
Sheng, J., Guo, S., Chen, Z., Yue, J., Wang, L., Liu, T., & Xu, H. (2020). Adaptive attentional network for few-shot knowledge graph completion. arXiv preprint arXiv:2010.09638.
Slikker Jr, W. (2017). Biomarkers and their impact on precision medicine. Experimental Biology and Medicine, 243, 211.
Sun, Z., Deng, Z.-H., Nie, J.-Y., & Tang, J. (2019). Rotate: Knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197.
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., & Bouchard, G. (2016). Complex embeddings for simple link prediction. International conference on machine learning, (pp. 2071–2080).
Tung, N. M., & Garber, J. E. (2018). BRCA 1/2 testing: therapeutic implications for breast cancer management. British journal of cancer, 119, 141–152.
Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014). Knowledge graph embedding by translating on hyperplanes. Proceedings of the AAAI conference on artificial intelligence, 28.
World Health Organization. (2024, February). Global cancer burden growing, amidst mounting need for services. Global cancer burden growing, amidst mounting need for services. From https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing–amidst-mounting-need-for-services
Wu, H.-T. (2021). Constructing A Biomarker Knowledge Graph for Malignant Bone Tumors: A Biomedical Literature Analysis Approach. Master’s thesis, National Taiwan University.
Wu, L., & Qu, X. (2015). Cancer biomarker detection: recent achievements and challenges. Chemical Society Reviews, 44, 2963–2997.
Xie, P., Zhou, G., Liu, J., & Huang, J. X. (2023). Incorporating global–local neighbors with Gaussian mixture embedding for few-shot knowledge graph completion. Expert Systems with Applications, 234, 121086.
Xiong, W., Yu, M., Chang, S., Guo, X., & Wang, W. Y. (2018). One-shot relational learning for knowledge graphs. arXiv preprint arXiv:1808.09040.
Xu, K., Yang, S., & Zhao, Y. (2016). Prognostic significance of BRCA mutations in ovarian cancer: an updated systematic review with meta-analysis. Oncotarget, 8, 285.
Yang, B., Yih, W.-t., He, X., Gao, J., & Deng, L. (2014). Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575.
Zou, X. (2020). A survey on application of knowledge graph. Journal of Physics: Conference Series, 1487, p. 012016.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97044-
dc.description.abstract生物標記(Biomarkers)近年來已成為生物醫學領域的關鍵研究焦點。除了在癌症相關研究中獲得了顯著的關注外,生物標記也被視為實現精準醫學的重要途徑。其應用包括特定疾病的檢測、選擇個性化的治療方案,以及協助藥物開發。利用龐大的生物醫學文獻資料庫和資訊技術來進行生物標記的辨識,對生物醫學研究將帶來極大的助益。
SemMedDB 是一個從文獻中提取的、大型的生物醫學知識圖譜,使用基於規則的自動化技術來建構。儘管它涵蓋了眾多的醫學實體和關係,但它仍然面臨著無法完全捕捉到未知新知識(如生物標記)的挑戰。Wu(2021)提出了一種基於文獻分析的方法,通過識別知識圖譜中與生物標記高度相關的語義類型和關係,來構建潛在的生物標記範圍。該研究更強調了生物標記與知識圖譜中既存關係之間的高度相關性。在此基礎上,我們旨在建立標準化的生物標記標註程序,並開發自動化的生物標記識別模型,提供一個系統化的方式來發現新的生物醫學知識。
本研究提出了一個兩步驟的模型,將預訓練的知識圖譜嵌入與關於生物標記和既存關係的假設結合,構建了一個自動化的腫瘤生物標記分類模型(TBC)。在模型的第二階段,成功地運用了投影層和KGE集成加權總和技術,將預訓練的知識圖譜嵌入進行轉換並結合,以識別先前不存在的關係。在資料標註方面,對語義類型和關係的選擇、同義詞合併以及標準化的生物標記標註工作流程進行改良。實驗結果顯示,即使在資料有限的情況下,本研究的方法仍然有穩定的成效。後續的消融實驗,對模型的每個部分進行了分析和討論,期望能夠啟發未來對新生物醫學知識和關係的研究。
zh_TW
dc.description.abstractBiomarkers have recently become a key research focus in the biomedical field. In addition to receiving significant attention in cancer-related research, they are considered a crucial pathway to achieving precision medicine. Their applications include detecting specific diseases, selecting personalized treatment plans, and aiding drug development. Leveraging vast biomedical literature databases and information technology for biomarker identification could greatly benefit biomedical research.
SemMedDB is a large-scale biomedical knowledge graph extracted from literature using rule-based automated techniques. While it encompasses numerous medical entities and relations, it still struggles to fully capture previously unknown knowledge, such as biomarkers. Wu (2021) proposed a literature-based approach to identifying highly relevant semantic types and relations within a knowledge graph to construct a potential biomarker scope. The study also highlighted the strong correlation between biomarkers and existing relations within the knowledge graph. Building on this work, we aim to establish a standardized biomarker annotation procedure and develop an automated biomarker identification model, offering a systematic approach for discovering new biomedical knowledge.
Our study presents a two-step model that integrates pre-trained knowledge graph embeddings with assumptions about biomarkers and existing relations to construct an automated tumor biomarker classification model (TBC). In the second stage, we successfully employ projection layers and KGE-integrated weighted sum techniques to transform and combine pre-trained knowledge graph embeddings to identify previously non-existent relations. For data annotation, we refine the processes of selecting semantic types and relations, merging synonyms, and establishing a standardized biomarker annotation workflow. Our experimental results demonstrate stable performance even with limited data. Through further ablation studies, we analyze and discuss each model component, hoping to inspire future research on new biomedical knowledge and relations.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:11:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-26T16:11:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Table of Contents v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 6
1.3 Objective 11
Chapter 2 Literature Review 12
2.1 Biomarker 12
2.2 Candidate Biomarker Relation Extraction 16
2.3 Comparison with Knowledge Graph Completion 21
Chapter 3 Methodology 25
3.1 Problem Definition 25
3.2 Tumor Biomarker Classifier 25
3.2.1 Pre-trained KGE Model 27
3.2.2 Design Philosophy of KIC Model 30
3.2.3 Detailed Design of KIC Model 34
3.2.4 Frequency-Based Method 38
Chapter 4 Empirical Evaluation 39
4.1 Data Collection 39
4.1.1 Selection Condition Formulation 40
4.1.2 Synonym Merging 41
4.1.3 Entity Pair Filtering 44
4.1.4 Candidate Biomarker Labeling 45
4.2 Datasets 47
4.3 Experimental Settings 49
4.4 Experiment Procedure and Criteria 51
4.5 Comparative Evaluation Results 53
4.6 Additional Evaluation Results 55
4.6.1 Effect of Weighted Sum 55
4.6.2 Effect of Projection Layer 56
4.6.3 Effect of Data Augmentation 61
Chapter 5 Conclusion 64
5.1 Contributions 64
5.2 Future Works 64
References 67
-
dc.language.isoen-
dc.title使用生物醫學知識圖譜與深度學習方法的腫瘤生物標記辨識zh_TW
dc.titleTumor Biomarker Identification: A Deep Learning Approach Using Biomedical Knowledge Graphen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建錦;楊錦生zh_TW
dc.contributor.oralexamcommitteeChien-Chin Chen;Chin-Sheng Yangen
dc.subject.keyword生物標記,腫瘤生物標記,精準醫學,新知識,新關係,知識圖譜補全,知識圖譜嵌入,生物醫學知識圖譜,zh_TW
dc.subject.keywordBiomarkers,Tumor Biomarkers,Precision Medicine,New Knowledge,New Relation,Knowledge Graph Completion,Knowledge Graph Embedding,Biomedical Knowledge Graph,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202500558-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-10-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2027-02-09-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2027-02-09
2.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved