請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96995
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李勇毅 | zh_TW |
dc.contributor.advisor | Yung-I Lee | en |
dc.contributor.author | 楊梓立 | zh_TW |
dc.contributor.author | Tzu-Li Yang | en |
dc.date.accessioned | 2025-02-25T16:24:03Z | - |
dc.date.available | 2025-02-26 | - |
dc.date.copyright | 2025-02-25 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-13 | - |
dc.identifier.citation | 王瑞閔(2018)冰淇淋必備-香草蘭。載於王瑞閔(編),看不見的雨林—福爾摩沙兩林植物誌(180 – 190頁)。麥浩斯出版。
呂毓真(2010)。環境因子對文心蘭光合作用及 Rubisco 活性之影響。博士論文,國立臺灣大學園藝暨景觀學系。 宋品慧(2021)。營農型光電綠能設施下香莢蘭最佳栽培介質. 高雄區農業改良場年報,109,29-30. 林宜樺、葉志新(2022)。香莢蘭栽培管理技術。桃園區農技報導,87,1-4。 洪丁楨(2012)。蝴蝶蘭光合作用研究—生理試驗與生物晶片綜合分析。碩士論文,國立臺灣大學園藝暨景觀學系。 海關進出口統計(2024)。貨品編號: 0905100000 香草,未壓碎或未研磨者;0905200000 香草,壓碎或研磨者。上網日期:2024年12月24日。檢自:https://portal.sw.nat.gov.tw/APGA/GA30 張能义、李存信(1991)。不同季節中香莢蘭葉片的光合作用特徵。雲南植物研究,13(2),170-180。 陳怡安(2014)。溫度及光強度處理對臺灣白花蝴蝶蘭 (Phalaenopsis aphrodite subsp. formosana) 組培苗光合型態轉換與生理生長之影響。碩士論文,國立屏東科技大學農園生產系。 葉志新(2021)。香莢蘭果莢發育,微體繁殖及調製之研究。博士論文,國立臺灣大學農藝學系。 Amin, A. B., Rathnayake, K. N., Yim, W. C., Garcia, T. M., Wone, B., Cushman, J. C., & Wone, B. W. M. (2019). Crassulacean acid metabolism abiotic stress-responsive transcription factors: A potential genetic engineering approach for improving crop tolerance to abiotic stress. Frontiers in Plant Science. 10, 129. https://doi.org/10.3389/fpls.2019.00129 Barker, D. H., Seaton, G. G. R., & Robinson, S. A. (1997). Internal and external photoprotection in developing leaves of the CAM plant Cotyledon orbiculata. Plant, Cell & Environment. 20: 617-624. Borland, A. M. (1996). A model for the partitioning of photosynthetically fixed carbon during the C3-CAM transition in Sedum telephium. New Phytologist. 134: 433-444. Björkman, O. & Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 170: 489-504. Central Weather Administration. (2025). Historical monthly weather data. Central Weather Bureau, Taiwan. Retrieved January 17, 2025, from https://agr.cwa.gov.tw/history/station_month Ceusters, N., Valcke, R., Frans, M., Claes, J. E., Van den Ende, W., & Ceusters, J. (2019). Performance index and PSII connectivity under drought and contrasting light regimes in the CAM orchid Phalaenopsis. Frontiers in Plant Science. 10, 1012. https://doi.org/10.3389/fpls.2019.01012 Chang, J. C. & Lin, T. S. (2007). Gas exchange in litchi under controlled and field conditions. Scientia Horticulturae. 114: 268-274. Díez, M. C., Moreno, F., & Gantiva, E. (2017). Effects of light intensity on the morphology and CAM photosynthesis of Vanilla planifolia Andrews. Revista Facultad Nacional de Agronomía. 70: 8023-8033. Divakaran, M., Pillai, G. S., Babu, K. N., & Peter, K. V. (2008). Isolation and fusion of protoplasts in Vanilla species. Current Science. 94: 115-120. FAOSTAT. (2024). Vanilla. Retrieved from https://www.fao.org/faostat/en/ Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology. 40: 503-537. Fock-Bastide, I., Palama, T. L., Bory, S., Lécolier, A., Noirot, M., & Joët, T. (2014). Expression profiles of key phenylpropanoid genes during Vanilla planifolia pod development reveal a positive correlation between PAL gene expression and vanillin biosynthesis. Plant Physiology and Biochemistry. 74: 304-314. Gallage, N. J., & Møller, B. L. (2018). Vanilla: The most popular flavor. In Schwab, W., Lange, B. M., & Wüst, M. (Eds.), Biotechnology of Natural Products. pp. 3-24. Garcia, T. M., Heyduk, K., Kuzmick, E., & Mayer, J. A. (2014). Crassulacean acid metabolism biology. New Phytologist. 204: 738-740. Gehrig, H., Faist, K., & Kluge, M. (1998). Identification of phosphoenolpyruvate carboxylase isoforms in leaf, stem and roots of the obligate CAM plant Vanilla planifolia Salib.(Orchidaceae): a physiological and molecular approach. Plant Molecular Biology. 38: 1215-1223. Genty, B., Harbinson, J., Cailly, A. L., & Rizza, F. (1996) Fate of excitation at PS II in leaves: the non-photochemical side. In The Third BBSRC Robert Hill Symposium on Photosynthesis. University of Sheffield, Department of Molecular Biology and Biotechnology, Western Bank, Sheffield, UK. Abstract, pp. 28. Graves, S., Piepho, H. P., & Selzer, M. L. (2024). multcompView: Visualizations of Paired Comparisons. R package version 0.1-10. Guan, Z. J., Zhang, S. B., Guan, K. Y., Li, S. Y., & Hu, H. (2011). Leaf anatomical structures of Paphiopedilum and Cypripedium and their adaptive significance. Journal of Plant Research. 124: 289-298. Guo, W. J., & Lee, N. (2006). Effect of leaf and plant age, and day/night temperature on net CO2 uptake in Phalaenopsis amabilis var. formosa. Journal of the American Society for Horticultural Science. 131: 320-326. Guo, W. J., Lin, Y. Z., & Lee, N. (2012). Photosynthetic light requirements and effects of low irradiance and daylength on Phalaenopsis amabilis. Journal of the American Society for Horticultural Science. 137: 465-472. He, J., Norhafis, H., & Qin, L. (2013). Responses of green leaves and green pseudobulbs of CAM orchid Cattleya laeliocattleya Aloha case to drought stress. Journal of Botany. 2013, 710539. Hew, C. S. & Yong, J. W. H. (2004). The physiology of tropical orchids in relation to the industry. World Scientific, Singapore. Heyduk, K. (2022). Evolution of Crassulacean acid metabolism in response to the environment: Past, present, and future. Plant Physiology. 190: 19-30. https://doi.org/10.1093/plphys/kiac303 Hopkins, W. G. & Hüner, N. P. A. (2004). Introduction to plant physiology (3rd ed.). John Wiley & Sons, Inc., New Jersey, USA. Jones, M. B. (1975). Effect of leaf age on leaf resistance and CO2 exchange of CAM plant Bryophyllum fedtschenkoi. Planta. 123: 91-96. https://doi.org/10.1007/BF00384508 Josse, J. & Husson, F. (2016). missMDA: a package for handling missing values in multivariate data analysis. Journal of Statistical Software. 70: 1-31. Kassambara, A. & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. Ko, S. S., Jhong, C. M., Lin, Y. J., Wei, C. Y., Lee, J. Y., & Shih, M. C. (2020). Blue light mediates chloroplast avoidance and enhances photoprotection of vanilla orchid. International Journal of Molecular Sciences. 21, 8022. https://doi.org/10.3390/ijms21218022 Ku, M. S., Agarie, S., Nomura, M., Fukayama, H., Tsuchida, H., Ono, K., Hirose, S., Toki, S., Miyao, M. & Matsuoka, M. (1999). High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnology. 17: 76-80. Kuo, Y. L., Hwang, T. W., & Yang, Y. L. (2009). Dynamics of the photosynthetic capacity during the lifetime of leaves in three subtropical tree species. Taiwan Journal of Forest Science. 24: 169-182. Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: an R package for multivariate analysis. Journal of Statistical Software. 25: 1-18. Lee, Y. I., Yeung, E. C., Lee, N., & Chung, M. C. (2008). Embryology of Phalaenopsis amabilis var. formosa: embryo development. Botanical Studies. 49: 139-146. Lemoine, R., Camera, S. L., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., Bonnemain, J. L., Laloi, M., Coutos-Thévenot, P., Maurousset, L., Faucher, M., Girousse, C., Lemonnier, P., Parrilla, J., & Durand, M. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science. 4, 272. Lin, C. S., Chen, J. J., Huang, Y. T., Chan, M. T., Daniell, H., Chang, W. J., Hsu, C. T., Liao, D. C., Wu, F. H., Lin, S. Y., Liao, C. F., Deyholos, M. K., Wong, K. S., Albert, V. A., Chou, M. L., Chen C. Y., & Shih, M. C. (2015). The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family. Scientific Reports. 5, 9040. Matiz, A., Mioto, P. T., Mayorga, A. Y., Freschi, L., & Mercier, H. (2013). CAM photosynthesis in bromeliads and agaves: What can we learn from these plants? Photosynthesis. 1: 91-134. Messerschmid, T. F., Wehling, J., Bobon, N., Kahmen, A., Klak, C., Los, J. A., Nelson, D. B., dos Santos P., de Vos J. M., and Kadereit, G. (2021). Carbon isotope composition of plant photosynthetic tissues reflects a crassulacean acid metabolism (CAM) continuum in the majority of CAM lineages. Perspectives in Plant Ecology, Evolution and Systematics. 51, 125619. Niinemets, Ü., García-Plazaola, J. I., & Tosens, T. (2012). Photosynthesis during leaf development and ageing. In J. Flexas, F. Loreto, & H. Medrano (Eds.), Terrestrial Photosynthesis in a Changing Environment: A Molecular, Physiological, and Ecological Approach. Cambridge University Press, Cambridge, UK. pp. 355-376. Nimmo, H. G., Fontaine, V., Hartwell, J., Jenkins, G. I., Nimmo, G. A., & Wilkins, M. B. (2001). PEP carboxylase kinase is a novel protein kinase controlled at the level of expression. New Phytologist. 151: 91-97. Nwokeocha, O. W. (2023). The role of different PEPC isoforms in the growth and physiology of the model CAM plant, Kalanchoë fedtschenko (Doctoral dissertation, Newcastle University). Odoux, É. & Brillouet, J. M. (2009). Anatomy, histochemistry, and biochemistry of glucovanillin, oleoresin, and mucilage accumulation sites in green mature vanilla pod (Vanilla planifolia; Orchidaceae): A comprehensive and critical reexamination. Fruits. 64: 221-241. Odoux, É. & Grisoni, M. (2010). Medicinal and aromatic plants. In É. Odoux & M. Grisoni (Eds.), Vanilla. Florida, CRC Press, USA. pp. 387. OEC. (2022). Vanilla beans. Retrieved from https://oec.world/en/profile/hs/vanilla-beans Osmond, C. B. (1978). Crassulacean acid metabolism: A curiosity in context. Annual Review of Plant Physiology. 29: 379-414. https://doi.org/10.1146/annurev.pp.29.060178.002115 Ota, K., Morioka, K., & Yamamoto, Y. (1991). Effects of leaf age, inflorescence, temperature, light intensity, and moisture conditions on CAM photosynthesis in Phalaenopsis. Journal of the Japanese Society for Horticultural Science. 60: 125-132. Piet, Q., Droc, G., Marande, W., Sarah, G., Bocs, S., Klopp, C., Bourge, M., Siljak-Yakovlev, S., Bouchez, O., Lopez-Roques, C., Lepers-Andrzejewski, S., Bourgois, L., Zucca, J., Dron, M., Besse, P., Grisoni, M., Jourda, C., Charron C., & Charron, C. (2022). A chromosome-level, haplotype-phased Vanilla planifolia genome highlights the challenge of partial endoreplication for accurate whole-genome assembly. Plant Communications. 3, 100300. Ping, C. Y., Chen, F. C., Cheng, T. C., Lin, H. L., Lin, T. S., Yang, W. J., & Lee, Y. I. (2018). Expression profiles of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes in Phalaenopsis: Implications for regulating the performance of crassulacean acid metabolism. Frontiers in Plant Science. 9, 1587. Pollet, B., Steppe, K., Dambre, P., Van Labeke, M. C., & Lemeur, R. (2010). Seasonal variation of photosynthesis and photosynthetic efficiency in Phalaenopsis. Photosynthetica. 48: 580-588. Posit Team. (2023). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA, USA. POWO. (2024). Vanilla planifolia Andrews. Plants of the World Online. Royal Botanic Gardens, Kew. Retrieved from https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:262578-2 Qiu, S., Xia, K., Yang, Y., Wu, Q., & Zhao, Z. (2023). Mechanisms underlying the C3–CAM photosynthetic shift in facultative CAM plants. Horticulturae. 9, 398. https://doi.org/10.3390/horticulturae9030398 R Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Rodrigues, M. A., Matiz, A., Cruz, A. B., Matsumura, A. T., Takahashi, C. A., Hamachi, L., Félix, L. M., Pereira, P. N., Latansio-Aidar, S. R., Aidar, M. P. M., Demarco, D., Freschi, L., Mercier, H., & Kerbauy, G. B (2013). Spatial patterns of photosynthesis in thin- and thick-leaved epiphytic orchids: Unravelling C3-CAM plasticity in an organ-compartmented way. Annals of Botany. 112: 17-29. https://doi.org/10.1093/aob/mct090 Sage, R. F. (2002). Are crassulacean acid metabolism and C4 photosynthesis incompatible? Functional Plant Biology. 29: 775-785. Schreiber, U. (2004). Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In Papageorgiou G. C. & Govindjee (Eds.), Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer. pp. 279-319. Silvera, K., Neubig, K. M., Whitten, W. M., Williams, N. H., Winter, K., & Cushman, J. C. (2010). Evolution along the crassulacean acid metabolism continuum. Functional Plant Biology. 37: 995-1010. Silvera, K., Santiago, L. S., Cushman, J. C., & Winter, K. (2009). Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae. Plant Physiology. 149: 1838-1847. Silvera, K., Santiago, L. S., & Winter, K. (2005). Distribution of crassulacean acid metabolism in orchids of Panama: Evidence of selection for weak and strong modes. Functional Plant Biology. 32: 397-407. Teoh, E. S. (2019). The story of vanilla. In Orchids as aphrodisiac, medicine or food. Springer, Switzerland. pp. 109-130. Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3—New capabilities and interfaces. Nucleic Acids Research. 40, e115. Wilkin, P. and Schuiteman, A. (2014). Orchidaceae. In Utteridge, T. & Bramley, G. (Eds.), The Kew Tropical Plant Families Identification Handbook. Kew Publishing, London, UK. pp. 36-37. Wang, H., Wang, X. Q., Zeng, Z. L., Yu, H., and Huang, W. (2022). Photosynthesis under fluctuating light in the CAM plant Vanilla planifolia. Plant Science. 317, 111207. https://doi.org/10.1016/j.plantsci.2022.111207 Wickell, D., Kuo, L. Y., Yang, H. P., Dhabalia Ashok, A., Irisarri, I., Dadras, A., Vries, S. de, Vries, J. de, Huang, Y. M., Li, Z., Barker, M. S., Hartwick, N. T., Michael T. P., & Li, F. W. (2021). Underwater CAM photosynthesis elucidated by Isoetes genome. Nature Communications. 12, 6348. Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, USA. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D. A., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and & Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software. 4, 1686. Williams, E. L. M. (1970). Comparative rates of dark CO2 uptake and acidification in the Bromeliaceae, Orchidaceae, and Euphorbiaceae. Botanical Gazette. 131: 337-342. Winter, K. (2019). Ecophysiology of constitutive and facultative CAM photosynthesis. Journal of Experimental Botany. 70: 6495-6508. Winter, K. & Holtum, J. A. (2002). How closely do the δ13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiology. 129: 1843-1851. Winter, K., Holtum, J. A., & Smith, J. A. (2015). Crassulacean acid metabolism: A continuous or discrete trait? New Phytologist. 208: 73-78. https://doi.org/10.1111/nph.13446 Wu, F. H., Shen, S. C., Lee, L. Y., Lee, S. H., Chan, M. T., & Lin, C. S. (2009). Tape-Arabidopsis Sandwich – A simpler Arabidopsis protoplast isolation method. Plant Methods. 5, 16. Yang, T. L., Lee, Y. I, & Lai, I L. (unpublish). Studies on Crassulacean acid metabolism capacity in leaves at various nodes of Vanilla planifolia seedlings. Yang, S. L., Tran, N., Tsai, M. Y., & Ho, C. M. K. (2022). Misregulation of MYB16 expression causes stomatal cluster formation by disrupting polarity during asymmetric cell divisions. The Plant Cell. 34: 455-476. Yang, X., Liu, D., Tschaplinski, T. J., & Tuskan, G. A. (2019). Comparative genomics can provide new insights into the evolutionary mechanisms and gene function in CAM plants. Journal of Experimental Botany. 70. 6539-6547. Yang, Y. J., Zhang, S. B., & Huang, W. (2019). Photosynthetic regulation under fluctuating light in young and mature leaves of the CAM plant Bryophyllum pinnatum. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1860: 469-477. Yuan, G., Mahmudul, H., Don, L., Cheol, Y., Cushman, J. C., Shih, P. M., Weston, D. J., Chen, J. G., Tschaplinski, T. J., Tuskan, G. A., & Yang, X. H. (2020). Biosystems design to accelerate C3-to-CAM progression. BioDesign Research. 2020, 3686791. Zhang, S. B., Guan, Z. J., Sun, M., Zhang, J. J., Cao, K. F., & Hu, H. (2012). Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae. PloS one. 7, e40080. Zhang, S. B., Hu, H., & Li, Z. R. (2008). Variation of photosynthetic capacity with leaf age in an alpine orchid, Cypripedium flavum. Acta Physiologiae Plantarum. 30: 381-388. Zhang, W., Feng, J. Q., Kong, J. J., Sun, L., Fan, Z. X., Jiang, H., & Zhang, S. B. (2021). Vegetative anatomy and photosynthetic performance of the only known winter-green Cypripedium species: Implications for divergent and convergent evolution of slipper orchids. Botanical Journal of the Linnean Society. 197: 527-540. Ziegler, H. (1987). The evolution of stomata. In: Zeiger, E., Farquhar, G. D., & Cowan, I. R. (Eds), Stomatal function. Stanford University, Stanford, USA. pp. 29-57. Zotz, G. & Hietz, P. (2001). The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany. 52: 2067-2078. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96995 | - |
dc.description.abstract | Vanilla planifolia Andrews (香莢蘭)為景天酸代謝(crassulacean acid metabolism, CAM)的攀附性蘭花,其果莢為世界上最具有價值的香料作物之一。自香莢蘭被引 進台灣以來,針對其栽培技術的研究逐漸增多,但關於其生態生理學的相關研究仍 然有限。本研究旨在測量香莢蘭在不同葉片發育階段以及不同生長季節與遮陰度 下的光合作用特性。研究中量測了香莢蘭葉片的氣體交換、葉綠素螢光、蘋果酸濃 度、phosphoenolpyruvate carboxylase (PEPCase)活性、碳穩定同位素值(δ13C)、葉片 性狀和 PEPCase 以及 PEPCase kinase 的基因表現。
結果顯示,成熟香莢蘭葉片於中午開始固定二氧化碳直到次日清晨。兩種 PEPCase 蛋白異構體的轉錄體皆不具有明顯晝夜變化,而 PEPCase 活性在白天可 能受 PEPCase kinase 調控。在幼葉(第一片葉)的發育過程,發現香莢蘭光合作用途 徑從 C3 轉變成 CAM。幼葉只在白天固定二氧化碳,顯示其為 C3 途徑。然而葉片 厚度和液胞大小顯示幼葉已具備 CAM 的特徵。關於幼葉的 CAM 相關基因調控值 得後續釐清。在桃園區農業改良場的田間實驗,不同季節的實驗結果顯示在夏季生 長的成熟葉片(第八片葉)表現較高的光合作用能力。而在夏季三種光強度的遮陰實 驗,相較於 1.7 mol photons m-2 d-1 的光強度,生長於 6.7 和 3.8 mol photons m-2 d-1 的成熟葉片具有較高的光合作用能力,而三種光條件下葉片的 Fv/Fm 無顯著差異。 本論文提供香莢蘭不同成熟度葉片、不同季節以及遮陰條件下的光合作用數據, 可作為台灣香莢蘭產業栽培應用之參考。 | zh_TW |
dc.description.abstract | Vanilla planifolia Andrews is a climbing orchid with crassulacean acid metabolism (CAM), and its beans are among the most valuable spice crops in the world. Since its introduction to Taiwan, research has focused on cultivation, yet studies on its ecophysiology remain limited. This study aimed to investigate the photosynthetic characteristics of V. planifolia at different developmental stages and grown under different environmental conditions. In study thesis, gas exchange, chlorophyll fluorescence, malate concentration, phosphoenolpyruvate carboxylase (PEPCase) activity, stable carbon isotope ratios (δ13C), leaf traits, and the gene expression of PEPCase and PEPCase kinase were measured.
Results showed that mature V. planifolia leaves exhibited CO2 fixation from noon, continuing until the following morning. Both the gene expression of PEPCase isoforms exhibited no daily fluctuation, while PEPCase activity may be regulated by PEPCase kinase during the daytime. During the development of young leaves, the photosynthetic transition from C3 to CAM pathway was observed. Young leaves (the 1st leaves) exhibited only diurnal CO2 fixation, indicated a predominant C3 pathway. However, leaf thickness and vacuole size revealed that young leaves possessed structural features associated with CAM. The regulation of CAM-related genes requires further investigation. In field experiments at Taoyuan District Agricultural Research and Extension Station, mature leaves (the 8th leaf) of V. planifolia grown in summer exhibited higher photosynthetic capacity compared to those in other seasons. In the shading experiments under three light intensities during summer, mature leaves grown under 6.7 and 3.8 mol photons m-2 d-1 showed higher photosynthetic capacity compared to those grown under 1.7 mol photons m-2 d-1. However, no significant differences were observed in Fv/Fm among the three light conditions. This thesis provides photosynthetic data of V. planifolia leaves at different developmental stages, across seasons, and under various shading conditions, serving as a valuable reference for the cultivation and management of V. planifolia in Taiwan. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:24:03Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-25T16:24:03Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiii Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Introduction of Vanilla 3 2.1.1 Cultivation History of Vanilla 3 2.1.2 Global Market Overview of Vanilla 3 2.1.3 Morphological Characteristics of V. planifolia 4 2.2 Crassulacean Acid Metabolism (CAM) 5 2.2.1 Characteristics of CAM 5 2.2.2 Evolution and Transition from C3 to CAM 8 2.2.3 PEPCase and PEPCase Kinase in CAM 9 2.3 Effects of Developmental Stages on Photosynthesis 10 2.4 Effects of Different Environments on Photosynthesis 12 Chapter 3 Materials and Methods 15 3.1 Plants Materials 15 3.2 Gas Exchange Measurement 16 3.2.1 Assimilation Rates Over a Whole Day 16 3.2.2 Photosynthesis Light Response Curve Measurement 16 3.3 Chlorophyll Fluorescence Measurement 17 3.4 Biochemical Measurement 18 3.4.1 Malate Concentration Measurement 18 3.4.2 PEPCase Activity Measurement 19 3.5 Stable Carbon Isotope Ratios (δ13C) 20 3.6 RNA Isolation and Gene Expression Analysis 21 3.6.1 Sequence Information on V. planifolia 21 3.6.2 RNA Extraction and Reverse Transcription 21 3.6.3 PCR Experiments 22 3.7 Total Soluble Sugar and Starch Contents Measurement 22 3.8 Morphological and Histological Studies 24 3.8.1 Morphological Trait Measurement 24 3.8.2 Free-Hand Sectioning and Staining 24 3.8.3 Histological Study 25 3.8.4 Protoplast Isolation and Staining 25 3.9 Experimental Design 26 3.9.1 The Photosynthetic Variation Over a Whole Day 26 3.9.2 The Difference of Photosynthetic Pathway in Leaves at Different Nodes 27 3.9.3 The Difference of Photosynthetic Pathway in Leaves at Various Developmental stages 28 3.9.4 The Photosynthetic Variation across Four Seasons 28 3.9.5 The Photosynthetic Variation under Different Shadings 29 3.10 Statistical analysis 29 Chapter 4 Results 32 4.1 Photosynthetic Variation in V. planifolia Leaves Over a Whole Day 32 4.2 Photosynthetic Variation in V. planifolia Leaves at Different Nodes 33 4.2.1 Principle Component Analysis 33 4.2.2 The Stable Carbon Isotope Ratio of V. planifolia Leaves at Various Nodes 34 4.3 Photosynthetic Variation in V. planifolia during Leaf Development 34 4.4 Morphology and Histology of V. planifolia Leaves 35 4.4.1 Morphological and Histological Developments of Leaves at Various Nodes 35 4.4.2 Morphological and Histological Developments of V. planifolia Leaves in Developmental Stage 36 4.5 Photosynthetic Variation in V. planifolia Leaves across Four Seasons 36 4.6 Photosynthetic Variation in V. planifolia under Different Shadings 38 Chapter 5 Discussion 70 5.1 Daily Photosynthetic Variation in V. planifolia 70 5.2 Photosynthetic Pathway in V. planifolia Leaves at Various Nodes 72 5.3 Photosynthetic Pathway Transition from C3 to CAM in V. planifolia During Leaf Development 73 5.4 Photosynthetic Variation in the 8th Leaves of V. planifolia across Seasons and Shading Treatments 75 Chapter 6 Conclusion 78 REFERENCE 79 APPENDIX 90 | - |
dc.language.iso | en | - |
dc.title | 香莢蘭在不同生長環境與發育階段的光合作用特性研究 | zh_TW |
dc.title | Effects of Different Environments and Developmental Stages on Photosynthesis of Vanilla planifolia | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 高文媛;賴宜鈴;葉志新 | zh_TW |
dc.contributor.oralexamcommittee | Wen-Yuan Kao;I-Ling Lai;Chih-Hsin Yeh | en |
dc.subject.keyword | 蘭花,景天酸代謝(CAM),C3,氣體交換,PEPCase,蘋果酸,碳穩定同位素值,光強度, | zh_TW |
dc.subject.keyword | orchid,crassulacean acid metabolism (CAM),C3,gas exchange,phosphoenolpyruvate carboxylase (PEPCase),malate,stable carbon isotope ratio,light intensity, | en |
dc.relation.page | 101 | - |
dc.identifier.doi | 10.6342/NTU202500475 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-13 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生命科學系 | - |
dc.date.embargo-lift | 2027-03-01 | - |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 此日期後於網路公開 2027-03-01 | 21.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。