Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96993
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪英超zh_TW
dc.contributor.advisorYing-Chao Hungen
dc.contributor.authorDevina Evanty Andrianizh_TW
dc.contributor.authorDevina Evanty Andrianien
dc.date.accessioned2025-02-25T16:23:30Z-
dc.date.available2025-02-26-
dc.date.copyright2025-02-25-
dc.date.issued2025-
dc.date.submitted2025-02-12-
dc.identifier.citationAmer, H., Galal, N. M., & El-Kilany, K. S. (2018). A simulation study of sustainable agri-food supply chain. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Paris, France, July 26–27, 2018. IEOM Society International. https://www.semanticscholar.org/paper/A-Simulation-Study-of-Sustainable-Agri-Food-Supply-Amer-Galal/69c7503d4032d6faa958e1ec35ed9c2d55eb0db9
Ashenden, P. J., Peterson, G. D., & Teegarden, D. A. (2003). Chapter 25: Integrated system modeling. In The system designer’s guide to VHDL-AMS: Analog, mixed-signal, and mixed-technology modeling, systems on silicon (pp. 735–750). Elsevier. https://doi.org/10.1016/B978-155860749-1/50025-6
Chen, S. C., Min, J., Teng, J. T., & Li, F. (2016). Inventory and shelf-space optimization for fresh produce with expiration dates under freshness- and stock-dependent demand rates. Journal of the Operational Research Society, 67(6), 884–896. https://doi.org/10.1057/jors.2015.100
Chen, Wenchong, Liu, Hongwei and Xu, Dan. (2018). Dynamic pricing strategies for perishable product in a competitive multi-agent retailers market. Journal of Artificial Societies and Social Simulation, 21(2), 12. http://jasss.soc.surrey.ac.uk/21/2/12.html. doi: 10.18564/jasss.3710
Chew, E. P., Lee, C., Liu, R., Hong, K., and Zhang, A. (2014). Optimal dynamic pricing and ordering decisions for perishable products. International Journal of Production Economics, 157(C), 39-48. https://doi.org/10.1016/j.ijpe.2013.12.022
Clim’ Foot Project. (2016). The Clim’ Foot databases: What is an emission factor? Retrieved from https://www.climfoot-project.eu/en/what-emission-factor
D’Adamo, I., Desideri, S., Gastaldi, M., & Tsagarakis, K. P. (2023). Sustainable food waste management in supermarkets. Sustainable Production and Consumption, 43, 104–216. https://doi.org/10.1016/j.spc.2023.11.005
Dairy Food Safety Victoria. (2018). Shelf-life of dairy products. Retrieved from https://www.dairysafe.vic.gov.au/consumers/keeping-dairy-food-safe/shelf-life-of-dairy-products
Delahaye, D., Chaimatanan, S., & Mongeau, M. (2019). Simulated annealing: From basics to applications. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of metaheuristics (pp. 1–35). Springer. https://doi.org/10.1007/978-3-319-91086-4_1
Daulay, R. P., & Herawati, E. (2023). Monte Carlo’s simulation method from the law of large numbers on Chebyshev’s inequality. In Proceedings of the 2nd International Conference on Advanced Information Scientific Development (ICAISD) 2021: Innovating Scientific Learning for Deep Communication, 2714(1). https://doi.org/10.1063/5.0146688
Duan, Y. and Liu, J. (2018). Optimal dynamic pricing for perishable foods with quality and quantity deteriorating simultaneously under reference price effects. International Journal of Systems Science: Operations & Logistics, 6(4), 346–355. https://doi.org/10.1080/23302674.2018.1465618
Gioia, D. G., Felizardo, L. K., & Brandimarte, P. (2023). Simulation-based inventory management of perishable products via linear discrete choice model. Computers & Operations Research, 157, 106270. https://doi.org/10.1016/j.cor.2023.106270
Herbon, A. and Khmelnitsky, E. (2017). Optimal dynamic pricing and ordering of a perishable product under additive effects of price and time on demand. European Journal of Operational Research, 260(2), 546-556. https://doi.org/10.1016/j.ejor.2016.12.033
Hou et al. (2024). Pricing and inventory strategies for perishable products in a competitive market considering strategic consumers. Transportation Research Part E: Logistics and Transportation Review, 184, 103478. https://doi.org/10.1016/j.tre.2024.103478
Pishro-Nik, H. (2014). Introduction to probability, statistics, and random processes. Kappa Research LLC. Retrieved from https://www.probabilitycourse.com
Liu, J. S. (2004). Monte Carlo strategies in scientific computing. Springer. https://doi.org/10.1007/978-0-387-76371-2
Kayikci, et al. (2022). Data-driven optimal dynamic pricing strategy for reducing perishable food waste at retailers. Journal of Cleaner Production, 344, 131068. https://doi.org/10.1016/j.jclepro.2022.131068
Levin et al. (2010). Optimal dynamic pricing of perishable items by a monopolist facing strategic consumers. Production and Operations Management, 19(1), 40-60. https://doi.org/10.1111/j.1937-5956.2009.01046.x
Rutenbar, R. A. (1989). Simulated annealing algorithms: An overview. IEEE Circuits and Devices Magazine, 5(1), 19–26. https://doi.org/10.1109/101.17235
Kissell, R. L. (2021). Algorithmic trading methods (2nd ed.), Chapter 18: Quantitative analysis with TCA (pp. 469–518). Elsevier. https://doi.org/10.1016/B978-0-12-815630-8.00018-1.
Ross, M. S. (2013). Simulation (5th ed.). Elsevier. ISBN: 9780124158252
Sato, Kimitoshi. (2019). Price trends and dynamic pricing in perishable product market consisting of superior and inferior firms. European Journal of Operational Research, 274, 214-226. https://doi.org/10.1016/j.ejor.2018.09.035
Scholz, M. and Kulko, R.-D. (2022). Dynamic pricing of perishable food as a sustainable business model. British Food Journal, 124(5), 1609-1621. https://doi.org/10.1108/BFJ-03-2021-0294
Shaabani, H & Kamalabadi I.N. (2016). An efficient population-based simulated annealing algorithm for the multi-product multi-retailer perishable inventory routing problem. Computers & Industrial Engineering, Vol 99, Page 189-201. ISSN 0360-8352. https://doi.org/10.1016/j.cie.2016.07.022
Silva, B. H., Machado, I. M., Pereira, F. M., Pagot, P. R., & França, F. H. R. (2020). Application of the simulated annealing algorithm to the correlated WMP radiation model for flames. Inverse Problems in Science and Engineering, 28(9), 1345–1360. https://doi.org/10.1080/17415977.2020.1732956
The U.S. Food and Drug Administration. (2022). Shelf-life and expiration dating for cosmetics. Retrieved from https://www.fda.gov/cosmetics/cosmetics-labeling/shelf-life-and-expiration-dating-cosmetics
UNEP, UN Environment Programme. (2024). Food waste report 2024: Think eat save tracking progress to halve global food waste. Retrieved from https://www.unep.org/resources/publication/food-waste-index-report-2024
Zhang, W., Zhang, R., Shang, R., Li, J., & Jiao, L. (2019). Application of a natural computation-inspired method in community detection. Physica A: Statistical Mechanics and its Applications, 515, 130–150. https://doi.org/10.1016/j.physa.2018.09.186
Widodo, E., & Januardi. (2020). Noncooperative game theory in response surface methodology decision of pricing strategy in dual-channel supply chain. Journal of Industrial and Production Engineering, 38(2), 89–97. https://doi.org/10.1080/21681015.2020.1848932
World Bank. (2024). State and trends of carbon pricing 2024. Washington, DC: World Bank. Retrieved from http://hdl.handle.net/10986/41544 (License: CC BY 3.0 IGO)
Xue Chang, Jing Li, Daniel Rodriguezc, and Qun Sua. (2016). Agent-based simulation of pricing strategy for agri-products considering customer preference. International Journal of Production Research, Vol. 54, No. 13, 3777–3795, http://dx.doi.org/10.1080/00207543.2015.1120901
Yang, et al. (2022). Learning customer preferences and dynamic pricing for perishable products. Computers & Industrial Engineering, 171, 108440. https://doi.org/10.1016/j.cie.2022.108440
Yang, S., Liu, Y., Sun, Y., Wang, Y., & Zhang, L. (2017). The green supply chain design and marketing strategy for perishable food based on temperature control. Sustainability, 9(9), 1511. https://doi.org/10.3390/su9091511
Yadav, S., Khanna, A. (2021). Sustainable inventory model for perishable products with expiration date and price reliant demand under carbon tax policy. Process Integration and Optimization for Sustainability, 5, 475–486. https://doi.org/10.1007/s41660-021-00157-8
Y.C. Hung (2024). A review of monte carlo and wuasi-monte carlo sampling techniques. WIREs Computational Statistics, 16(1), e1637. https://doi.org/10.1002/wics.1637
Zhou, H., Chen, K., & Wang, S. (2023). Two-period pricing and inventory decisions of perishable products with partial lost sales. European Journal of Operational Research, 310, 611-626. https://doi.org/10.1016/j.ejor.2023.03.010
Zweep, C. (2018). Determining product shelf life. Retrieved from https://www.foodqualityandsafety.com/article/determining-product-shelf-life/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96993-
dc.description.abstract在超市系統中,管理易腐產品是一項挑戰。產品的劣化是庫存損失的主要原因,一旦產品超過有效期限,其價值便會喪失並最終成為廢棄物。這種情況在處理易腐產品時可能導致多種問題。本研究主要探討如何透過定價策略來解決此議題。考慮到產品的同質性,本研究的目標是以折扣率與最低價格作為決策變數,以最大化利潤。此外,由於易腐產品需要冷藏儲存,本研究亦納入庫存持有成本以及因儲存與產品劣化所產生的碳排放成本。
本研究建立了一個純隨機模型,以充分捕捉顧客行為的本質,並提出一種折扣定價策略,以最大化預期利潤。由於所提隨機模型的複雜性,最佳解需透過電腦模擬來近似求得。本研究針對多種情境進行測試,並針對三個主要參數(顧客的購買意願、顧客到達率(λ)、與批次產品數量)進行不同設定的實驗。我們測試了顧客購買意願的隨機與固定變數,以及同質與非同質的顧客到達模式。模擬結果顯示在不同情境下的最佳設定,並分析了當顧客到達率與批次數量增加時,所選折扣率的影響。
zh_TW
dc.description.abstractManaging perishable products can be challenging in supermarket systems. Deterioration is a major cause of inventory loss; once products pass their expiration date, they lose value and become waste. This situation can lead to multiple problems when dealing with perishable goods. This study primarily discusses how to address this issue through pricing strategies. By considering homogeneous products, the aim is to maximize profit using discount rates and minimum prices as decision variables. Since perishable products require cold storage, we also factor in holding costs and emission costs, both from inventory holding and deteriorated items.
We developed a purely stochastic model to adequately capture the essence of customers behavior and proposed a discounted pricing strategy to maximize the expected profit. Due to the complexity of the proposed stochastic model, the optimal solution is approximated by computer simulation. Multiple scenarios were examined with different settings for three parameters: customers' willingness to buy, customer arrival rates (λ), and batch products. We tested both stochastic and constant variables for customers' willingness to buy, as well as homogeneous and non-homogeneous customer arrivals. The simulation results indicate the best settings for each scenario and the impact of the chosen discount rate as customer arrival rates and the number of batches increase.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:23:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-25T16:23:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCertificate of Acceptance i
Acknowledgements ii
摘要 iv
Abstract v
Table of Contents vi
List of Tables ix
List of Figures xi
Chapter 1 1
1.1. Background 1
1.2. Research Objective 3
1.3. Research Limitation 4
1.4. Thesis Structure 4
Chapter 2 5
2.1. Overview 5
2.2 Carbon Pricing 8
2.3. Optimization Algorithm 8
2.4. Monte Carlo Simulation 10
2.5. Perishable Product Inventory 12
2.6. Customer Arrival Process 13
Chapter 3 15
3.1. System for Perishable Products 15
3.2. Mathematical Formulation 18
3.3. Stochastic Modeling of the Customer’s Purchase Behavior 20
3.4. Dynamic Pricing Strategy 22
3.5. The Optimization Problem – Maximizing the Mean Profit 24
3.6. Finding the Optimal Solution 28
3.7. Search Algorithm Flow Process 35
Chapter 4 41
4.1. Pricing Strategy Problem Scenarios 41
4.2. Initial Setting for Practical Purpose 42
4.3. Simulation Algorithm 43
4.3.1. Scenario 1 (Homogeneous Poisson Arrivals and Constant Threshold W, and Initial Batches) 43
4.3.2. Scenario 2 (Homogeneous Poisson Arrivals, Constant Threshold W, and Changing Batch) 48
4.3.3. Scenario 3 (Non-homogeneous Poisson Arrivals, Stochastic Threshold W, and Initial Batches) 49
4.3.4. Scenario 4 (Non-homogeneous Poisson Arrivals, Stochastic Threshold W, and Changing Batch) 53
4.3.5. Scenario 5 (System with Batch Replenishment) 53
Chapter 5 55
5.1. Simulation Result 55
5.1.1. Scenario 1 55
5.1.2. Scenario 2 61
5.1.3. Scenario 3 69
5.1.4. Scenario 4 74
5.1.5. Scenario 5 85
5.1.6. Analysis for Customers with Stochastic Purchase Behavior 86
5.1.7. Evaluation of Expected Maximum Profit 89
Chapter 6 93
References 96
-
dc.language.isoen-
dc.subject數據驅動優化zh_TW
dc.subject動態定價策略zh_TW
dc.subject隨機建模zh_TW
dc.subject易腐產品zh_TW
dc.subject模擬zh_TW
dc.subjectData-Driven Optimizationen
dc.subjectPerishable Producten
dc.subjectStochastic Modelingen
dc.subjectDynamic Pricing Strategyen
dc.subjectSimulationen
dc.title以隨機顧客行為分析易腐性產品之動態定價策略zh_TW
dc.titleDynamic Pricing Strategy for Perishable Products with Stochastic Customer Behavioren
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee喻奉天;黃奎隆zh_TW
dc.contributor.oralexamcommitteeVincent F. Yu ;Kwei-Long Huangen
dc.subject.keyword易腐產品,隨機建模,動態定價策略,模擬,數據驅動優化,zh_TW
dc.subject.keywordPerishable Product,Stochastic Modeling,Dynamic Pricing Strategy,Simulation,Data-Driven Optimization,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202500368-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-lift2030-02-12-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
8.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved