請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96990
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳奕君 | zh_TW |
dc.contributor.advisor | I-Chun Cheng | en |
dc.contributor.author | 卜冠州 | zh_TW |
dc.contributor.author | Kuan-Chou Buu | en |
dc.date.accessioned | 2025-02-25T16:22:42Z | - |
dc.date.available | 2025-02-26 | - |
dc.date.copyright | 2025-02-25 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-12 | - |
dc.identifier.citation | [1] 郭雨鑫, "以氧化銦鎵鋅作為通道層之鐵電氧化鉿鋯薄膜電晶體之研究," 碩士論文, 國立台灣大學, 2021.
[2] H. Yang, S. Park, S. Yun, H. Kim, H. Lee, M. K. Park, S. J. Choi, D. H. Kim, D. Lwon, and J. H. Bae, "Exploration of Structural Influences on the Ferroelectric Switching Characteristics of Ferroelectric Thin-Film Transistors," Nanoscale, vol. 16, no. 42, pp. 19856-19864, Oct 31 2024, doi: 10.1039/d4nr02096k. [3] I. J. Kim, M. K. Kim, and J. S. Lee, "Design Strategy to Improve Memory Window in Ferroelectric Transistors With Oxide Semiconductor Channel," IEEE Electron Device Letters, vol. 44, no. 2, pp. 249-252, Feb 2023, doi: 10.1109/Led.2022.3229680. [4] P. Weimer, "The TFT A New Thin-Film Transistor," Proceedings of the IRE, vol. 50, no. 6, pp. 1462-1469, 1962, doi: 10.1109/jrproc.1962.288190. [5] Z. Wang, Y. Song, G. Zhang, Q. Luo, K. Xu, D. Gao, B. Yu, S. Zhong, and Y. Zhang, "Advances of Embedded Resistive Random Access Memory in Industrial Manufacturing and its Potential Applications," International Journal of Extreme Manufacturing, vol. 6, no. 3, p. 032006, 2024, doi: 10.1088/2631-7990/ad2fea. [6] Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T. Kang, and K. G. Neoh, "Polymer Electronic Memories: Materials, Devices and Mechanisms," Progress in Polymer Science, vol. 33, no. 10, pp. 917-978, 2008, doi: 10.1016/j.progpolymsci.2008.08.001. [7] O. Auciello, "A Critical Comparative Review of PZT and SBT - based Science and Technology for Non-volatile Ferroelectric Memories," Integrated Ferroelectrics, vol. 15, no. 1-4, pp. 211-220, 2006, doi: 10.1080/10584589708015712. [8] M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, "Review and Perspective on Ferroelectric HfO2-based Thin Films for Memory Applications," MRS Communications, vol. 8, no. 3, pp. 795-808, 2018, doi: 10.1557/mrc.2018.175. [9] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in Hafnium Oxide Thin Films," Applied Physics Letters, vol. 99, no. 10, 2011, doi: 10.1063/1.3634052. [10] D. Lehninger, M. Ellinger, T. Ali, S. Li, K. Mertens, M. Lederer, R. Olivio, T. Kampfe, N. Hanish, K. Biedermann, M. Rudolph, V. Brackmann, S Sanctis, M. P. Jank, and K. Seidel, "A Fully Integrated Ferroelectric Thin-Film-Transistor - Influence of Device Scaling on Threshold Voltage Compensation in Displays,", Advanced Electronic Materials, vol. 7, no. 6, p. 2100082, Jun 2021, doi: ARTN2100082 10.1002/aelm.202100082. [11] V. Milo, G. Malavena, C. Monzio Compagnoni, and D. Ielmini, "Memristive and CMOS Devices for Neuromorphic Computing," Materials (Basel), vol. 13, no. 1, p. 166, Jan 1 2020, doi: 10.3390/ma13010166. [12] K. Ni, P. Sharma, J. Zhang, M. Jerry, J. A. Smith, K. Tapily, R. Clark, S. Mahapatra, and S. Datta, "Critical Role of Interlayer in HfZrO Ferroelectric FET Nonvolatile Memory Performance," IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2461-2469, Jun 2018, doi: 10.1109/Ted.2018.2829122. [13] H. Jiao, X. Wang, S. Wu, Y. Chen, J. Chu, and J. Wang, "Ferroelectric Field Effect Transistors for Electronics and Optoelectronics," Applied Physics Reviews, vol. 10, no. 1, 2023, doi: 10.1063/5.0090120. [14] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors," Nature, vol. 432, no. 7016, pp. 488-92, Nov 25 2004, doi: 10.1038/nature03090. [15] M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, "Thermodynamic and Kinetic Origins of Ferroelectricity in Fluorite Structure Oxides," Advanced Electronic Materials, vol. 5, no. 3, p. 1800522, Mar 2019, doi: ARTN 1800522 10.1002/aelm.201800522. [16] A. Suresh, Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors, Non-volatile Memory and Circuits for Transparent Electronics. North Carolina State University, 2009. [17] K. Nomura, T. Kamiya, and H. Hosono, "Stability and High-Frequency Operation of Amorphous In-Ga-Zn-O Thin-Film Transistors with Various Passivation Layers," Thin Solid Films, vol. 520, no. 10, pp. 3778-3782, Mar 1 2012, doi: 10.1016/j.tsf.2011.10.068. [18] J. Y. Choi and S. Y. Lee, "Comprehensive Review on the Development of High Mobility in Oxide Thin Film Transistors," Journal of the Korean Physical Society, vol. 71, no. 9, pp. 516-527, Nov 2017, doi: 10.3938/jkps.71.516. [19] W. Xu, H. Li, J. B. Xu, and L. Wang, "Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors," ACS Appl Mater Interfaces, vol. 10, no. 31, pp. 25878-25901, Aug 8 2018, doi: 10.1021/acsami.7b16010. [20] I. Chilibon and J. N. Marat-Mendes, "Ferroelectric Ceramics by Sol-Gel Methods and Applications: A review," Journal of Sol-Gel Science and Technology, vol. 64, no. 3, pp. 571-611, Dec 2012, doi: 10.1007/s10971-012-2891-7. [21] X. H. Sang, E. D. Grimley, T. Schenk, U. Schroeder, and J. M. LeBeau, "On the Structural Origins of Ferroelectricity in HfO Thin Films," Applied Physics Letters, vol. 106, no. 16, Apr 20 2015, doi: Artn 162905 10.1063/1.4919135. [22] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingo, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, "Ferroelectric Thin Films: Review of Materials, Properties, and Applications," Journal of Applied Physics, vol. 100, no. 5, 2006, doi: 10.1063/1.2336999. [23] M. Jung, V. Gaddam, and S. Jeon, "A Review on Morphotropic Phase Boundary in Fluorite-structure Hafnia towards DRAM Technology," Nano Converg, vol. 9, no. 1, p. 44, Oct 1 2022, doi: 10.1186/s40580-022-00333-7. [24] J. Muller, T. S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, and T. Mikolajick, "Ferroelectricity in Simple Binary ZrO2 and HfO2," Nano Lett, vol. 12, no. 8, pp. 4318-23, Aug 8 2012, doi: 10.1021/nl302049k. [25] M. H. Park, Y. H. Lee, H. J. Kim, T. Schenk, W. Lee, K. D. Kim, F. P. G. Fengler, T. Mikolajick, U. Schroeder, and C. S. Hwang, "Surface and Grain Boundary Energy as the Key Enabler of Ferroelectricity in Nanoscale Hafnia-Zirconia: a Comparison of Model and Experiment," Nanoscale, vol. 9, no. 28, pp. 9973-9986, Jul 20 2017, doi: 10.1039/c7nr02121f. [26] M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, and C. S. Hwang, "Evolution of Phases and Ferroelectric Properties of Thin Hf0.5Zr0.5O2 Films According to the Thickness and Annealing Temperature," Applied Physics Letters, vol. 102, no. 24, 2013, doi: 10.1063/1.4811483. [27] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, S. D. Hyun, T. Mikolajick, U. Schroeder, and C. S. Hwang, "Understanding the Formation of the Metastable Ferroelectric Phase in Hafnia-Zirconia Solid Solution Thin Films," Nanoscale, vol. 10, no. 2, pp. 716-725, Jan 3 2018, doi: 10.1039/c7nr06342c. [28] R. Materlik, C. Künneth, and A. Kersch, "The Origin of Ferroelectricity in HfZrO: A Computational Investigation and a Surface Energy Model," Journal of Applied Physics, vol. 117, no. 13, Apr 7 2015, doi: Artn 134109 10.1063/1.4916707. [29] R. Cao, Y. Wang, S. Zhao, Y. Yang, X. Zhao, W. Wang, X. Zhang, H. Lv, Q. Liu, and M. Liu, "Effects of Capping Electrode on Ferroelectric Properties of HfZrO Thin Films," IEEE Electron Device Letters, vol. 39, no. 8, pp. 1207-1210, Aug 2018, doi: 10.1109/Led.2018.2846570. [30] Y. Lee, Y. Goh, J. Hwang, D. Das, and S. Jeon, "The Influence of Top and Bottom Metal Electrodes on Ferroelectricity of Hafnia," IEEE Transactions on Electron Devices, vol. 68, no. 2, pp. 523-528, Feb 2021, doi: 10.1109/Ted.2020.3046173. [31] H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, T. Moon, K. D. Kim, S. D. Hyun, and C. S. Hwang, "A Study on the Wake-up Effect of Ferroelectric Hf0.5Zr0.5O2 Films by Pulse-switching Measurement," Nanoscale, vol. 8, no. 3, pp. 1383-9, Jan 21 2016, doi: 10.1039/c5nr05339k. [32] M. Tarkov, F. Tikhonenko, V. Popov, V. Antonov, A. Miakonkikh, and K. Rudenko, "Ferroelectric Devices for Content-Addressable Memory," Nanomaterials (Basel), vol. 12, no. 24, p. 4488, Dec 19 2022, doi: 10.3390/nano12244488. [33] W. Kinney, W. Shepherd, W. Miller, J. Evans, and R. Womack, "A Non-volatile Memory Cell based on Ferroelectric Storage Capacitors," in 1987 International Electron Devices Meeting, 1987: IEEE, pp. 850-851, doi: 10.1109/IEDM.1987.191567. [34] J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto, F. Sugaya, M. Materano. T. Ali, M. Lederer, K. Kuehnel, K. Seidel, U. Schroeder, T. Mikolajick, M. Tsukamoto, and T. Umebayashi, "High-endurance and Low-voltage Operation of 1T1C FeRAM Arrays for Nonvolatile Memory Application," in 2021 IEEE International Memory Workshop (IMW), 2021: IEEE, pp. 1-3, doi: 10.1109/IMW51353.2021.9439595. [35] S. Y. Wu, "A New Ferroelectric Memory Device, Metal-ferroelectric-Semiconductor Transistor," IEEE Transactions on Electron Devices, vol. 21, no. 8, pp. 499-504, 1974, doi: 10.1109/t-ed.1974.17955. [36] M. Fitsilis, "Scaling of the Ferroelectric Field Effect Transistor and Programming Concepts for Non-volatile Memory Applications," Bibliothek der RWTH Aachen, 2005. [37] Y. Higuma, Y. Matsui, M. Okuyama, T. Nakagawa, and Y. Hamakawa, "“MFS FET” -A New Type of Nonvolatile Memory Switch Using PLZT Film," Japanese Journal of Applied Physics, vol. 17, no. S1, p. 209, 1978, doi: 10.7567/jjaps.17s1.209. [38] T. P. Ma and J. P. Han, "Why is Nonvolatile Ferroelectric Memory Field-Effect Transistor still Elusive?," IEEE Electron Device Letters, vol. 23, no. 7, pp. 386-388, 2002, doi: 10.1109/led.2002.1015207. [39] Y. Arimoto and H. Ishiwara, "Current Status of Ferroelectric Random-Access Memory," MRS Bulletin, vol. 29, no. 11, pp. 823-828, 2011, doi: 10.1557/mrs2004.235. [40] C.-Y. Chan, K.-Y. Chen, H.-K. Peng, and Y.-H. Wu, "FeFET Memory Featuring Large Memory Window and Robust Endurance of Long-pulse Cycling by Interface Engineering Using High-k AlON," in 2020 IEEE Symposium on VLSI Technology, 2020: IEEE, pp. 1-2, doi: 10.1109/VLSITechnology18217.2020.9265103. [41] A. J. Tan, Y. H. Liao, L. C. Wang, N. Shanker, J. H. Bae, C. Hu, and S. Salahuddin, "Ferroelectric HfO2 Memory Transistors With High-κ Interfacial Layer and Write Endurance Exceeding 1010 Cycles," IEEE Electron Device Letters, vol. 42, no. 7, pp. 994-997, 2021, doi: 10.1109/led.2021.3083219. [42] F. Tian, S. Zhao, H. Xu, J. Xiang, T. Li, W. Xiong, J. Duan, J. Chai, K. Han, W. Wang, and T. Ye, "Impact of Interlayer and Ferroelectric Materials on Charge Trapping During Endurance Fatigue of FeFET With TiN/HfxZr1-xO2/Interlayer/Si (MFIS) Gate Structure," IEEE Transactions on Electron Devices, vol. 68, no. 11, pp. 5872-5878, 2021, doi: 10.1109/ted.2021.3114663. [43] B. Zhang, P. Z. Hong, J. W. Hou, Z. L. Huo, and T. C. Ye, "Doped HfO-based Ferroelectric Aided Charge-trapping Effect in MFIS Gate Stack of FeFET," Journal of Applied Physics, vol. 133, no. 16, Apr 28 2023, doi: Artn 164103 10.1063/5.0141082. [44] B. H. Kim, S. H. Kuk, S. K. Kim, J. P. Kim, Y. J. Suh, J. Jeong, J. Jeong, C. J. Lee, D. M. Geum, Y. J. Yoon, and S. H. Kim, "Low Operating Voltage and Immediate Read-After-Write of HZO-Based Si Ferroelectric Field-Effect Transistors with High Endurance and Retention Characteristics," Advanced Electronic Materials, vol. 10, no. 1, p. 2300327, Jan 2024, doi: 10.1002/aelm.202300327. [45] P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, "High Performance InO Thin Film Transistors Using Chemically Derived Aluminum Oxide Dielectric," Applied Physics Letters, vol. 103, no. 3, Jul 15 2013, doi: Artn 033518 10.1063/1.4816060. [46] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, "P-channel Thin-Film Transistor Using P-type Oxide Semiconductor, SnO," Applied Physics Letters, vol. 93, no. 3, Jul 21 2008, doi: Artn 032113 10.1063/1.2964197. [47] E. Tokumitsu, M. Senoo, and T. Miyasako, "Use of Ferroelectric Gate Insulator for Thin Film Transistors with ITO Channel," Microelectronic Engineering, vol. 80, pp. 305-308, Jun 2005, doi: 10.1016/j.mee.2005.04.017. [48] H. Yoo, I. S. Lee, S. Jung, S. M. Rho, B. H. Kang, and H. J. Kim, "A Review of Phototransistors Using Metal Oxide Semiconductors: Research Progress and Future Directions," Adv Mater, vol. 33, no. 47, p. e2006091, Nov 2021, doi: 10.1002/adma.202006091. [49] H. Hosono, "Ionic Amorphous Oxide Semiconductors: Material Design, Carrier Transport, and Device Application," Journal of Non-Crystalline Solids, vol. 352, no. 9-20, pp. 851-858, Jun 15 2006, doi: 10.1016/j.jnoncrysol.2006.01.073. [50] T. Kamiya and H. Hosono, "Material Characteristics and Applications of Transparent Amorphous Oxide Semiconductors," Npg Asia Materials, vol. 2, no. 1, pp. 15-22, Jan 2010, doi: 10.1038/asiamat.2010.5. [51] Y. Han, D. H. Lee, E. S. Cho, S. J. Kwon, and H. Yoo, "Argon and Oxygen Gas Flow Rate Dependency of Sputtering-Based Indium-Gallium-Zinc Oxide Thin-Film Transistors," Micromachines (Basel), vol. 14, no. 7, p. 1394, Jul 8 2023, doi: 10.3390/mi14071394. [52] T. Cui, D. Chen, Y. Dong, Y. Fan, Z. Yao, H. Duan, J. Liu, G. Liu, M. Si, and X. Li, "Can Interface Layer be Really Free for HfxZr1-x O2 Based Ferroelectric Field-Effect Transistors With Oxide Semiconductor Channel?," IEEE Electron Device Letters, vol. 45, no. 3, pp. 368-371, 2024, doi: 10.1109/led.2024.3355523. [53] K. Lee, S. Kim, M. Kim, J. H. Lee, D. Kwon, and B. G. Park, "Comprehensive TCAD-Based Validation of Interface Trap-Assisted Ferroelectric Polarization in Ferroelectric-Gate Field-Effect Transistor Memory," IEEE Transactions on Electron Devices, vol. 69, no. 3, pp. 1048-1053, Mar 2022, doi: 10.1109/Ted.2022.3144965. [54] R. Yao, Z. Zheng, M. Xiong, X. Zhang, X. Li, H. Ning, Z. Fang, W. Xie, X. Lu, and J. Peng, "Low-temperature Fabrication of Sputtered High- HfO Gate Dielectric for Flexible a-IGZO Thin Film Transistors," Applied Physics Letters, vol. 112, no. 10, Mar 5 2018, doi: Artn 103503 10.1063/1.5022088. [55] Y. Goh, S. H. Cho, S. K. Park, and S. Jeon, "Oxygen Vacancy Vontrol as a Strategy to Achieve Highly Reliable Hafnia Ferroelectrics Using Oxide Electrode," Nanoscale, vol. 12, no. 16, pp. 9024-9031, Apr 30 2020, doi: 10.1039/d0nr00933d. [56] A. A. Koroleva, A. G. Chernikova, S. S. Zarubin, E. Korostylev, R. R. Khakimov, M. Y. Zhuk, and A. M. Markeev, "Retention Improvement of HZO-Based Ferroelectric Capacitors with TiO(2) Insets," ACS Omega, vol. 7, no. 50, pp. 47084-47095, Dec 20 2022, doi: 10.1021/acsomega.2c06237. [57] S. H. Kuk, S. M. Han, B. H. Kim, S. H. Baek, J. H. Han, and S. H. Kim, "An Investigation of HZO-Based n/p-FeFET Operation Mechanism and Improved Device Performance by the Electron Detrapping Mode," IEEE Transactions on Electron Devices, vol. 69, no. 4, pp. 2080-2087, Apr 2022, doi: 10.1109/Ted.2022.3154687. [58] F. Mo, Y. Tagawa, C. Jin, M. Ahn, T. Saraya, T. Hiramoto, and M. Kobayashi, "Low-Voltage Operating Ferroelectric FET with Ultrathin IGZO Channel for High-Density Memory Application," IEEE Journal of the Electron Devices Society, vol. 8, pp. 717-723, 2020, doi: 10.1109/Jeds.2020.3008789. [59] S. Dutta, H. Ye, A. A. Khandker, S. G. Kirtania, A. Khanna, K. Ni, and S. Datta, "Logic Compatible High-Performance Ferroelectric Transistor Memory," IEEE Electron Device Letters, vol. 43, no. 3, pp. 382-385, Mar 2022, doi: 10.1109/Led.2022.3148669. [60] C. K. Chen, S. Hooda, Z. Fang, M. Lal, Z. Xu, J. Pan, S. H. Tsai, E. Zamburg, and A. V. .Y. Thean, "High-Performance Top-Gated and Double-Gated Oxide-Semiconductor Ferroelectric Field-Effect Transistor Enabled by Channel Defect Self-Compensation Effect," IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 2098-2105, Apr 2023, doi: 10.1109/Ted.2023.3242633. [61] P. Xu, P. Jiang, Y. Yang, T. Gong, W. Wei, Y. Wang, X. Long, J. Niu, Z. Wu, X. Peng, Z. Wu, X. Peng, Z, Wu, and Q. Luo, "Demonstration of Large MW and Prominent Endurance in a Hf0.5Zr0.5O2 FeFET With IGZO Channel Utilizing Postdeposition Annealing," IEEE Electron Device Letters, vol. 45, no. 11, pp. 2110-2113, 2024, doi: 10.1109/led.2024.3464589. [62] J. Y. Kim, M. J. Choi, Y. J. Lee, S. H. Park, S. Choi, J. H. Baek, I. H. Im, S. J. Kim, H. W. Jang, "High-Performance Ferroelectric Thin Film Transistors with Large Memory Window Using Epitaxial Yttrium-Doped Hafnium Zirconium Gate Oxide," ACS Appl Mater Interfaces, vol. 16, no. 15, pp. 19057-19067, Apr 17 2024, doi: 10.1021/acsami.3c16427. [63] J. S. Kim, S. Kang, Y. Jang, Y. Lee, K. Kim, W. Lee, and C. S. Hwang, "Investigating the Reasons for the Difficult Erase Operation of a Charge-Trap Flash Memory Device with Amorphous Oxide Semiconductor Thin-Film Channel Layers," Physica Status Solidi-Rapid Research Letters, vol. 15, no. 2, p. 2000549, Feb 2021, doi: ARTN 2000549 10.1002/pssr.202000549. [64] Q. Li, S. Wang, Z. Li, X. Hu, Y. Liu, J. Yu, Y. Yang, T. Wang, J. Meng, Q. Sun, D. W. Zhang, and L. Chen, "High-performance Ferroelectric Field-Effect Transistors with Ultra-Thin Indium Tin Oxide Channels for Flexible and Transparent Electronics," Nat Commun, vol. 15, no. 1, p. 2686, Mar 27 2024, doi: 10.1038/s41467-024-46878-5. [65] S. H. Tsai, Z. Li, M. M. M. E. Phyu, Z. Fang, S. Hooda, C. K. Chen, E. Zamburg, and A. V. Y. Thean, "Back-End-of-Line-Compatible Anneal-Free Ferroelectric Field-Effect Transistor," in 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2023: IEEE, pp. 1-3, doi: 10.1109/EDTM55494.2023.10103049. [66] J. Jeong, H. Park, J. Kim, H. Moon, H. Choi, E. Kim, S. Jeon, Y, Kim, and J. Woo, "Hf(0.4)Zr(0.6)O(2) Thickness-Dependent Transfer Characteristics of In x Zn1–x O y Channel Ferroelectric FETs," J Phys Chem Lett, vol. 15, no. 40, pp. 10258-10264, Oct 10 2024, doi: 10.1021/acs.jpclett.4c02201. [67] T. H. Noh, S. Chen, H. B. Kim, T. Jin, S. M. Park, S. U. An, X. Sun, J. Kim, J. H. Han, J. H. Ahn, D. H. Ahn, and Y. Kim, "First demonstration of 2T0C-FeDRAM: a-ITZO FET and Double Gate a-ITZO/a-IGZO FeFET with a Record-long Multibit Retention Time of >4-bit and >2000 s," Nanoscale, vol. 16, no. 35, pp. 16467-16476, Sep 12 2024, doi: 10.1039/d4nr02393e. [68] T. J. Kunene, L. K. Tartibu, K. Ukoba, and T. C. Jen, "Review of Atomic Layer Deposition Process, Application and Modeling Tools," Materials Today: Proceedings, vol. 62, pp. S95-S109, 2022, doi: 10.1016/j.matpr.2022.02.094. [69] J. A. Raiford, S. T. Oyakhire, and S. F. Bent, "Applications of Atomic Layer Deposition and Chemical Vapor Deposition for Perovskite Solar Cells," Energy & Environmental Science, vol. 13, no. 7, pp. 1997-2023, Jul 1 2020, doi: 10.1039/d0ee00385a. [70] F. M. Mwema, "Thin Film Coating: Characterizing the Evolving Properties of Aluminium Thin Films Prepared via RF Magnetron Sputtering," University of Johannesburg (South Africa), 2019. [Online]. Available: http://hdl.handle.net/102000/0002. [71] 張祐禎, "背通道缺陷工程於P型氧化亞錫薄膜電晶體開關特性改善之研究," 碩士論文, 國立台灣大學, 2021. [72] R. G. Poulsen, "Plasma Etching in Integrated Circuit Manufacture—A Review," Journal of Vacuum Science and Technology, vol. 14, no. 1, pp. 266-274, 1977, doi: 10.1116/1.569137. [73] 張鈞維, "以氧化銦鎵鋅作為通道層之可撓性氧化鉿鋯鐵電薄膜電晶體之研究," 碩士論文, 國立台灣大學, 2022. [74] T. C. Chen, T. C. Chang, T. Y. Hsieh, W. S. Lu, F. Y. Jian, C. T. Tsai, S. Y. Huang, and C. S. Lin, "Investigating the Degradation Behavior Caused by Charge Trapping Effect under DC and AC Gate-bias Stress for InGaZnO Thin Film Transistor," Applied Physics Letters, vol. 99, no. 2, Jul 11 2011, doi: Artn 022104 10.1063/1.3609873. [75] S. De, S. Thunder, F. X. Liang, D. Lehninger, H. H. Le, M. Lederer, F. Muller, N. Laleni, S. Abdulazhanov, M. P. M. Jank, S. Mojumder, A. Varder, T. Ali, M. A. Baig, D. Lu, P. T. Huang, K. Seidel, T. Kampfe "Gate-stack Engineered IGZO-based Multi-bit OTP FeTFT with Lifelong Retention for Inference Engine Applications," TechRxiv. Preprint. https://doi. org/10.36227/techrxiv, vol. 19491221, p. v2, 2022. [76] Y. Sawabe, T. Saraya, T. Hiramoto, C. J. Su, V. P. H. Hu, and M. Kobayashi, "On the Thickness Dependence of the Polarization Switching Kinetics in HfO-based Ferroelectric," Applied Physics Letters, vol. 121, no. 8, Aug 22 2022, doi: Artn 082903 10.1063/5.0098436. [77] Z. Zhao, Y.-W. Chen, Y.-R. Chen, and C. W. Liu, "Engineering Ferroelectric HZO With n+-Si/Ge Substrates Achieving High 2Pr=84 μC/cm 2 and Endurance >1E11," IEEE Access, vol. 12, pp. 71598-71605, 2024, doi: 10.1109/access.2024.3402120. [78] A. Chen, K. G. Zhu, H. C. Zhong, Q. Y. Shao, and G. L. Ge, "A New Investigation of Oxygen Flow Influence on ITO Thin Films by Magnetron Sputtering," Solar Energy Materials and Solar Cells, vol. 120, pp. 157-162, Jan 2014, doi: 10.1016/j.solmat.2013.08.036. [79] W. Xiao, C. Liu, Y. Peng, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, and Y. Zhou,, "Performance Improvement of Hf0.5Zr0.5O2-Based Ferroelectric-Field-Effect Transistors With ZrO2 Seed Layers," IEEE Electron Device Letters, vol. 40, no. 5, pp. 714-717, 2019, doi: 10.1109/led.2019.2903641. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96990 | - |
dc.description.abstract | 本研究致力於研發以金屬氧化物半導體(Metal Oxide Semiconductor)搭配氧化鉿鋯(HfZrO2, HZO)鐵電材料製備鐵電薄膜式電晶體記憶體(Ferroelectric Thin Film Transistor, FeTFT),以應對新世代記憶體對高穩定性與低能耗的需求。嘗試從既有的金屬-鐵電層-金屬-絕緣層-半導體層(MFMIS)串聯架構[1],精簡化為直接應用HZO鐵電薄膜作為FeTFT絕緣層之金屬-鐵電絕緣層-半導體層(MFS)架構,此縮減設計不僅降低製程步驟,還將同時避免介電材料堆疊引起的分壓問題。
本文先是系統性探討了HZO和金屬氧化物半導體各自的材料特性,並分析彼此搭配後電性間的交互影響。與此同時,針對過往FeTFT文獻發現以氧化銦鎵鋅(IGZO)作為主動層時,無法進行擦除操作的瓶頸[2]。實驗則以異質主動層設計,透過在HZO和IGZO中間額外引入富含氧空缺(Oxygen Vacancy)的銦錫氧化物(InSnOx, ITO)或氧化銦(In2O3)薄膜,成功解決HZO和主動層介面處正電荷不足無法形成電場極化之問題[3]。且基於前述成果,研究進一步以富含氧空缺的In2O3取代材料內部缺乏電洞的IGZO作為主動層,在低於350°C的環境下製備出具有穩定遲滯特性的FeTFT。除此之外,由於元件製備上須考量濺鍍之In2O3已具有極佳的導電性,不宜再進行高溫退火。因此後續加入金屬Mo作為犧牲層(Sacrificial Layer),以分段退火方式成功整合HZO和In2O3間的退火矛盾。 最終實驗結果顯示,雖然目前研發製備之FeTFT仍存在電流開關比不足與次臨界擺幅(S.S.)相對偏高等挑戰尚待後續改善與提升。然而,此精簡化MFS架構In2O3 FeTFT亦同步於脈衝方波測試中,成功驗證其極化狀態在無供電條件下依然能長時間保持,此記憶體操作成果揭示了本項研究所研發之FeTFT在多層式儲存應用和後段製程適配性上的潛在價值與可行性。 | zh_TW |
dc.description.abstract | This research focuses on developing ferroelectric thin-film transistors (FeTFT) by integrating hafnium-zirconium oxide (HfZrO₂, HZO) with metal oxide semiconductors channels. The goal is to meet the demands of next-generation memory devices for high stability and low energy consumption. In this work, a simplified FeTFT structure is proposed, replacing the conventional metal-ferroelectric-metal-insulator-semiconductor (MFMIS) design with a more efficient metal-ferroelectric-semiconductor(MFS) structure[1]. In this configuration, HZO ferroelectric layer serves as the FeTFT insulator simultaneously. This new design not only significantly reduces fabrication process steps but also avoids voltage division issues caused by dielectric layer stacking.
However, FeTFT with oxide semiconductor channels often suffer from restricted memory window. This limitation arises from the inherent inability of n-type oxide semiconductors to generate an adequate number of hole carriers required for effective ferroelectric polarization switching[3]. To overcome this challenge, a heterostructure active layer is introduced, by inserting an oxygen vacancy-rich thin film at the interface between HZO and IGZO, such as ITO or In2O3. This approach resolves the low hole concentration problem, enabling reliable polarization switching in the HZO layer. Building on this, oxygen vacancy-rich In2O3 was further served as the active layer. Leading to the successful fabrication of FeTFT with stable hysteresis characteristics under low process temperature. Furthermore, to resolve the thermal mismatch between HZO and In2O3, a sacrificial Mo layer was introduced. The device was first annealed in an MFM structure to activate the ferroelectric properties of the HZO layer, and the sacrificial layer was subsequently removed. Although the experimental results show that our FeTFT devices still face challenges like low current on/off ratio and high subthreshold swing (S.S.), requiring further optimization. But nevertheless, our MFS structure In₂O₃ FeTFT successfully demonstrated its ability to retain polarization states for an extended period under pulse measurement, even without power supply. These findings highlight the potential value and feasibility of our FeTFT for multi-level storage applications and compatibility with back-end-of-line (BEOL) processes. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:22:42Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-25T16:22:42Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract III 目次 V 圖次 IX 表次 XIV 1 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.3 論文架構 5 2 第二章 理論與文獻探討 7 2.1 薄膜電晶體簡介 7 2.1.1 薄膜電晶體之基本原理 7 2.1.2 薄膜電晶體之閘極偏壓能帶圖 9 2.1.3 薄膜電晶體之結構比較 10 2.1.4 薄膜電晶體之絕緣層介電材料 11 2.1.5 薄膜電晶之主要參數 12 2.2 氧化鉿鋯鐵電電容 16 2.2.1 鐵電材料 16 2.2.2 氧化鉿基鐵電性成因 17 2.2.3 氧化鉿鋯薄膜結晶相 18 2.2.4 氧化鉿摻雜不同比例鋯元素之鐵電電容 19 2.2.5 氧化鉿鋯鐵電性成因探討 21 2.2.6 電極材料對氧化鉿鋯鐵電性之影響 24 2.3 氧化鉿鋯鐵電記憶體 26 2.3.1 氧化鉿鋯鐵電記憶體之基本原理 26 2.3.2 矽半導體搭配氧化鉿鋯鐵電電晶體式記憶體 29 2.4 氧化銦鎵鋅與氧化銦之主動層 30 2.4.1 金屬氧化物半導體帶電載子傳輸簡介 30 2.4.2 氧化銦鎵鋅與氧化銦 31 2.5 金屬氧化物半導體搭配氧化鉿鋯之鐵電薄膜電晶體式記憶體文獻回顧 33 2.5.1 鐵電薄膜電晶體MFS架構對氧化鉿鋯鐵電性極化之影響 34 2.5.2 鐵電薄膜電晶體加入上閘極結構設計之探討 39 2.5.3 短通道鐵電薄膜電晶體之探討 41 2.5.4 結合不同金屬氧化物作主動層之鐵電薄膜電晶體探討 43 2.5.5 金屬氧化物搭配氧化鉿鋯鐵電薄膜電晶體之文獻回顧整理 47 3 第三章 實驗方法與步驟 48 3.1 薄膜沉積製程 48 3.1.1 原子薄膜沉積製程 48 3.1.2 射頻磁控濺鍍製程 50 3.1.3 電子束蒸鍍製程 52 3.2 光學微影製程 53 3.2.1 光阻塗佈 53 3.2.2 光罩對準與曝光 54 3.2.3 圖形顯影 54 3.3 蝕刻製程 55 3.3.1 濕式蝕刻製程 55 3.3.2 反應離子蝕刻製程 56 3.4 HZO鐵電電容MFM製備流程 57 3.5 MFMIS串聯架構FeTFT製備流程 60 3.6 MFS架構FeTFT與異質主動層製備流程 64 3.6.1 HZO鐵電電容之MFSM結構製備流程 69 3.7 以In2O3作為主動層之MFS架構FeTFT製備流程 70 3.7.1 HZO鐵電電容之MFM結構製備流程 74 4 第四章 結果與討論 75 4.1 HZO鐵電電容分析 75 4.1.1 MFMIS串聯架構FeTFT HZO C-V 電性分析(MFM結構) 76 4.1.2 MFS架構FeTFT HZO C-V電性分析(MFSM結構) 78 4.1.3 MFS架構異質主動層FeTFT HZO C-V電性分析(MFSM結構) 80 4.1.4 以In2O3作為主動層MFS架構FeTFT HZO C-V與P-V電性分析(MFM結構) 83 4.2 串聯架構MFMIS FeTFT電性分析 85 4.2.1 IGZO TFT電性分析 85 4.2.2 無交疊MFMIS串聯架構FeTFT電性分析 87 4.3 MFS架構FeTFT電性分析(以IGZO作為主動層) 89 4.3.1 退火方式對MFS架構FeTFT之影響 89 4.3.2 下閘極金屬前置處理對MFS架構FeTFT之影響 93 4.3.3 厚度對MFS架構FeTFT之影響 96 4.4 異質主動層MFS架構FeTFT電性分析 98 4.4.1 ITO-IGZO異質主動層MFS架構FeTFT電性分析 98 4.4.2 濺鍍氧通量對ITO-IGZO異質主動層FeTFT電性分析 103 4.4.3 In2O3-IGZO異質主動層MFS架構FeTFT電性分析 106 4.5 以In2O3作為主動層之MFS架構FeTFT電性分析 109 4.5.1 濺鍍氧通量對以In2O3作為主動層之MFS架構FeTFT電性分析 112 4.5.2 以In2O3作為主動層之MFS架構FeTFT脈衝寬度效應分析 115 4.5.3 以In2O3作為主動層之MFS架構FeTFT記憶體Retention分析 118 5 第五章 結論與未來展望 121 5.1 結論 121 5.2 未來展望 123 A. 附錄 124 A.1 MFS架構FeTFT HZO P-V電性分析(MFSM結構) 124 A.2 Al2O3介面層對MFS架構FeTFT影響 126 A.3 In2O3-IGZO異質主動層對MFS架構FeTFT影響 129 參考引用文獻 130 | - |
dc.language.iso | zh_TW | - |
dc.title | 以金屬氧化物半導體作為主動層之低溫氧化鉿鋯鐵電電晶體記憶特性研究 | zh_TW |
dc.title | Memory Characteristics of Low-Temperature HfZrO2 Ferroelectric Thin-Film Transistors Based on Metal Oxide Channels | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 李敏鴻;陳建彰 | zh_TW |
dc.contributor.oralexamcommittee | Min-Hung Lee;Jian-Zhang Chen | en |
dc.subject.keyword | 鐵電記憶體,FeTFT,氧化鉿鋯,金屬氧化物半導體,MFS,結構縮減, | zh_TW |
dc.subject.keyword | Ferroelectric Memory,FeTFT,HZO,Metal Oxide Semiconductor,MFS,BEOL, | en |
dc.relation.page | 138 | - |
dc.identifier.doi | 10.6342/NTU202500676 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-02-13 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 9.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。