Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96983
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡沛學zh_TW
dc.contributor.advisorPei-Shiue Tsaien
dc.contributor.author董俐亞zh_TW
dc.contributor.authorLi-Ya Tungen
dc.date.accessioned2025-02-25T16:20:41Z-
dc.date.available2025-02-26-
dc.date.copyright2025-02-25-
dc.date.issued2025-
dc.date.submitted2025-02-11-
dc.identifier.citation1. Wouk, N. (2021). End-stage renal disease: medical management. American family physician, 104(5), 493-499.
2. Hashmi, M. F., Benjamin, O., & Lappin, S. L. (2023). End-Stage Renal Disease. In StatPearls. StatPearls Publishing.
3. United States Renal Data System. 2023 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2023.
4. Wu, B. S., Wei, C. L. H., Yang, C. Y., Lin, M. H., Hsu, C. C., Hsu, Y. J., ... & Tarng, D. C. (2022). Mortality rate of end-stage kidney disease patients in Taiwan. Journal of the Formosan Medical Association, 121, S12-S19.
5. Lai, T. S., Hsu, C. C., Lin, M. H., Wu, V. C., & Chen, Y. M. (2022). Trends in the incidence and prevalence of end-stage kidney disease requiring dialysis in Taiwan: 2010–2018. Journal of the Formosan Medical Association, 121, S5-S11.
6. Maxwell, M. H., Rockney, R. E., Kleeman, C. R., & Twiss, M. R. (1959). Peritoneal dialysis: 1. Technique and applications. Journal of the American Medical Association, 170(8), 917-924.
7. Gokal, R., & Mallick, N. P. (1999). Peritoneal dialysis. The Lancet, 353(9155), 823-828.
8. Crabtree, J. H., & Chow, K. M. (2017, January). Peritoneal dialysis catheter insertion. In Seminars in nephrology (Vol. 37, No. 1, pp. 17-29). WB Saunders.
9. Carey, W. A., Martz, K. L., & Warady, B. A. (2015). end of patients initiating chronic peritoneal dialysis during the first year of life. Pediatrics, 136(3), e615-e622.
10. Taiwan Society of Nephrology (2023). 2023 Annual Report on Kidney Disease in Taiwan.
11. Mehrotra, R., Chiu, Y. W., Kalantar-Zadeh, K., Bargman, J., & Vonesh, E. (2011). Similar outcomes with hemodialysis and peritoneal dialysis in patients with end-stage renal disease. Archives of internal medicine, 171(2), 110-118.
12. Wong, B., Ravani, P., Oliver, M. J., Holroyd-Leduc, J., Venturato, L., Garg, A. X., & Quinn, R. R. (2018). Comparison of patient survival between hemodialysis and peritoneal dialysis among patients eligible for both modalities. American Journal of Kidney Diseases, 71(3), 344-351.
13. Zhao, Y. (2023). Comparison of the effect of hemodialysis and peritoneal dialysis in the treatment of end-stage renal disease. Pakistan Journal of Medical Sciences, 39(6), 1562.
14. Zazzeroni, L., Pasquinelli, G., Nanni, E., Cremonini, V., & Rubbi, I. (2017). Comparison of quality of life in patients undergoing hemodialysis and peritoneal dialysis: a systematic review and meta-analysis. Kidney and Blood Pressure Research, 42(4), 717-727.
15. Isaza-Restrepo, A., Martin-Saavedra, J. S., Velez-Leal, J. L., Vargas-Barato, F., & Riveros-Dueñas, R. (2018). The peritoneum: beyond the tissue–a review. Frontiers in physiology, 9, 738.
16. Van Baal, J. O. A. M., Van de Vijver, K. K., Nieuwland, R., Van Noorden, C. J. F., Van Driel, W. J., Sturk, A., ... & Lok, C. A. R. (2017). The histophysiology and pathophysiology of the peritoneum. Tissue and Cell, 49(1), 95-105.
17. Rippe, B., Stelin, G., & Haraldsson, B. (1991). Computer simulations of peritoneal fluid transport in CAPD. Kidney international, 40(2), 315-325.
18. Devuyst, O., & Goffin, E. (2008). Water and solute transport in peritoneal dialysis: models and clinical applications. Nephrology Dialysis Transplantation, 23(7), 2120-2123.
19. Lai, K. N., Li, F. K., Lan, H. Y., Tang, S., Tsang, A. W., Chan, D. T., & Leung, J. C. (2001). Expression of Aquaporin-1 in human peritoneal mesothelial cells and its upregulation by GlucoseIn Vitro. Journal of the American Society of Nephrology, 12(5), 1036-1045.
20. Karnovsky, M. J. (1967). The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. The Journal of cell biology, 35(1), 213-236.
21. Khanna R. (2017). Solute and Water Transport in Peritoneal Dialysis: A Case-Based Primer. American journal of kidney diseases : the official journal of the National Kidney Foundation, 69(3), 461–472.
22. Sampimon, D. E., Coester, A. M., Struijk, D. G., & Krediet, R. T. (2011). The time course of peritoneal transport parameters in peritoneal dialysis patients who develop encapsulating peritoneal sclerosis. Nephrology Dialysis Transplantation, 26(1), 291-298.
23. Smit, W., Schouten, N., van den Berg, N., Langedijk, M. J., Struijk, D. G., Krediet, R. T., & Netherlands Ultrafiltration Failure Study Group. (2004). Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Peritoneal Dialysis International, 24(6), 562-570.
24. Schwenger V. (2006). GDP and AGE receptors: mechanisms of peritoneal damage. Contributions to nephrology, 150, 77–83.
25. Suryantoro, S. D., Thaha, M., Sutanto, H., & Firdausa, S. (2023). Current insights into cellular determinants of peritoneal fibrosis in peritoneal dialysis: A narrative review. Journal of Clinical Medicine, 12(13), 4401.
26. Ha, H., Yu, M. R., & Lee, H. B. (2001). High glucose–induced PKC activation mediates TGF-β1 and fibronectin synthesis by peritoneal mesothelial cells. Kidney international, 59(2), 463-470.
27. Yao, Q., Pawlaczyk, K., Ayala, E. R., Styszynski, A., Breborowicz, A., Heimburger, O., Qian, J. Q., Stenvinkel, P., Lindholm, B., & Axelsson, J. (2008). The role of the TGF/Smad signaling pathway in peritoneal fibrosis induced by peritoneal dialysis solutions. Nephron. Experimental nephrology, 109(2), e71–e78.
28. Savage, C., Das, P., Finelli, A. L., Townsend, S. R., Sun, C. Y., Baird, S. E., & Padgett, R. W. (1996). Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proceedings of the National Academy of Sciences of the United States of America, 93(2), 790–794.
29. Duan, W. J., Yu, X., Huang, X. R., Yu, J. W., & Lan, H. Y. (2014). Opposing roles for Smad2 and Smad3 in peritoneal fibrosis in vivo and in vitro. The American journal of pathology, 184(8), 2275–2284.
30. Guo, H., Leung, J. C., Lam, M. F., Chan, L. Y., Tsang, A. W., Lan, H. Y., & Lai, K. N. (2007). Smad7 transgene attenuates peritoneal fibrosis in uremic rats treated with peritoneal dialysis. Journal of the American Society of Nephrology, 18(10), 2689-2703.
31. Kang, Y., Liu, Y., Fu, P., & Ma, L. (2024). Peritoneal fibrosis: from pathophysiological mechanism to medicine. Frontiers in Physiology, 15, 1438952.
32. Ito, Y., Sun, T., Tawada, M., Kinashi, H., Yamaguchi, M., Katsuno, T., ... & Ishimoto, T. (2024). Pathophysiological Mechanisms of Peritoneal Fibrosis and Peritoneal Membrane Dysfunction in Peritoneal Dialysis. International Journal of Molecular Sciences, 25(16), 8607.
33. Azimi-Nezhad, M., Stathopoulou, M. G., Bonnefond, A., Rancier, M., Saleh, A., Lamont, J., ... & Visvikis-Siest, S. (2013). Associations of vascular endothelial growth factor (VEGF) with adhesion and inflammation molecules in a healthy population. Cytokine, 61(2), 602-607.
34. Kariya, T., Nishimura, H., Mizuno, M., Suzuki, Y., Matsukawa, Y., Sakata, F., Maruyama, S., Takei, Y., & Ito, Y. (2018). TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. American journal of physiology. Renal physiology, 314(2), F167–F180.
35. Masola, V., Bonomini, M., Borrelli, S., Di Liberato, L., Vecchi, L., Onisto, M., & Arduini, A. (2022). Fibrosis of peritoneal membrane as target of new therapies in peritoneal dialysis. International journal of molecular sciences, 23(9), 4831.
36. Shirai, Y., Miura, K., Ike, T., Sasaki, K., Ishizuka, K., Horita, S., ... & Hattori, M. (2022). Cumulative dialytic glucose exposure is a risk factor for peritoneal fibrosis and angiogenesis in pediatric patients undergoing peritoneal dialysis using neutral-pH fluids. Kidney International Reports, 7(11), 2431-2445.
37. Zhou, Q., Bajo, M. A., Del Peso, G., Yu, X., & Selgas, R. (2016). Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney international, 90(3), 515-524.
38. Shi, Y., Hu, Y., Cui, B., Zhuang, S., & Liu, N. (2022). Vascular endothelial growth factor-mediated peritoneal neoangiogenesis in peritoneal dialysis. Peritoneal Dialysis International, 42(1), 25-38.
39. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of clinical investigation, 119(6), 1420-1428.
40. Li, H. S., Zhou, Y. N., Li, L., Li, S. F., Long, D., Chen, X. L., Zhang, J. B., Feng, L., & Li, Y. P. (2019). HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox biology, 25, 101109.
41. Liu, L., Sun, Q., Davis, F., Mao, J., Zhao, H., & Ma, D. (2022). Epithelial–mesenchymal transition in organ fibrosis development: current understanding and treatment strategies. Burns & Trauma, 10, tkac011.
42. Li, J. E., Liu, Y., & Liu, J. (2023). A review of research progress on mechanisms of peritoneal fibrosis related to peritoneal dialysis. Frontiers in Physiology, 14, 1220450.
43. Liu, Y., Dong, Z., Liu, H., Zhu, J., Liu, F., & Chen, G. (2015). Transition of mesothelial cell to fibroblast in peritoneal dialysis: EMT, stem cell or bystander?. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis, 35(1), 14–25
44. Liakopoulos, V., Roumeliotis, S., Gorny, X., Eleftheriadis, T., & Mertens, P. R. (2017). Oxidative stress in patients undergoing peritoneal dialysis: a current review of the literature. Oxidative Medicine and Cellular Longevity, 2017(1), 3494867.
45. Oh, S. H., Yook, J. M., Jung, H. Y., Choi, J. Y., Cho, J. H., Park, S. H., ... & Lim, J. H. (2024). Autophagy caused by oxidative stress promotes TGF-β1-induced epithelial-to-mesenchymal transition in human peritoneal mesothelial cells. Cell Death & Disease, 15(5), 365.
46. Wu, J., Xing, C., Zhang, L., Mao, H., Chen, X., Liang, M., ... & Ji, Y. (2018). Autophagy promotes fibrosis and apoptosis in the peritoneum during long‐term peritoneal dialysis. Journal of Cellular and Molecular Medicine, 22(2), 1190-1201.
47. Shi, Y., Hu, Y., Wang, Y., Ma, X., Tang, L., Tao, M., ... & Liu, N. (2021). Blockade of autophagy prevents the development and progression of peritoneal fibrosis. Frontiers in Pharmacology, 12, 724141.
48. Li, H. S., Zhou, Y. N., Li, L., Li, S. F., Long, D., Chen, X. L., Zhang, J. B., Feng, L., & Li, Y. P. (2019). HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox biology, 25, 101109.
49. Yang, X., Bao, M., Fang, Y., Yu, X., Ji, J., & Ding, X. (2021). STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose. Journal of translational medicine, 19(1), 283.
50. Li, J., Li, S. X., Gao, X. H., Zhao, L. F., Du, J., Wang, T. Y., ... & Guo, Z. Y. (2019). HIF1A and VEGF regulate each other by competing endogenous RNA mechanism and involve in the pathogenesis of peritoneal fibrosis. Pathology-Research and Practice, 215(4), 644-652.
51. Wang, J., Lv, X., Lin, Y., Aniwan, A., Liu, H., Zhou, S., & Yu, P. (2024). Genistein inhibits HIF-1α and attenuates high glucose-induced peritoneal mesothelial-mesenchymal transition and fibrosis via the mTOR/OGT pathway. Scientific Reports, 14(1), 24369.
52. Wang, J., Lv, X., Lin, Y., Aniwan, A., Liu, H., Zhou, S., & Yu, P. (2024). Genistein inhibits HIF-1α and attenuates high glucose-induced peritoneal mesothelial-mesenchymal transition and fibrosis via the mTOR/OGT pathway. Scientific Reports, 14(1), 24369.
53. Kadoya, H., Hirano, A., Umeno, R., Kajimoto, E., Iwakura, T., Kondo, M., ... & Kashihara, N. (2023). Activation of the inflammasome drives peritoneal deterioration in a mouse model of peritoneal fibrosis. The FASEB Journal, 37(9), e23129.
54. Li, Q., Zheng, M., Liu, Y., Sun, W., Shi, J., Ni, J., & Wang, Q. (2018). A pathogenetic role for M1 macrophages in peritoneal dialysis-associated fibrosis. Molecular immunology, 94, 131-139.
55. Wang, J., Jiang, Z. P., Su, N., Fan, J. J., Ruan, Y. P., Peng, W. X., ... & Yu, X. Q. (2013). The role of peritoneal alternatively activated macrophages in the process of peritoneal fibrosis related to peritoneal dialysis. International journal of molecular sciences, 14(5), 10369-10382.
56. Chen, Y. T., Hsu, H., Lin, C. C., Pan, S. Y., Liu, S. Y., Wu, C. F., ... & Lin, S. L. (2020). Inflammatory macrophages switch to CCL17‐expressing phenotype and promote peritoneal fibrosis. The Journal of pathology, 250(1), 55-66.
57. Zhou, Q., Bajo, M. A., Del Peso, G., Yu, X., & Selgas, R. (2016). Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney international, 90(3), 515-524.]
58. Gan, L., Geng, L., Li, Q., Zhang, L., Huang, Y., Lin, J., & Ou, S. (2024). Allicin Ameliorated High-glucose Peritoneal Dialysis Solution-induced Peritoneal Fibrosis in Rats via the JAK2/STAT3 Signaling Pathway. Cell Biochemistry and Biophysics, 1-13.
59. Yu, J. W., Duan, W. J., Huang, X. R., Meng, X. M., Yu, X. Q., & Lan, H. Y. (2014). MicroRNA-29b inhibits peritoneal fibrosis in a mouse model of peritoneal dialysis. Laboratory Investigation, 94(9), 978-990.
60. Ueno, T., Nakashima, A., Doi, S., Kawamoto, T., Honda, K., Yokoyama, Y., ... & Masaki, T. (2013). Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-β1 signaling. Kidney international, 84(2), 297-307.
61. Nagasaki, K., Nakashima, A., Tamura, R., Ishiuchi, N., Honda, K., Ueno, T., ... & Masaki, T. (2021). Mesenchymal stem cells cultured in serum-free medium ameliorate experimental peritoneal fibrosis. Stem Cell Research & Therapy, 12, 1-11.
62. Yang, C. Y., Chang, P. Y., Chen, J. Y., Wu, B. S., Yang, A. H., & Lee, O. K. S. (2021). Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6. Stem Cell Research & Therapy, 12, 1-12.
63. Fan, Y. P., Hsia, C. C., Tseng, K. W., Liao, C. K., Fu, T. W., Ko, T. L., ... & Fu, Y. S. (2016). The therapeutic potential of human umbilical mesenchymal stem cells from Wharton's jelly in the treatment of rat peritoneal dialysis-induced fibrosis. Stem cells translational medicine, 5(2), 235-247.
64. Yung, S., Lui, S. L., Ng, C. K., Yim, A., Ma, M. K., Lo, K. Y., ... & Chan, T. M. (2015). Impact of a low-glucose peritoneal dialysis regimen on fibrosis and inflammation biomarkers. Peritoneal Dialysis International, 35(2), 147-158.
65. Blake, P. G., Jain, A. K., & Yohanna, S. (2013). Biocompatible peritoneal dialysis solutions: many questions but few answers. Kidney International, 84(5), 864-866.
66. Bonomini, M., Zammit, V., Divino-Filho, J. C., Davies, S. J., Di Liberato, L., Arduini, A., & Lambie, M. (2021). The osmo-metabolic approach: A novel and tantalizing glucose-sparing strategy in peritoneal dialysis. Journal of Nephrology, 34(2), 503-519.
67. Szeto, C. C., & Johnson, D. W. (2017, January). Low GDP solution and glucose-sparing strategies for peritoneal dialysis. In Seminars in nephrology (Vol. 37, No. 1, pp. 30-42). WB Saunders.
68. Elphick EH, Teece L, Chess JA, Do JY, Kim YL, Lee HB, Davison SN, Topley N, Davies SJ, Lambie M (2018) Biocompatible solutions and long-term changes in peritoneal solute transport. Clin J Am Soc Nephrol 13:1526–1533.
69. Szeto, C. C., & Johnson, D. W. (2017, January). Low GDP solution and glucose-sparing strategies for peritoneal dialysis. In Seminars in nephrology (Vol. 37, No. 1, pp. 30-42). WB Saunders.
70. Ahmadi, A., Moghadasali, R., Najafi, I., Shekarchian, S., & Alatab, S. (2023). Potential of Autologous Adipose-Derived Mesenchymal Stem Cells in Peritoneal Fibrosis: A Pilot Study. Archives of Iranian medicine, 26(2), 100–109. https://doi.org/10.34172/aim.2023.16
71. Couch, Y., Buzàs, E. I., Di Vizio, D., Gho, Y. S., Harrison, P., Hill, A. F., ... & Carter, D. R. (2021). A brief history of nearly EV‐erything–The rise and rise of extracellular vesicles. Journal of extracellular vesicles, 10(14), e12144.
72. Han, Q. F., Li, W. J., Hu, K. S., Gao, J., Zhai, W. L., Yang, J. H., & Zhang, S. J. (2022). Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Molecular cancer, 21(1), 207.
73. Arya, S. B., Collie, S. P., & Parent, C. A. (2024). The ins-and-outs of exosome biogenesis, secretion, and internalization. Trends in Cell Biology, 34(2), 90-108.
74. Yu, J., Sane, S., Kim, J. E., Yun, S., Kim, H. J., Jo, K. B., ... & Kim, D. K. (2024). Biogenesis and delivery of extracellular vesicles: harnessing the power of EVs for diagnostics and therapeutics. Frontiers in Molecular Biosciences, 10, 1330400.
75. Battistelli, M., & Falcieri, E. (2021). Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. Advances in Medical Biochemistry, Genomics, Physiology, and Pathology, 473-486.
76. Dellar, E. R., Hill, C., Melling, G. E., Carter, D. R., & Baena‐Lopez, L. A. (2022). Unpacking extracellular vesicles: RNA cargo loading and function. Journal of Extracellular Biology, 1(5), e40.
77. Chen, Y., Zhao, Y., Yin, Y., Jia, X., & Mao, L. (2021). Mechanism of cargo sorting into small extracellular vesicles. Bioengineered, 12(1), 8186-8201.
78. Buzas, E. I. (2023). The roles of extracellular vesicles in the immune system. Nature Reviews Immunology, 23(4), 236-250.
79. Chang, W. H., Cerione, R. A., & Antonyak, M. A. (2021). Extracellular vesicles and their roles in cancer progression. Cancer cell signaling: Methods and protocols, 143-170.
80. Carney, R. P., Mizenko, R. R., Bozkurt, B. T., Lowe, N., Henson, T., Arizzi, A., ... & George, S. C. (2024). Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications. Nature Nanotechnology, 1-12.
81. Van De Wakker, S. I., Meijers, F. M., Sluijter, J. P. G., & Vader, P. (2023). Extracellular vesicle heterogeneity and its impact for regenerative medicine applications. Pharmacological reviews, 75(5), 1043-1061.
82. Claridge, B., Lozano, J., Poh, Q. H., & Greening, D. W. (2021). Development of extracellular vesicle therapeutics: Challenges, considerations, and opportunities. Frontiers in Cell and Developmental Biology, 9, 734720.
83. Karttunen, J., Heiskanen, M., Joki, T., Hyysalo, A., Navarro-Ferrandis, V., Miettinen, S., ... & Pitkänen, A. (2022). Effect of cell culture media on extracellular vesicle secretion from mesenchymal stromal cells and neurons. European Journal of Cell Biology, 101(4), 151270.
84. Wang, J., Chen, Z. J., Zhang, Z. Y., Shen, M. P., Zhao, B., Zhang, W., ... & Li, P. (2024). Manufacturing, quality control, and GLP-grade preclinical study of nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. Stem Cell Research & Therapy, 15(1), 95.
85. Carnino, J. M., Lee, H., & Jin, Y. (2019). Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: a review and comparison of different methods. Respiratory research, 20, 1-11.
86. Herrmann, I. K., Wood, M. J. A., & Fuhrmann, G. (2021). Extracellular vesicles as a next-generation drug delivery platform. Nature nanotechnology, 16(7), 748-759.
87. Welsh, J. A., Goberdhan, D. C., O'Driscoll, L., Buzas, E. I., Blenkiron, C., Bussolati, B., ... & Benedikter, B. J. (2024). Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. Journal of extracellular vesicles, 13(2), e12404.
88. Parekkadan, B., & Milwid, J. M. (2010). Mesenchymal stem cells as therapeutics. Annual review of biomedical engineering, 12(1), 87-117.
89. Jimenez-Puerta, G. J., Marchal, J. A., López-Ruiz, E., & Gálvez-Martín, P. (2020). Role of mesenchymal stromal cells as therapeutic agents: potential mechanisms of action and implications in their clinical use. Journal of clinical medicine, 9(2), 445.
90. Liang, X., Ding, Y., Zhang, Y., Tse, H. F., & Lian, Q. (2014). Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell transplantation, 23(9), 1045-1059.
91. Rani, S., Ryan, A. E., Griffin, M. D., & Ritter, T. (2015). Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Molecular Therapy, 23(5), 812-823.
92. Brigstock, D. R. (2021). Extracellular vesicles in organ fibrosis: mechanisms, therapies, and diagnostics. Cells, 10(7), 1596.
93. Kou, M., Huang, L., Yang, J., Chiang, Z., Chen, S., Liu, J., ... & Lian, Q. (2022). Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool?. Cell Death & Disease, 13(7), 580.
94. Leach, R. E., Burns, J. W., Dawe, E. J., SmithBarbour, M. D., & Diamond, M. P. (1998). Reduction of postsurgical adhesion formation in the rabbit uterine horn model with use of hyaluronate/carboxymethylcellulose gel. Fertility and sterility, 69(3), 415-418.
95. Elrod, J., Heuer, A., Knopf, J., Schoen, J., Schönfeld, L., Trochimiuk, M., ... & Boettcher, M. (2023). Neutrophil extracellular traps and DNases orchestrate formation of peritoneal adhesions. Iscience, 26(12).
96. Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., ... & Jovanovic‐Talisman, T. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of extracellular vesicles, 7(1), 1535750.
97. Hagey, D. W., Ojansivu, M., Bostancioglu, B. R., Saher, O., Bost, J. P., Gustafsson, M. O., Gramignoli, R., Svahn, M., Gupta, D., Stevens, M. M., Görgens, A., & El Andaloussi, S. (2023). The cellular response to extracellular vesicles is dependent on their cell source and dose. Science advances, 9(35), eadh1168.
98. Tieu, A., Stewart, D. J., Chwastek, D., Lansdell, C., Burger, D., & Lalu, M. M. (2023). Biodistribution of mesenchymal stromal cell-derived extracellular vesicles administered during acute lung injury. Stem Cell Research & Therapy, 14(1), 250.
99. Tolomeo, A. M., Zuccolotto, G., Malvicini, R., De Lazzari, G., Penna, A., Franco, C., ... & Collino, F. (2023). Biodistribution of intratracheal, intranasal, and intravenous injections of human mesenchymal stromal cell-derived extracellular vesicles in a mouse model for drug delivery studies. Pharmaceutics, 15(2), 548.
100. Wiklander, O. P., Nordin, J. Z., O'Loughlin, A., Gustafsson, Y., Corso, G., Mäger, I., ... & Andaloussi, S. E. (2015). Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. Journal of extracellular vesicles, 4(1), 26316.
101. Cao, H., Chen, M., Cui, X., Liu, Y., Liu, Y., Deng, S., ... & Zhang, X. (2023). Cell-free osteoarthritis treatment with sustained-release of chondrocyte-targeting exosomes from umbilical cord-derived mesenchymal stem cells to rejuvenate aging chondrocytes. ACS nano, 17(14), 13358-13376.
102. Hu, Y., Zhang, Y., Ni, C. Y., Chen, C. Y., Rao, S. S., Yin, H., ... & Xie, H. (2020). Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Theranostics, 10(5), 2293.
103. Silachev, D. N., Goryunov, K. V., Shpilyuk, M. A., Beznoschenko, O. S., Morozova, N. Y., Kraevaya, E. E., ... & Sukhikh, G. T. (2019). Effect of MSCs and MSC-derived extracellular vesicles on human blood coagulation. Cells, 8(3), 258.
104. Bruschi, M., Santucci, L., Ravera, S., Bartolucci, M., Petretto, A., Calzia, D., ... & Panfoli, I. (2018). Metabolic signature of microvesicles from umbilical cord mesenchymal stem cells of preterm and term infants. PROTEOMICS–Clinical Applications, 12(3), 1700082.
105. Krishnan, I., Chan, A. M. L., Law, J. X., Ng, M. H., Jayapalan, J. J., & Lokanathan, Y. (2024). Proteomic Analysis of Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Systematic Review. International Journal of Molecular Sciences, 25(10), 5340.
106. Shin, S., Lee, J., Kwon, Y., Park, K. S., Jeong, J. H., Choi, S. J., ... & Lee, C. (2021). Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and wharton’s jelly. International Journal of Molecular Sciences, 22(2), 845.
107. Wang, Z. G., He, Z. Y., Liang, S., Yang, Q., Cheng, P., & Chen, A. M. (2020). Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells. Stem Cell Research & Therapy, 11, 1-11.
108. Yu, F., Yang, J., Chen, J., Wang, X., Cai, Q., He, Y., & Chen, K. (2023). Bone marrow mesenchymal stem cell-derived exosomes alleviate peritoneal dialysis-associated peritoneal injury. Stem Cells and Development, 32(7-8), 197-211.
109. Zhao, J. L., Zhao, L., Zhan, Q. N., Liu, M., Zhang, T., & Chu, W. W. (2024). BMSC-derived Exosomes Ameliorate Peritoneal Dialysis-associated Peritoneal Fibrosis via the Mir-27a-3p/TP53 Pathway. Current Medical Science, 44(2), 333-345.
110. Shi, M., Liu, H., Zhang, T., Zhang, M., Tang, X., Zhang, Z., ... & Li, Z. (2022). Extracellular vesicles derived from adipose mesenchymal stem cells promote peritoneal healing by activating MAPK‐ERK1/2 and PI3K‐Akt to alleviate postoperative abdominal adhesion. Stem cells international, 2022(1), 1940761.
111. Liu, B., Hu, D., Zhou, Y., Yu, Y., Shen, L., Long, C., ... & Wei, G. (2020). Exosomes released by human umbilical cord mesenchymal stem cells protect against renal interstitial fibrosis through ROS-mediated P38/MAPK/ERK signaling pathway. American Journal of Translational Research, 12(9), 4998.
112. He, F., Ru, X., & Wen, T. (2020). NRF2, a transcription factor for stress response and beyond. International journal of molecular sciences, 21(13), 4777.
113. Dose, J., Huebbe, P., Nebel, A., & Rimbach, G. (2016). APOE genotype and stress response-a mini review. Lipids in health and disease, 15, 1-15.
114. Russell, T. M., & Richardson, D. R. (2023). The good Samaritan glutathione-S-transferase P1: An evolving relationship in nitric oxide metabolism mediated by the direct interactions between multiple effector molecules. Redox Biology, 59, 102568.
115. Lu, J., Gao, J., Sun, J., Wang, H., Sun, H., Huang, Q., ... & Zhong, S. (2023). Apolipoprotein AI attenuates peritoneal fibrosis associated with peritoneal dialysis by inhibiting oxidative stress and inflammation. Frontiers in Pharmacology, 14, 1106339.
116. Moon, B., Yang, S., Moon, H., Lee, J., & Park, D. (2023). After cell death: the molecular machinery of efferocytosis. Experimental & Molecular Medicine, 55(8), 1644-1651.
117. Boada-Romero, E., Martinez, J., Heckmann, B. L., & Green, D. R. (2020). The clearance of dead cells by efferocytosis. Nature reviews Molecular cell biology, 21(7), 398-414.
118. Doran, A. C., Yurdagul Jr, A., & Tabas, I. (2020). Efferocytosis in health and disease. Nature Reviews Immunology, 20(4), 254-267.
119. Louwe, P. A., Badiola Gomez, L., Webster, H., Perona-Wright, G., Bain, C. C., Forbes, S. J., & Jenkins, S. J. (2021). Recruited macrophages that colonize the post-inflammatory peritoneal niche convert into functionally divergent resident cells. Nature communications, 12(1), 1770.
120. Bain, C. C., Hawley, C. A., Garner, H., Scott, C. L., Schridde, A., Steers, N. J., ... & Jenkins, S. J. (2016). Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nature communications, 7(1), ncomms11852.
121. Wang, J., Li, J., Yin, L., Wang, X., Dong, Y., Zhao, G., ... & Hou, Y. (2024). MSCs promote the efferocytosis of large peritoneal macrophages to eliminate ferroptotic monocytes/macrophages in the injured endometria. Stem Cell Research & Therapy, 15(1), 127.
122. Wang, J., & Kubes, P. (2016). A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell, 165(3), 668-678.
123. Miao, L., Yu, C., Guan, G., Luan, X., Jin, X., Pan, M., ... & Di, G. (2024). Extracellular vesicles containing GAS6 protect the liver from ischemia-reperfusion injury by enhancing macrophage efferocytosis via MerTK-ERK-COX2 signaling. Cell Death Discovery, 10(1), 401.
124. Huang, Y., & Yang, L. (2021). Mesenchymal stem cell-derived extracellular vesicles in therapy against fibrotic diseases. Stem Cell Research & Therapy, 12, 1-12.
125. Zhao, J. L., Zhao, L., Zhan, Q. N., Liu, M., Zhang, T., & Chu, W. W. (2024). BMSC-derived Exosomes Ameliorate Peritoneal Dialysis-associated Peritoneal Fibrosis via the Mir-27a-3p/TP53 Pathway. Current Medical Science, 44(2), 333-345.
126. Zhong, L., Liao, G., Wang, X., Li, L., Zhang, J., Chen, Y., ... & Lu, Y. (2018). Mesenchymal stem cells–microvesicle-miR-451a ameliorate early diabetic kidney injury by negative regulation of P15 and P19. Experimental Biology and Medicine, 243(15-16), 1233-1242.
127. Ji, C., Zhang, J., Zhu, Y., Shi, H., Yin, S., Sun, F., ... & Qian, H. (2020). Exosomes derived from hucMSC attenuate renal fibrosis through CK1δ/β-TRCP-mediated YAP degradation. Cell Death & Disease, 11(5), 327.
128. Xiao, B., Zhu, Y., Huang, J., Wang, T., Wang, F., & Sun, S. (2019). Exosomal transfer of bone marrow mesenchymal stem cell-derived miR-340 attenuates endometrial fibrosis. Biology Open, 8(5), bio039958.
129. Wang, X., Zhu, Y., Wu, C., Liu, W., He, Y., & Yang, Q. (2021). Adipose-derived mesenchymal stem cells-derived exosomes carry microRNA-671 to alleviate myocardial infarction through inactivating the TGFBR2/Smad2 axis. Inflammation, 44, 1815-1830.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96983-
dc.description.abstract腹膜透析是⼀種針對末期腎病患者的成熟腎臟替代療法。然⽽,長期接受腹膜透析的患者由於暴露於葡萄糖降解產物,常會出現腹膜結構與功能的變化,進⽽導致腹膜纖維化。腹膜纖維化最終會引起腹膜超過濾能⼒的喪失,但迄今尚無有效或令⼈滿意的治療⽅法。在本研究中,我們旨在探討⼈源臍帶間質幹細胞衍⽣外泌體對甲基⼄⼆醛誘導的腹膜纖維化的治療效果。我們通過切向流過濾和超速離⼼結合蔗糖沉降從臍帶間質幹細胞培養的條件培養基中分離外泌體。隨後,利用西⽅默點法偵測外泌體標記以及奈米粒⼦追蹤以及穿透式電⼦顯微鏡確認外泌體表徵。利用脂質染劑標記外泌體,我們確認了分泌膠原蛋白的腹膜細胞可以攝取間質幹細胞外泌體。在動物實驗中,我們利用甲基⼄⼆醛誘導小鼠腹膜纖維化藉以評估間質幹細胞外泌體的劑量依賴性效果。結果顯示,每週三次給予 25微克外泌體能夠保護腹膜滲透性,減少腹腔器官粘連的嚴重程度,緩解間皮下層增厚,維持間皮層的完整性,並減少分泌膠原蛋白的細胞。然⽽,給予 50 微克外泌體的組別卻未觀察到相同的預防效果。我們再藉由對外泌體的蛋白質組學分析發現其具有免疫調節、⾎管⽣成調節、組織再⽣、抗氧化應激和促進吞噬作用的攻能。此外,在 25 微克外泌體組中觀察到間皮下層巨噬細胞的徵募,這表明其治療效果可能來自於促進凋亡小體的清除。本研究表明,⼈源臍帶間質幹細胞外泌體是⼀種具有潛⼒的腹膜纖維化治療⽅法。zh_TW
dc.description.abstractPeritoneal dialysis is an established renal replacement therapy for patients with end-stage renal disease. Patients who experience long-term peritoneal dialysis exposed to glucose degradation products often develop morphologic and functional changes to the peritoneal membrane, which often result in peritoneal fibrosis. Peritoneal fibrosis eventually leads to peritoneal ultrafiltration capacity loss, but there hasn’t been an effective or satisfactory therapy to date. In our study, we intended to investigate the preventive effect of human umbilical cord mesenchymal stem cell-derived extracellular vesicles (HuMSC-EVs) on methylglyoxal-induced peritoneal fibrosis. We applied tangential flow filtration and ultracentrifugation processes with a sucrose cushion to isolate HuMSC-EVs from HuMSC cultured conditioned media. HuMSC-EVs are further characterized by western blot for EV markers, nanoparticle tracking analysis, and transmission electron microscopy. By labeling EVs with lipid dye, we confirmed collagen secreting-peritoneal cells can intake HuMSC-EVs. In vivo evaluation of the dose-dependent effects of HuMSC-EVs using methylglyoxal-induced peritoneal fibrosis mouse model was conducted, and we observed that giving 25 ug of HuMSC-EVs thrice per week was able to preserve peritoneal permeability, decrease the severity of abdominal organ adhesions, alleviate thickening of the submesothelial layer, maintain the integrity of the mesothelial layer, and decrease the presence of collagen secreting cells. Surprisingly, the same preventive effects were not detected in mice giving 50 ug of HuMSC-EVs. Proteomic analysis from HuMSC-EVs revealed their functions on immune modulation, angiogenesis modulation, tissue regeneration, oxidative stress protection and phagocytosis enhancement capabilities. Furthermore, submesothelial recruitment of macrophages was also observed in the 25 ug EV group, suggesting therapeutic effects could come from enhancing apoptotic body clearance. This study demonstrated HuMSC-EVs as a promising preventive approach for peritoneal fibrosis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:20:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-25T16:20:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract III
Table of Contents IV
List of Figures VII
List of Tables IX
Chapter 1. Introduction 1
1.1 End-stage renal disease 1
1.2 Peritoneal Dialysis 1
1.3 Peritoneum histology and peritoneal transport 2
1.4 Peritoneal fibrosis as a long-term peritoneal dialysis complication 5
1.4.1 Molecular mechanism of PF 7
1.4.1.1 TFG-β, Smad-dependent and Smad-independent signaling pathways 7
1.4.1.2 VEGF-mediated angiogenesis 8
1.4.1.3 Mesothelial-to-mesenchymal transition (MMT) 8
1.4.1.4 Oxidative stress, autophagy, and apoptosis 9
1.4.1.5 Inflammasome and macrophage-mediated inflammation 10
1.5 Current treatments for PF 12
1.5.1 Pre-clinical developments 12
1.5.2 Clinical trials regarding PF 13
1.6 Extracellular vesicles (EVs) 14
1.7 Challenges of EV functional study 17
1.8 Therapeutic effects of MSC-EVs on organ fibrosis 19
1.9 Research Aim 20
Chapter 2. Material and Methods 22
2.1 Isolation and culturing of human umbilical cord mesenchymal stem cells (HuMSCs) 22
2.2 HuMSC-EVs isolation 23
2.3 Transmission electron microscopy (TEM) 24
2.4 Nanoparticle tracking analysis (NTA) 25
2.5 Western blotting 25
2.6 Fluorescence membrane labeling for EV tracking 27
2.7 Animals 28
2.8 Establishment of MGO-induced peritoneal fibrosis mouse model and HUMSC-EVs administration 29
2.9 Modified peritoneal equilibration tests (PET) 30
2.10 Peritoneal sample collection and the assessment of peritoneal damage 31
2.11 Histology evaluation and quantification 32
2.12 Immunofluorescence staining (IFA) 33
2.12 LC-MS/MS proteomic profiling 34
2.14 Statistical analysis 35
Chapter 3. Results 36
3.1 Characterization of HuMSC-EVs 36
3.2 PKH67-labeled HuMSC-EVs were observed within the cytosol of peritoneal cells confirming EV uptake. 39
3.3 25 μg HuMSC-EVs (the lower dosage) ameliorated parietal peritoneal fibrosis with decreased collagen deposition under histology, which was absent with treating with 50 μg HuMSC-EVs (the higher dosage) 40
3.4 Mice treated with 25 μg HuMSC-EVs developed milder abdominal adhesion. 43
3.5 Dosing with 25 μg HuMSC-EVs improved peritoneal permeability. 44
3.6 25 μg HuMSC-EVs facilitated mesothelial cell repopulation and reduced ɑ-SMA positive cells (myofibroblasts) accumulation. 46
3.7 Administration of 25 μg HuMSC-EVs decreased VEGF-A expression but didn’t reduce submesothelial TGF-β expression 48
3.8 Proteomic analysis of HuMSC-EVs 50
3.8.1 Cellular component gene ontology (GO) analysis verified the nature and the purity of EVs 50
3.8.2 Biological process gene ontology analysis revealed HuMSC-EVs proteins participated in negative regulation of angiogenesis, fibrinolysis, and tissue regeneration. 51
3.8.3 Biological process gene ontology analysis showed HuMSC-EVs likely reduce PF through inflammation modulation, oxidative stress protection and accelerate apoptotic bodies clearance. 55
Chapter 4 Discussion 57
Chapter 5 Conclusion and future perspective 65
References 84
-
dc.language.isoen-
dc.subject腹膜透析zh_TW
dc.subject蛋白體學zh_TW
dc.subject外泌體zh_TW
dc.subject腹膜纖維化zh_TW
dc.subject末期腎病zh_TW
dc.subjectProteomic analysisen
dc.subjectEnd-stage renal diseaseen
dc.subjectPeritoneal fibrosisen
dc.subjectPeritoneal dialysisen
dc.subjectExtracellular Vesiclesen
dc.title⼈類臍帶間質幹細胞衍⽣外泌體於甲基⼄⼆醛誘導之腹膜纖維化的預防效用zh_TW
dc.titleThe preventive effects of human umbilical cord mesenchymal stem cell-derived extracellular vesicles on methylglyoxal-induced peritoneal fibrosisen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李雅珍;洪維廷;陳怡婷zh_TW
dc.contributor.oralexamcommitteeYa-Jane Lee;Wei-Ting Hung;Yi-Ting Chenen
dc.subject.keyword末期腎病,蛋白體學,外泌體,腹膜纖維化,腹膜透析,zh_TW
dc.subject.keywordEnd-stage renal disease,Peritoneal fibrosis,Peritoneal dialysis,Extracellular Vesicles,Proteomic analysis,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202500502-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-11-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
dc.date.embargo-lift2028-01-01-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
36.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved