請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96979完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李佳翰 | zh_TW |
| dc.contributor.advisor | Jia-Han Li | en |
| dc.contributor.author | 洪建平 | zh_TW |
| dc.contributor.author | Chien-Ping Hung | en |
| dc.date.accessioned | 2025-02-25T16:19:38Z | - |
| dc.date.available | 2025-02-26 | - |
| dc.date.copyright | 2025-02-25 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-07 | - |
| dc.identifier.citation | [1] Buchner, S. P., Miller, F., Pouget, V., & McMorrow, D. P. (2013). Pulsed-laser testing for single-event effects investigations. IEEE Transactions on Nuclear Science, 60(3), 1852-1875.
[2] iCrowdResearch, “Radiation Hardened Electronic Devices and Components Market Size is Expected to Reach $2.2 billion By 2030: IndustryARC”, https://icrowdresearch.com/2024/03/12/radiation-hardened-electronic-devices-and- components-market-size-is-expected-to-reach-2-2-billion-by-2030-industryarc/ [3] Cai, C., Gao, S., Zhao, P., Yu, J., Zhao, K., Xu, L., ... & Liu, J. (2019). SEE sensitivity evaluation for commercial 16 nm SRAM-FPGA. Electronics, 8(12), 1531. [4] NASA, “Natural Space Radiation Effects on Technology”,https://radhome.gsfc.nasa.gov/radhome/nat_space_rad_tech.htm [5] Gaillard, R. (2010). Single event effects: Mechanisms and classification. In Soft errors in modern electronic systems (pp. 27-54). Boston, MA: Springer US. [6] A. Doridant et al., "Impact of Total Ionizing Dose on the Electromagnetic Susceptibility of a Single Bipolar Transistor," Ieee Transactions on Nuclear Science, vol. 59, no. 4, pp. 860-865, Aug 2012, doi: 10.1109/tns.2011.2181415. [7] L. S. Novikov, V. N. Mileev, E. N. Voronina, L. I. Galanina, A. A. Makletsov, and V. V. Sinolits, "Radiation effects on spacecraft materials," Journal of Surface Investigation-X-Ray Synchrotron and Neutron Techniques, vol. 3, no. 2, pp. 199- 214, Apr 2009, doi: 10.1134/s1027451009020062. [8] E. Secretariat, "Space product assurance," 2008. [9] Jiang, H., Zhang, H., Harrington, R. C., Maharrey, J. A., Kauppila, J. S., Massengill, L. W., & Bhuva, B. L. (2018, March). Impact of supply voltage and particle LET on the soft error rate of logic circuits. In 2018 IEEE International Reliability Physics Symposium (IRPS) (pp. 4C-4). IEEE. [10] Savage, M. W., McNulty, P. J., Roth, D. R., & Foster, C. C. (1998). Possible role for secondary particles in proton-induced single event upsets of modern devices. IEEE Transactions on Nuclear Science, 45(6), 2745-2751. [11] Deng, Q., Shao, C., Li, H., & Fang, J. (2019, October). Femtosecond Laser Fault Injection into External SRAM Implementations. In 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID) (pp. 314- 319). IEEE. [12] J. T. Fang et al., "Understanding the Average Electron-Hole Pair-Creation Energy in Silicon and Germanium Based on Full-Band Monte Carlo Simulations," Ieee Transactions on Nuclear Science, vol. 66, no. 1, pp. 444-451, Jan 2019, doi: 10.1109/tns.2018.2879593. [13] An, H., Li, D., Wen, X., Yang, S., Zhang, C., Wang, J., & Cao, Z. (2022). Experimental comparison of the single-event effects of single-photon and two- photon absorption under a pulsed laser. Applied Sciences, 12(18), 9132. [14] Boyd, R. W., Gaeta, A. L., & Giese, E. (2008). Nonlinear optics. In Springer Handbook of Atomic, Molecular, and Optical Physics (pp. 1097-1110). Cham: Springer International Publishing. [15] A. Ildefonso et al., "Optimizing Optical Parameters to Facilitate Correlation of Laser- and Heavy-Ion-Induced Single-Event Transients in SiGe HBTs," Ieee Transactions on Nuclear Science, vol. 66, no. 1, pp. 359-367, Jan 2019, doi: 10.1109/tns.2018.2882821. [16] Ryder, L. D., Ryder, K. L., Sternberg, A. L., Kozub, J. A., Khachatrian, A., Buchner, S. P., ... & Reed, R. A. (2021). Simulation of Pulsed-Laser-Induced Testing in Microelectronic Devices. IEEE Transactions on Nuclear Science, 68(10), 2496-2507. [17] Weulersse, C., Bezerra, F., Miller, F., Carriere, T., Buard, N., & Falo, W. (2008). Probing SET sensitive volumes in linear devices using focused laser beam at different wavelengths. IEEE Transactions on Nuclear Science, 55(4), 2007-2012. [18] Fouillat, P., Pouget, V., McMorrow, D., Darracq, F., Buchner, S., & Lewis, D. (2007). Fundamentals of the pulsed laser technique for single-event upset testing. In Radiation Effects on Embedded Systems (pp. 121-141). Dordrecht: Springer Netherlands. [19] Lei, Z., Luo, H., Chen, H., Shi, Q., & He, Y. (2011, June). Single Event Effects test for CMOS devices using 1064nm pulsed laser. In 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (pp. 325-328). IEEE. [20] THORLABS, “Pulsed Lasers Introduction to Power and Energy Calculations”https://www.thorlabs.com/images/tabimages/Laser_Pulses_Power_Energy_Equations.pdf [21] Ferlet-Cavrois, V., Massengill, L. W., & Gouker, P. (2013). Single event transients in digital CMOS—A review. IEEE Transactions on Nuclear Science, 60(3), 1767- 1790. [22] Mavritskii, O. B., Egorov, A. N., Pechenkin, A. A., Chumakov, A. I., & Savchenkov, D. V. (2018, February). The laser-only single-event effects test method for space electronics based on ultrashort-pulsed-laser'local irradiation'. In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVIII (Vol. 10522, pp. 141-151). SPIE. [23] Gordienko, A. V., Mavritskii, O. B., Egorov, A. N., Pechenkin, A. A., & Savchenkov, D. V. (2015, March). Ultrashort pulsed laser tools for testing of semiconductor elements hardness to single event effects, caused by cosmic heavy charged particles. In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XV (Vol. 9355, pp. 159-174). SPIE. [24] 廖培凱, "使用短脈衝雷射與質子束對反向器與比較器電路進行單事件效應測 試," 工程科學及海洋工程學研究所, 國立臺灣大學, 2022 年, 2022. [25] 余世博, "短脈衝雷射在比較器電路內誘發單事件瞬態現象之分析方式建立," 工程科學及海洋工程學研究所, 國立臺灣大學, 2023 年, 2023. [26] SIGMAKOKI, "https://jp.optosigma.com/en_jp/pal-50-nir-l.html." [27] Mitutoyo. “https://shop.mitutoyo.eu/web/mitutoyo/en/mitutoyo/NIR_Main_category/M%20Plan%20Apo%20NIR%20%20M%20Plan%20Apo%20NIR%20HR/PG/M%20Plan%20Apo%20NIR/index.xhtml;jsessionid=B8E4B271B45CC40CAFBBBDFCDF8 F4CC4” [28] AMD, “Block Memory Generator v8.4 Product Guide (PG058)”https://docs.amd.com/v/u/en-US/pg058-blk-mem-gen [29] AAA Chips, “Technical Details of XC7A200T-FBG676I”https://3achips.com/p/6896135 [30] Pouget, V., Jonathas, S., Job, R., Vaillé, J. R., Wrobel, F., & Saigné, F. (2017). Structural pattern extraction from asynchronous two-photon laser fault injection using spectral analysis. Microelectronics Reliability, 76, 650-654. [31] Benevenuti, F. (2022). Enhancements on fault injection for xilinx 7 series and ultrascale+ SRAM-based FPGAs. [32] Pouget, V. (2023, June). Single-Event Effects Testing with a Laser Beam- Guidelines. In ESA TEC-QEC Final Presentation days. [33] Chua, C. T. (2019). Pulsed laser scan methodology for single event effect (SEE) qualification (Doctoral dissertation). [34] ULTRA TEC , “ASAP-1® IPS DIGITAL SELECTED AREA PREPARATION SYSTEM”, https://www.ultratecusa.com/product/asap-1-ips/ [35] AMD, “LogiCORE IP Soft Error Mitigation Controller v3.1 Data Sheet (DS796)”, https://docs.amd.com/v/u/en-US/ds796_sem [36] Pouget, V. (2021, September). Laser Testing for Single-Event Effects: Basics and Use Cases. In European Conference on Radiation and its Effects on Components and Systems (RADECS). [37] Alda, J. (2003). Laser and Gaussian beam propagation and transformation. Encyclopedia of optical engineering, 999, 1013. [38] Van Stryland, E. W., Vanherzeele, H., Woodall, M. A., Soileau, M. J., Smirl, A. L., Guha, S., & Boggess, T. F. (1985). Two photon absorption, nonlinear refraction, and optical limiting in semiconductors. Optical Engineering, 24(4), 613- 623. [39] McMorrow, D., Lotshaw, W. T., Melinger, J. S., Buchner, S., & Pease, R. L. (2002). Subbandgap laser-induced single event effects: Carrier generation via two- photon absorption. IEEE Transactions on Nuclear Science, 49(6), 3002-3008. [40] Li, S., Han, J., Chen, R., Shangguan, S., Ma, Y., & Wang, X. (2020). Study on the single-event upset sensitivity of 65-nm CMOS sequential logic circuit. IEICE Electronics Express, 17(10), 20200102-20200102. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96979 | - |
| dc.description.abstract | 本研究建立了一個短脈衝背面雷射驗證平台,用於分析雷射照射下現場可程 式化邏輯閘陣列(FPGA, Field Programmable Gate Array)中區塊式隨機存取記憶 體(BRAM, Block Random-Access Memory)錯誤率與相關參數之間的關係。該平 台包含三大核心模組:光學模組、移動平台模組和相機模組。光學模組主要提供 精確的雷射源,並將雷射光束準確引導至待測物(DUT, Device Under Test),以 激發單事件效應(SEE, Single Event Effect);相機模組則能即時監測待測物的影 像和照射位置,確保照射過程的準確性;移動平台模組支援待測物的高精度移動 與掃描功能,實現對多區域的全面測試。這些模組經過整合後,形成了一個高效 且可靠的雷射輻射效應測試系統,可精確模擬並分析輻射對電路的影響。
研究中以 FPGA 作為測試對象,透過多次雷射實驗,詳細探討了雷射能量、 掃描次數等測試參數與 BRAM 錯誤率之間的相關性。結果顯示,雷射平台不僅 具有穩定的測試能力,還能揭示 FPGA 記憶體在不同輻射條件下的行為特徵。本 研究的成果為抗輻射電子元件的設計與優化提供了重要的實驗依據和理論參考, 有助於未來電子元件在輻射環境下的可靠性與穩定性提升,同時為相關測試技術 的發展奠定了基礎。 | zh_TW |
| dc.description.abstract | This study establishes a short-pulse backside laser verification platform to analyze the relationship between error rates and related parameters in the Block Random-Access Memory (BRAM) of Field Programmable Gate Arrays (FPGA). The platform consists of three core modules: the optical module, motion platform module, and camera module. The optical module provides a precise laser source and directs the laser beam to the Device Under Test (DUT) to induce Single Event Effects (SEE). The camera module monitors the DUT’s images and irradiation position in real-time, ensuring accuracy during the process. The motion platform module enables precise movement and scanning of the DUT for comprehensive multi-region testing. These integrated modules form an efficient and reliable system for testing laser-induced radiation effects, simulating and analyzing radiation impact on circuits.
Using FPGA as the test object, multiple laser experiments systematically investigated the correlation between test parameters, such as laser energy and scanning frequency, and BRAM error rates. The results demonstrate that the laser platform provides stable testing capabilities and reveals FPGA memory behavior under various radiation conditions. This study offers experimental evidence and theoretical references for designing and optimizing radiation-tolerant electronic components, contributing to enhanced reliability and stability of electronic devices in radiation environments and advancing related testing technologies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:19:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-25T16:19:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 Ⅰ
中文摘要 Ⅱ ABSTRACT Ⅲ 研究貢獻 Ⅳ 目次 Ⅴ 圖次 VII 表次 IX 公式符號列表 X 專有名詞列表 XI CHAPTER 1 緒論 1 1.1 研究背景及動機 1 1.2 文獻探討 2 1.2.1 輻射效應的類型 2 1.2.2 單事件效應的討論 4 1.2.3 雷射及高能粒子產生單事件效應之探討 6 1.3 研究範疇 13 1.4 論文組織架構 14 CHAPTER 2 短脈衝雷射驗證平台 15 2.1 正面及背面雷射照射實驗的討論 15 2.2 短脈衝雷射實驗架構分析 18 2.3 短脈衝雷射驗證平台核心模組 21 2.3.1 光學系統 21 2.3.2 成像模組 27 2.3.3 移動平台 28 2.4 短脈衝雷射驗證平台環境架設 29 2.4.1 雷射驗證平台整體架構 29 2.4.2 光學系統 33 2.4.3 成像模組 36 2.4.4 移動平台 40 CHAPTER 3 實驗準備及驗證流程 43 3.1 待測物介紹與討論 43 3.2 實驗前置準備 49 3.3 實驗設計 54 3.3.1 輻射與雷射實驗的量化指標 54 3.3.2 單粒子翻轉的實驗方法建立 56 3.3.3 待測物的精準定位 59 3.4 實驗流程與步驟 62 3.4.1 待測電路架構與資料處理流程 65 3.4.2 光學路徑調整 67 3.4.3 掃描及數據分析 70 CHAPTER 4 BRAM 照射實驗數據分析及討論 74 4.1 敏感區域座標的界定 76 4.2 有效照射高度區間的定義及討論 78 4.3 不同能量下 BRAM 的錯誤率分析與討論 85 4.4 不同掃描次數下 BRAM 的錯誤率分析與討論 95 CHAPTER 5 結論與未來展望 100 5.1 結論 100 5.2 未來展望 101 參考資料 103 附錄 108 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 單事件效應 | zh_TW |
| dc.subject | 記憶體錯誤率分析 | zh_TW |
| dc.subject | 區塊式隨機存取記憶體 | zh_TW |
| dc.subject | 現場可程式化邏輯閘陣列 | zh_TW |
| dc.subject | 背面雷射照射實驗 | zh_TW |
| dc.subject | Single Event Effect (SEE) | en |
| dc.subject | Block Random-Access Memory (BRAM) | en |
| dc.subject | Memory Error Rate Analysis | en |
| dc.subject | Field Programmable Gate Array (FPGA) | en |
| dc.subject | Backside Laser Irradiation Experiment | en |
| dc.title | 短脈衝背面雷射驗證平台開發與 FPGA BRAM 錯誤率量化分析 | zh_TW |
| dc.title | Development of a Short-Pulse Backside Laser Verification Platform and Quantitative Analysis of FPGA BRAM Error Rates | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳信樹;蔡坤諭;蕭惠心 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Shu Chen;Kuen-Yu Tsai;Hui-Hsin Hsiao | en |
| dc.subject.keyword | 單事件效應,背面雷射照射實驗,現場可程式化邏輯閘陣列,區塊式隨機存取記憶體,記憶體錯誤率分析, | zh_TW |
| dc.subject.keyword | Single Event Effect (SEE),Backside Laser Irradiation Experiment,Field Programmable Gate Array (FPGA),Block Random-Access Memory (BRAM),Memory Error Rate Analysis, | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202500478 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-02-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2030-02-06 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 26.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
