請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96969
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 單偉彌 | zh_TW |
dc.contributor.advisor | Vianney Denis | en |
dc.contributor.author | 吳如雄 | zh_TW |
dc.contributor.author | Ju-Hsiung Lucian Wu | en |
dc.date.accessioned | 2025-02-25T16:16:57Z | - |
dc.date.available | 2025-02-26 | - |
dc.date.copyright | 2025-02-25 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-11 | - |
dc.identifier.citation | Balboa, E. M., Gallego-Fábrega, C., Moure, A., & Domínguez, H. (2016). Study of the seasonal variation on proximate composition of oven-dried Sargassum muticum biomass collected in Vigo Ria, Spain. Journal of Applied Phycology, 28, 1943-1953.
Beer, S., Björk, M., & Beardall, J. (2014). Photosynthesis in the marine environment. John Wiley & Sons. Bjorndal, K. A., Bolten, A. B., & Chaloupka, M. Y. (2000). Green turtle somatic growth model: evidence for density dependence. Ecological Applications, 10(1), 269-282. Bohnsack, J. A., & Bannerot, S. P. (1986). A stationary visual census technique for quantitatively assessing community structure of coral reef fishes. Brownell Jr., R. L., Kasuya, T. & Marsh, H. (2019). Dugong dugon (Nansei subpopulation). The IUCN Red List of Threatened Species 2019: e.T157011948A157011982. http://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T157011948A157011982.en Cebrián, J., Duarte, C. M., Agawin, N. S. R., & Merino, M. (1998). Leaf growth response to simulated herbivory: a comparison among seagrass species. Journal of Experimental Marine Biology and Ecology, 220(1), 67-81. Chaloupka, M., Bjorndal, K. A., Balazs, G. H., Bolten, A. B., Ehrhart, L. M., Limpus, C. J., Suganuma, H., Troëng, S., & Yamaguchi, M. (2008). Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Global Ecology and Biogeography, 17(2), 297-304. Christianen, M. J. A., Herman, P. M. J., Bouma, T. J., Lamers, L. P. M., van Katwijk, M. M., van der Heide, T., Mumby, P. J., Silliman, B. R., Engelhard, S. L., van de Kerk, M., Kiswara, W., & van de Koppel, J. (2014). Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proceedings of the Royal Society B: Biological Sciences, 281(1777), 20132890. Coleman, F. C., & Williams, S. L. (2002). Overexploiting marine ecosystem engineers: potential consequences for biodiversity. Trends in Ecology & Evolution, 17(1), 40-44. Collier, C. J., & Waycott, M. (2014). Temperature extremes reduce seagrass growth and induce mortality. Marine Pollution Bulletin, 83(2), 483-490. Constant, N., Bolten, A. B., Johnson, R. A., Brooks, A. M. L., & Bjorndal, K. A. (2023). Dynamics and aging of green turtle grazing plots at two Caribbean seagrass meadows. Marine Ecology Progress Series, 705, 109-125. Bates, D., Mächlar, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. Duarte, C. M., Marbà, N., Gacia, E., Fourqurean, J. W., Beggins, J., Barrón, C., & Apostolaki, E. T. (2010). Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles, 24(4). Duffy, J. E., Hughes, A. R., & Moksnes, P. O. (2014). Ecology of seagrass communities. Marine Community Ecology and Conservation (Vol. 2, pp. 271-297). Sinauer Associates. Esteban, N., Mortimer, J. A., Stokes, H. J., Laloë, J. O., Unsworth, R. K. F., & Hays, G. C. (2020). A global review of green turtle diet: sea surface temperature as a potential driver of omnivory levels. Marine Biology, 167, 1-17. Floren, A., Hayashizaki, K. I., Tuntiprapas, P., & Prathep, A. (2021). Contributions of seagrasses and other sources to sea cucumber diets in a tropical seagrass ecosystem. Chiang Mai Journal of Science, 48(5), 1259-1270. Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., & Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 5, 505-509. Fourqurean, J. W., Manuel, S., Coates, K. A., Kenworthy, W. J., & Smith, S. R. (2010). Effects of excluding sea turtle herbivores from a seagrass bed: overgrazing may have led to loss of seagrass meadows in Bermuda. Marine Ecology Progress Series, 419, 223-232. Fourqurean, J. W., Manuel, S. A., Coates, K. A., Massey, S. C., & Kenworthy, W. J. (2019). Decadal monitoring in Bermuda shows a widespread loss of seagrasses attributable to overgrazing by the green sea turtle Chelonia mydas. Estuaries and Coasts, 42, 1524-1540. Fuentes, M. M. P. B., Lawler, I. R., & Gyuris, E. (2006). Dietary preferences of juvenile green turtles (Chelonia mydas) on a tropical reef flat. Wildlife Research, 33(8), 671-678. Gluckmann, I., & Vandewalle, P. (1998). Morphofunctional analysis of the feeding apparatus in four Pomacentridae species: Dascyllus aruanus, Chromis retrofasciata, Chrysiptera biocellata and C. unimaculata. Italian Journal of Zoology, 65(S1), 421-424. Greve, T. M., & Binzer, T. (2004). Which factors regulate seagrass growth and distribution. European Seagrasses: an Introduction to Monitoring and Management (pp. 19-23). The EU project Monitoring and Managing of European Seagrasses (M&MS). Heck Jr, K. L., & Valentine, J. F. (2006). Plant-herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology, 330(1), 420-436. Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346-363. Hsu, C. H., Kuo, C. Y., Wei, Y., & Soong, K. (2024). Seagrass repression by green turtles (Chelonia mydas) around Taiping Island in the south China sea: Experimental evidence and management insights. Marine Environmental Research, 198, 106494. Johnson, R. A., Gulick, A. G., Bolten, A. B., & Bjorndal, K. A. (2017). Blue carbon stores in tropical seagrass meadows maintained under green turtle grazing. Scientific Reports, 7(1), 13545. Johnson, R. A., Hanes, K. M., Bolten, A. B., & Bjorndal, K. A. (2022). Simulated green turtle grazing alters effects of environmental drivers on seagrass growth dynamics across seasons. Limnology and Oceanography, 67(12), 2635-2648. Khamala, C. P. M. (1971). Ecology of Echinometra mathaei (Echinoidea: Echinodermata) at Diani Beach, Kenya. Marine Biology, 11, 167-172. Koch, E. W. (2001). Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries, 24, 1-17. Kohler, K. E., & Gill, S. M. (2006). Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences, 32(9), 1259-1269. Kuo, Y. M., & Lin, H. J. (2010). Dynamic factor analysis of long-term growth trends of the intertidal seagrass Thalassia hemprichii in southern Taiwan. Estuarine, Coastal and Shelf Science, 86(2), 225-236. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82(13). Lee, C. L., Huang, Y. H., Chen, C. H., & Lin, H. J. (2016). Remote underwater video reveals grazing preferences and drift export in multispecies seagrass beds. Journal of Experimental Marine Biology and Ecology, 476, 1-7. Lee, C. L., Huang, Y. H., Chung, C. Y., Hsiao, S. C., & Lin, H. J. (2015). Herbivory in multi-species, tropical seagrass beds. Marine Ecology Progress Series, 525, 65-80. Lee, K. S., Park, S. R., & Kim, Y. K. (2007). Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology, 350(1-2), 144-175. Lin, Y. V., Château, P. A., Nozawa, Y., Wei, C. L., Wunderlich, R. F., & Denis, V. (2024). Drivers of coastal benthic communities in a complex environmental setting. Marine Pollution Bulletin, 203, 116462. Mazaris, A. D., Schofield, G., Gkazinou, C., Almpanidou, V., & Hays, G. C. (2017). Global sea turtle conservation successes. Science Advances, 3(9), e1600730. McClanahan, T. R., & Muthiga, N. A. (2013). Echinometra. In Developments in Aquaculture and Fisheries Science (Vol. 38, pp. 337-353). Elsevier. Moran, K. L., & Bjorndal, K. A. (2005). Simulated green turtle grazing affects structure and productivity of seagrass pastures. Marine Ecology Progress Series, 305, 235-247. Mukai, H., & Iijima, A. (1995). Grazing effects of a gammaridean Amphipoda, Ampithoe sp., on the seagrass, Syringodium isoetifolium, and epiphytes in a tropical seagrass bed of Fiji. Ecological Research, 10, 243-257. Ng, M. S., Teo, A., & Todd, P. A. (2022). Sediment trap height affects mass, particle size, and biogeochemical composition of material collected in an equatorial coral reef. Marine Pollution Bulletin, 183, 114086. Ogden, J. C., Brown, R. A., & Salesky, N. (1973). Grazing by the Echinoid Diadema antillarum Philippi: Formation of Halos around West Indian Patch Reefs. Science, 182(4113), 715-717. Postma, A., Koens, K., & Papp, B. (2020). Overtourism: Carrying capacity revisited. In The overtourism debate: NIMBY, Nuisance, Commodification (pp. 229-249). Emerald Publishing Limited. Preen, A. (1995). Diet of dugongs: are they omnivores? Journal of Mammalogy, 76(1), 163-171. R Core Team. (2023). R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Robblee, M. B., & Zieman, J. C. (1984). Diel variation in the fish fauna of a tropical seagrass feeding ground. Bulletin of Marine Science, 34(3), 335-345. Robertson, A. I., & Mann, K. H. (1980). The role of isopods and amphipods in the initial fragmentation of eelgrass detritus in Nova Scotia, Canada. Marine Biology, 59, 63-69. Samper-Villarreal, J., Moya-Ramírez, J., & Cortés, J. (2022). Megaherbivore exclusion led to more complex seagrass canopies and increased biomass and sediment Corg pools in a tropical meadow. Frontiers in Marine Science, 9, 945783. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. Seminoff, J. A. (Southwest Fisheries Science Center, U.S.). (2004). Chelonia mydas. The IUCN Red List of Threatened Species 2004: e.T4615A11037468. http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T4615A11037468.en Sergon, N. J. (2022). Spatial-Temporal Distribution of Sea Urchins and Seagrass Along Diani-Chale Lagoonal Reefs, Mombasa [Master dissertation, University of Eldoret]. Short, F. T., & Wyllie-Echeverria, S. (1996). Natural and human-induced disturbance of seagrasses. Environmental Conservation, 23(1), 17-27. Stevens, A. W., & Lacy, J. R. (2012). The influence of wave energy and sediment transport on seagrass distribution. Estuaries and Coasts, 35(1), 92-108. Stokes, H. J., Mortimer, J. A., Hays, G. C., Unsworth, R. K. F., Laloë, J. O., & Esteban, N. (2019). Green turtle diet is dominated by seagrass in the Western Indian Ocean except amongst gravid females. Marine Biology, 166(10), 135. Thayer, G. W., Bjorndal, K. A., Ogden, J. C., Williams, S. L., & Zieman, J. C. (1984). Role of larger herbivores in seagrass communities. Estuaries, 7, 351-376. Valentine, J. F., & Heck Jr, K. L. (1991). The role of sea urchin grazing in regulating subtropical seagrass meadows: evidence from field manipulations in the northern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology, 154(2), 215-230. Wickham, H. (2011). ggplot2. Wiley interdisciplinary reviews: computational statistics, 3(2), 180-185. Wolcott, D. L., & O'Connor, N. J. (1992). Herbivory in crabs: adaptations and ecological considerations. American Zoologist, 32(3), 370-381. Yarnall, A. H., Byers, J. E., Yeager, L. A., & Fodrie, F. J. (2021). Comparing edge and fragmentation effects within seagrass communities: A meta‐analysis. Ecology, 103(3), e3603. Zhang, J., Huang, X., & Jiang, Z. (2014). Physiological responses of the seagrass Thalassia hemprichii (Ehrenb.) Aschers as indicators of nutrient loading. Marine Pollution Bulletin, 83(2), 508-515. Zulfikar, A., Boer, M., Adrianto, L., & Puspasari, R. (2020). Assessment of Thalassia hemprichii seagrass metrics for biomonitoring of environmental status. IOP Conference Series: Earth and Environmental Science. IOPscience. 李信徹、邵廣昭、莫顯喬、陳哲聰、陳春暉、曾晴賢、陳正、莊守正、陳立 (1993)。臺灣魚類誌= Fishes of Taiwan。臺灣大學動物學系。 屏東縣琉球鄉公所。(2024年3月4日)。112年度客船旅客統計概況。屏東縣琉球鄉公所。https://www.pthg.gov.tw/liuchiu/News_Content.aspx?n=D783F419458419EE&sms=D090B100E72FF603&s=C4FB45B2886BB6D7 張水鍇、邱峋文、陳映竹、劉莉蓮 (2021年2月18日)。小琉球肚仔坪潮間帶已成為台灣第一個「海膽荒礁」。環境資訊中心。 https://e-info.org.tw/node/229394 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96969 | - |
dc.description.abstract | 海草床是地球上最重要的生態系之一,它們提供許多資源與功能,例如做為其他海洋生物的避難、棲息和覓食場所,以及捕集大氣中二氧化碳與碳封存。許多海洋生物如綠蠵龜(Chelonia mydas)會食用大量的海草與海藻,影響海草生態系統動態甚巨,而高密度的綠蠵龜已被證實會對沿岸海草床造成危害並導致衰退。在臺灣小琉球的肚仔坪潮間帶,曾經有以泰來草(Thalassia hemprichii)為主的廣闊海草床,但是現在近乎消失,而綠蠵龜仍然在漲潮時進入肚仔坪潮間帶,並食用區域中殘留的零星海草。本研究的目的為調查綠蠵龜對肚仔坪潮間帶海草床的影響。研究包含兩個排除實驗,觀察綠蠵龜的食草行為,對海草(葉片長度、葉片豐度與生物量)與藻類(覆蓋度與生物量)的影響。實驗期間為2021年11月至2023年5月,每三個月進行一次調查,比較實驗組(30 × 30 × 15公分的籠子,部分或完全排除草性動物)與對照組(30 × 30公分的開放區塊)間差異,同時也調查草食性動物(綠蠵龜、海膽、魚類)的數量。研究結果顯示,海草葉片長度在兩個實驗組與對照組以及兩個實驗組之間存在顯著的差異,海草葉片豐度與藻類覆蓋度僅在兩個實驗組與對照組之間有差異。然而,除了海草根與莖的生物量外,海草葉、整體與藻類的生物量在各組之間沒有顯著的差異。結果顯示排除草食性動物後,海草葉片長度、葉片豐度與藻類覆蓋度都有顯著的增加,本研究揭露了綠蠵龜的覓食行為是導致當下肚仔坪潮間帶海草床退化的主要原因,而其他草食性動物的影響則僅限於減少海草葉片長度。由於小琉球綠蠵龜密度極高,在有限資源的情況下,保育海龜或維護海草生態系統成為兩難的困境與挑戰,未來還需要更多相關研究以理解綠蠵龜與海草生態系統之間的交互作用,以尋找創新的生態管理解決方案。 | zh_TW |
dc.description.abstract | Seagrass meadows are among the most valued ecosystems on Earth. They provide many goods and services such as sheltered habitats, feeding grounds, carbon sequestration and storage. Many organisms feed on seagrasses, which are critical to ecosystem dynamics. Some herbivores graze exclusively on seagrass, while others are more flexible in their diet, accepting other food items. Green sea turtles (Chelonia mydas) consume large amounts of seagrass and algae. The high density of green sea turtles observed in some meadows has been shown to contribute to their degradation. In the Duozaiping Intertidal Zone (DIZ) on Liu-Qiu Island, Taiwan, there was once an extensive seagrass meadow dominated by Thalassia hemprichii, but this has now almost disappeared. Sea turtles enter the DIZ at high tide and consume the sporadic foliage remaining in the area. The aim of this study is to investigate the impact of green sea turtles on the condition of seagrass meadows at the DIZ. Two exclusion experiments were conducted in parallel to investigate the effects of green sea turtle grazing on seagrasses (leaf length, leaf abundance, and biomass) and algae (cover and biomass). In each experiment, conditions in the treatment groups (30 × 30 × 15 cm cages, partial or complete exclusion of herbivores) were compared with those in control groups (30 × 30 cm, open plots) from November 2021 to May 2023. The abundance of herbivores (green sea turtles, sea urchins, fish) was also monitored every three months along the course of the experiment. The results showed that there were significant differences in seagrass leaf length between the two treatments and the control, as well as between treatments. Seagrass leaf abundance and algal cover differed between the two treatments and the control, only. In addition, no significant differences were found in either seagrass or algal biomass between treatments, with the exception of the underground seagrass biomass. The results demonstrate a significant increase in seagrass leaf length, leaf abundance, and algal cover following herbivore exclusion. In particular, they evidence that green sea turtle grazing activity is the primary cause of the current disturbed state of the seagrass meadow at the DIZ, while other herbivores exert only marginal effects, limited to seagrass leaf length only. The very high density of green sea turtles found at Liu-Qiu poses a challenge to the maintenance of seagrass when the resource is limited. The dilemma between sea turtles and seagrasses presents a paradox for conservation that requires a better understanding of ecological interactions to find innovative solutions for ecological management. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:16:57Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-25T16:16:57Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Master’s thesis acceptance certificate ------------------- i
Acknowledgement ----------------------------------------- ii Chinese abstract --------------------------------------- iii English abstract ---------------------------------------- iv Contents ------------------------------------------------ vi List of figures ----------------------------------------- ix List of Tables ------------------------------------------ xi Introduction --------------------------------------------- 1 1. Seagrass meadows -------------------------------------- 1 2. Herbivores in seagrass meadows ------------------------ 2 3. Degradation of seagrass meadows by green sea turtles -- 4 4. Case in Liu-Qiu Island, Taiwan ------------------------ 5 5. Study objectives -------------------------------------- 7 Materials and methods ------------------------------------ 8 1. Study site -------------------------------------------- 8 2. Cage experiment --------------------------------------- 9 2.1 Monitoring period ----------------------------------- 10 3. Data collection -------------------------------------- 11 3.1 Image data ------------------------------------------ 11 3.2 Biomass data ---------------------------------------- 12 3.3 Herbivore abundance --------------------------------- 12 4. Data analysis ---------------------------------------- 13 4.1 Image data ------------------------------------------ 13 4.2 Biomass data ---------------------------------------- 14 4.3 Density data ---------------------------------------- 14 4.4 Statistics ------------------------------------------ 15 Results ------------------------------------------------- 16 1. The loss of cages ------------------------------------ 16 2. Seagrass leaf length and abundance ------------------- 16 3. Algal cover ------------------------------------------ 20 4. Biomass ---------------------------------------------- 23 5. Herbivore density ------------------------------------ 27 Discussion ---------------------------------------------- 29 1. Primary factor for seagrass degradation in the DIZ --- 29 2. Seagrass dynamic and degradation sequence ------------ 33 2.1 Bottom-up control ----------------------------------- 33 2.2 Top-down control ------------------------------------ 34 3. How to restore seagrass meadows in the DIZ ----------- 35 4. Conclusions ------------------------------------------ 37 References ---------------------------------------------- 39 | - |
dc.language.iso | en | - |
dc.title | 海龜食草行為對臺灣小琉球肚仔坪潮間帶海草床之影響 | zh_TW |
dc.title | Impact of sea turtle grazing on seagrass meadows in the Duozaiping Intertidal Zone, Liu-Qiu Island, Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 野澤洋耕 | zh_TW |
dc.contributor.coadvisor | Yoko Nozawa | en |
dc.contributor.oralexamcommittee | 魏志潾;楊松穎;林哲宏 | zh_TW |
dc.contributor.oralexamcommittee | Chih-Lin Wei;Sung-Yin Yang;Che-Hung Lin | en |
dc.subject.keyword | 排除實驗,泰來草(Thalassia hemprichii),綠蠵龜(Chelonia mydas),草食性動物,保育, | zh_TW |
dc.subject.keyword | Exclusion experiment,Thalassia hemprichii,Chelonia mydas,Herbivores,Conservation, | en |
dc.relation.page | 48 | - |
dc.identifier.doi | 10.6342/NTU202500530 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
dc.date.embargo-lift | 2030-02-08 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 此日期後於網路公開 2030-02-08 | 2.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。