請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96967
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林乃君 | zh_TW |
dc.contributor.advisor | Nai-Chun Lin | en |
dc.contributor.author | 楊翔宇 | zh_TW |
dc.contributor.author | Hsiang-Yu Yang | en |
dc.date.accessioned | 2025-02-25T16:16:25Z | - |
dc.date.available | 2025-02-26 | - |
dc.date.copyright | 2025-02-25 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-13 | - |
dc.identifier.citation | 中央氣象署海象氣候組 (2023)。氣候監測報告 民國 112 年 8 月。交通部中央氣象署。
交通部中央氣象局科技中心 (2022)。氣候監測報告 民國 111 年 10 月。交通部中央氣象局。 農糧署蔬菜及種苗產業組 (2024, April 15)。蔬菜類作物生產管理技術手冊。https://www.afa.gov.tw/cht/index.php?code=list&flag=detail&ids=3348&article_id=23997 蔡呈奇、陳尊賢、許正一、郭鴻裕 (1998)。臺灣地區農地與坡地代表土壤的選定與其相關資料庫的建立。土壤與環境,1,73-88。 臺灣省立中興大學農學院土壤學系 (1971)。屏東縣土壤調查報告。臺灣省立中興大學農學院土壤學系。 臺灣省立中興大學農學院土壤學系 (1969)。彰化縣土壤調查報告。臺灣省立中興大學農學院土壤學系。 Abawi, G. S., & Widmer, T. L. (2000). Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology, 15, 37-47. Adrangi, S., & Faramarzi, M. A. (2013). From bacteria to human: A journey into the world of chitinases. Biotechnology Advances, 31, 1786-1795. Akhtar, M., & Malik, A. (2000). Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresource Technology, 74, 35-47. Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2, 1-12. Albuquerque, L., França, L., Rainey, F. A., Schumann, P., Nobre, M. F., & da Costa, M. S. (2011). Gaiella occulta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. Systematic and Applied Microbiology, 34, 595-599. Alkorta, I., Aizpurua, A., Riga, P., Albizu, I., Amézaga, I., & Garbisu, C. (2003). Soil enzyme activities as biological indicators of soil health. Reviews on Environmental Health, 18, 65-73. Anderson, M. J., Ellingsen, K. E., & McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecology Letters, 9, 683-693. Andreo-Jimenez, B., Schilder Mirjam, T., Nijhuis Els, H., te Beest Dennis, E., Bloem, J., Visser Johnny, H. M., van Os, G., Brolsma, K., de Boer, W., & Postma, J. (2021). Chitin- and keratin-rich soil amendments suppress Rhizoctonia solani disease via changes to the soil microbial community. Applied and Environmental Microbiology, 87, e00318-00321. Antonious, G.F., Chiluwal, A. and Nepal, A. (2023). Chitin, biochar, and animal manures impact on eggplant and green pepper yield and quality. Agricultural Sciences, 14, 368-383. Atif, A. M., Elzamik, F. I., Mohamed, G. M., Al-Quwaie, D. A., Ashkan, M. F., Alqahtani, F. S., Motwali, E. A., Alomran, M. M., Alharbi, N. K., El-Tarabily, K. A., & Abdelbasit, H. M. (2023). Biological control of the root-knot nematode (Meloidogyne incognita) on eggplants with various chitinase-producing Streptomyces strains. European Journal of Plant Pathology, 167, 371-394. Bailey, K. L., & Lazarovits, G. (2003). Suppressing soil-borne diseases with residue management and organic amendments. Soil and Tillage Research, 72, 169-180. Bakker, J. D., (2024a). 20. PERMANOVA. In Applied Multivariate Statistics in R (pp. 153-165). University of Washington. Bakker, J. D., (2024b). 21. PERMDISP. In Applied Multivariate Statistics in R (pp. 166-175). University of Washington. Banerjee, S., Schlaeppi, K., & van der Heijden, M. G. A. (2018). Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 16, 567-576. Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A. Y., Gattinger, A., Keller, T., Charles, R., & van der Heijden, M. G. A. (2019). Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal, 13, 1722-1736. Barberán, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2012). Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343-351. Barker, A. V., Stratton, M. L., & Rechcigl, J. E. (2000). Soil and by-product characteristics that impact the beneficial use of by-products. In Land Application of Agricultural, Industrial, and Municipal By‐Products (pp. 169-213). Soil Science Society of America. Barragán-Fonseca, K. Y., Nurfikari, A., van de Zande, E. M., Wantulla, M., van Loon, J. J. A., De Boer, W., & Dicke, M. (2022). Insect frass and exuviae to promote plant growth and health. Trends in Plant Science, 27, 646-654. Bartram, A. K., Jiang, X., Lynch, M. D. J., Masella, A. P., Nicol, G. W., Dushoff, J., & Neufeld, J. D. (2014). Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm. FEMS Microbiology Ecology, 87, 403-415. Baty, A. M., Eastburn, C. C., Diwu, Z., Techkarnjanaruk, S., Goodman, A. E., & Geesey, G. G. (2000a). Differentiation of chitinase-active and non-chitinase-active subpopulations of a marine bacterium during chitin degradation. Applied and Environmental Microbiology, 66, 3566-3573. Baty, A. M., Eastburn, C. C., Techkarnjanaruk, S., Goodman, A. E., & Geesey, G. G. (2000b). Spatial and temporal variations in chitinolytic gene expression and bacterial biomass production during chitin degradation. Applied and Environmental Microbiology, 66, 3574-3585. Beier, S., & Bertilsson, S. (2011). Uncoupling of chitinase activity and uptake of hydrolysis products in freshwater bacterioplankton. Limnology and Oceanography, 56, 1179-1188. Beier, S., & Bertilsson, S. (2013). Bacterial chitin degradation-mechanisms and ecophysiological strategies. Frontiers in Microbiology, 4, 149. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289-300. Berendsen, R. L., Vismans, G., Yu, K., Song, Y., de Jonge, R., Burgman, W. P., Burmølle, M., Herschend, J., Bakker, P. A. H. M., & Pieterse, C. M. J. (2018). Disease-induced assemblage of a plant-beneficial bacterial consortium. The ISME Journal, 12, 1496-1507. Berry, D., & Widder, S. (2014). Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology, 5, 219. Bissett, A., Brown, M. V., Siciliano, S. D., & Thrall, P. H. (2013). Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecology letters, 16, 128–139. Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., . . . Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852-857. Bonanomi, G., Antignani, V., Pane, C., & Scala, F. (2007). Suppression of soilborne fungal diseases with organic amendments. Journal of Plant Pathology, 89, 311-324. Bonanomi, G., Gaglione, S. A., Cesarano, G., Sarker, T. C., Pascale, M., Scala, F., & Zoina, A. (2017). Frequent applications of organic matter to agricultural soil increase fungistasis. Pedosphere, 27, 86-95. Bonanomi, G., Lorito, M., Vinale, F., & Woo, S. L. (2018). Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annual Review of Phytopathology, 56, 1-20. Bossolani, J. W., Leite, M. F. A., Momesso, L., ten Berge, H., Bloem, J., & Kuramae, E. E. (2023). Nitrogen input on organic amendments alters the pattern of soil–microbe-plant co-dependence. Science of The Total Environment, 890, 164347. Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs, 27, 325-349. Bremner, J. M. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55, 11-33. Bremner, J. M. (1965a). Total nitrogen. In A. G. Norman (Ed.), Methods of Soil Analysis (pp. 1149-1178). American Society of Agronomy. Bremner, J. M. (1965b). Inorganic forms of nitrogen. In A. G. Norman (Ed.), Methods of Soil Analysis (pp. 1179-1237). American Society of Agronomy. Brunelle, T., Chakir, R., Carpentier, A., Dorin, B., Goll, D., Guilpart, N., Maggi, F., Makowski, D., Nesme, T., Roosen, J., & Tang, F. H. M. (2024). Reducing chemical inputs in agriculture requires a system change. Communications Earth & Environment, 5, 369. Brust, G. E. (2019). Chapter 9 - Management Strategies for Organic Vegetable Fertility. In D. Biswas & S. A. Micallef (Eds.), Safety and Practice for Organic Food (pp. 193-212). Academic Press. Butterly, C. R., Baldock, J. A., & Tang, C. (2013). The contribution of crop residues to changes in soil pH under field conditions. Plant and Soil, 366, 185-198. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581-583. Cao, X., Zhao, D., Xu, H., Huang, R., Zeng, J., & Yu, Z. (2018). Heterogeneity of interactions of microbial communities in regions of Taihu Lake with different nutrient loadings: A network analysis. Scientific Reports, 8, 8890. Cao, Y., Dong, Q., Wang, D., Zhang, P., Liu, Y., & Niu, C. (2022). microbiomeMarker: an R/Bioconductor package for microbiome marker identification and visualization. Bioinformatics. Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio, 31, 132–140. Cesarano, G., De Filippis, F., La Storia, A., Scala, F., & Bonanomi, G. (2017). Organic amendment type and application frequency affect crop yields, soil fertility and microbiome composition. Applied Soil Ecology, 120, 254-264. Cetintas, R., Kaur, R., Brito, J., Mendes, M., Nyczepir, A. P., & Dickson, D. W. (2007). Pathogenicity and reproductive potential of Meloidogyne mayaguensis and M. floridensis compared with three common Meloidogyne spp. Nematropica, 37, 21-31. Chaffron, S., Rehrauer, H., Pernthaler, J., & von Mering, C. (2010). A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Research, 20, 947-959. Chao, H., Cai, A., Heimburger, B., Wu, Y., Zhao, D., Sun, M., & Hu, F. (2024). Keystone taxa enhance the stability of soil bacterial communities and multifunctionality under steelworks disturbance. Journal of Environmental Management, 356, 120664. Chang, S. C., Wang, J. T., Vandamme, P., Hwang, J. H., Chang, P. S., & Chen, W. M. (2004). Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Systematic and Applied Microbiology, 27, 43-49. Chen, H., Gao, Y., Dong, H., Sarkar, B., Song, H., Li, J., Bolan, N., Quin, B. F., Yang, X., Li, F., Wu, F., Meng, J., Wang, H., & Chen, W. (2023). Chitin and crawfish shell biochar composite decreased heavy metal bioavailability and shifted rhizosphere bacterial community in an arsenic/lead co-contaminated soil. Environment International, 176, 107989. Chen, W.-M., Chang, R.-C., Cheng, C.-Y., Shiau, Y.-W., & Sheu, S.-Y. (2013). Jeongeupia chitinilytica sp. nov., a chitinolytic bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 63, 934-938. Chen, Y., Han, M., Yuan, X., Cao, G., & Zhu, B. (2021). Seasonal changes in soil properties, microbial biomass and enzyme activities across the soil profile in two alpine ecosystems. Soil Ecology Letters, 3, 383-394. Chhetri, G., Kim, I., Kang, M., Kim, J., So, Y., & Seo, T. (2021). Flavobacterium tagetis sp. nov., a novel urea-hydrolysing bacterium isolated from the roots of Tagetes patula. International Journal of Systematic and Evolutionary Microbiology, 71. Choi, J. H., Kim, M. S., Roh, S. W., & Bae, J. W. (2010). Acidovorax soli sp. nov., isolated from landfill soil. International Journal of Systematic and Evolutionary Microbiology, 60, 2715-2718. Choi, J.-W., Lee, J.-Y., Hyun, D.-W., Lee, J.-Y., Kim, P. S., Han, J. E., Jeong, Y.-S., Lee, S.-Y., Sung, H., Tak, E. J., Kim, H. S., & Bae, J.-W. (2021). Chitinibacter bivalviorum sp. nov., isolated from the gut of the freshwater mussel Anodonta arcaeformis. International Journal of Systematic and Evolutionary Microbiology, 71. Christensen, P. (2005). Genus IV. Lysobacter. In D. J. Brenner, N. R. Krieg, J. T. Staley, G. M. Garrity, D. R. Boone, P. Vos, M. Goodfellow, F. A. Rainey & K.-H. Schleifer (Eds.), Bergey's Manual® of Systematic Bacteriology Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria (pp. 95-101). Springer New York Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117-143. Clocchiatti, A., Hannula, S. E., Rizaludin, M. S., Hundscheid, M. P. J., Klein Gunnewiek, P. J. A., Schilder, M. T., Postma, J., & De Boer, W. (2021). Impact of Cellulose-Rich Organic Soil Amendments on Growth Dynamics and Pathogenicity of Rhizoctonia solani. Microorganisms, 9, 1285. Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician, 35, 124–129. Cretoiu, M. S., Korthals, G. W., Visser, J. H., & van Elsas, J. D. (2013). Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. Applied and Environmental Microbiology, 79, 5291-5301. Crocker, F. H., Jung, C. M., Indest, K. J., Everman, S. J., & Carr, M. R. (2019). Effects of chitin and temperature on sub-Arctic soil microbial and fungal communities and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (DNT). Biodegradation, 30, 415-431. Csárdi, G., Nepusz, T., Traag, V., Horvát, S., Zanini, F., Noom, D., & Müller, K. (2024). igraph: Network analysis and visualization in R. Cui, X., Zhou, F., Ciais, P., Davidson, E. A., Tubiello, F. N., Niu, X., Ju, X., Canadell, J. G., Bouwman, A. F., Jackson, R. B., Mueller, N. D., Zheng, X., Kanter, D. R., Tian, H., Adalibieke, W., Bo, Y., Wang, Q., Zhan, X., & Zhu, D. (2021). Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, 2, 886-893. Cui, Y., Chun, S.-J., Baek, S. H., Lee, M., Kim, Y., Lee, H.-G., Ko, S.-R., Hwang, S., Ahn, C.-Y., & Oh, H.-M. (2019). The water depth-dependent co-occurrence patterns of marine bacteria in shallow and dynamic Southern Coast, Korea. Scientific Reports, 9, 9176. Dahal, R. H., & Kim, J. (2018). Chitinophaga caseinilytica sp. nov., a casein hydrolysing bacterium isolated from forest soil. Archives of Microbiology, 200, 645-651. Dahiya, N., Tewari, R., & Hoondal, G. S. (2006). Biotechnological aspects of chitinolytic enzymes: a review. Applied Microbiology and Biotechnology, 71, 773-782. Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C., & Xu, J. (2017). Potential role of biochars in decreasing soil acidification - A critical review. Science of The Total Environment, 581-582, 601-611. Daims, H. (2014). The Family Nitrospiraceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes: Other Major Lineages of Bacteria and The Archaea (pp. 733-749). Springer Berlin Heidelberg. Das, S., Dutta, S., Ghosh, S., & Mukherjee, A. (2024). Chitinolytic microorganisms for biological control of plant pathogens: a comprehensive review and meta-analysis. Crop Protection, 185, 106888. Das, S. K., & Varma, A. (2011). Role of Enzymes in Maintaining Soil Health. In G. Shukla & A. Varma (Eds.), Soil Enzymology (pp. 25-42). Springer Berlin Heidelberg. De Boer, W., Klein Gunnewiek, P. J. A., Lafeber, P., Janse, J. D., Spit, B. E., & Woldendorp, J. W. (1998). Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biology and Biochemistry, 30, 193-203. De Boer, W., Gerards, S., Klein Gunnewiek, P. J. A., & Modderman, R. (1999). Response of the chitinolytic microbial community to chitin amendments of dune soils. Biology and Fertility of Soils, 29, 170-177. De Tender, C., Mesuere, B., Van der Jeugt, F., Haegeman, A., Ruttink, T., Vandecasteele, B., Dawyndt, P., Debode, J., & Kuramae, E. E. (2019). Peat substrate amended with chitin modulates the N-cycle, siderophore and chitinase responses in the lettuce rhizobiome. Scientific Reports, 9, 9890. De Tender, C., Vandecasteele, B., Verstraeten, B., Ommeslag, S., De Meyer, T., De Visscher, J., Dawyndt, P., Clement, L., Kyndt, T., & Debode, J. (2021). Chitin in strawberry cultivation: foliar growth and defense response promotion, but reduced fruit yield and disease resistance by nutrient imbalances. Molecular plant-microbe interactions: MPMI, 34, 227–239. Debode, J., De Tender, C., Soltaninejad, S., Van Malderghem, C., Haegeman, A., Van der Linden, I., ... & Maes, M. (2016). Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology. Frontiers in Microbiology, 7, 565. Deng, S., Kang, H., & Freeman, C. (2011). Microplate fluorimetric assay of soil enzymes. In R.P. Dick (Ed.), Methods of Soil Enzymology (pp. 311-318). Soil Science Society of America. Deng, Y., Jiang, Y.-H., Yang, Y., He, Z., Luo, F., & Zhou, J. (2012). Molecular ecological network analyses. BMC Bioinformatics, 13, 113. Devi, P. I., Manjula, M., & Bhavani, R. V. (2022). Agrochemicals, environment, and human health. Annual Review of Environment and Resources, 47, 399-421. Dexter, E., Rollwagen-Bollens, G., & Bollens, S. M. (2018). The trouble with stress: a flexible method for the evaluation of nonmetric multidimensional scaling. Limnology and Oceanography: Methods, 16, 434-443. Dhankhar, N., & Kumar, J. (2023). Impact of increasing pesticides and fertilizers on human health: a review. Materials Today: Proceedings. Diacono, M., & Montemurro, F. (2010). Long-term effects of organic amendments on soil fertility. a review. Agronomy for Sustainable Development, 30, 401-422. Dick, R. P., Dick, L. K., Deng, S., Li, X., Kandeler, E., Poll, C., Freeman, C., Jones, T. G., Weintraub, M. N., Esseili, K. A., & Saxena, J. (2018). Cross-laboratory comparison of fluorimetric microplate and colorimetric bench-scale soil enzyme assays. Soil Biology and Biochemistry, 121, 240-248. Dinno, A. (2024). conover.test: Conover-Iman Test of Multiple Comparisons Using Rank Sums. Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. I. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38, 685-688. Fan, Q., Chen, Y., Xu, R., & Guo, Z. (2023). Characterization of keystone taxa and microbial metabolic potentials in copper tailing soils. Environmental Science and Pollution Research, 30, 1216-1230. Fan, Y., Liu, J., Liu, Z., Hu, X., Yu, Z., Li, Y., Chen, X., Li, L., Jin, J., & Wang, G. (2022). Chitin amendments eliminate the negative impacts of continuous cropping obstacles on soil properties and microbial assemblage. Frontiers in Plant Science, 13, 1067618. Fan, Z., Wang, L., Qin, Y., & Li, P. (2023). Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: A review. Carbohydrate Polymers, 306, 120592. Fang, C., Smith, P., Moncrieff, J. B., & Smith, J. U. (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59. Faust, K. (2021). Open challenges for microbial network construction and analysis. The ISME Journal, 15, 3111-3118. Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, 103, 626-631. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., . . . Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478, 337-342. Gao, C., Xu, L., Montoya, L., Madera, M., Hollingsworth, J., Chen, L., Purdom, E., Singan, V., Vogel, J., Hutmacher, R. B., Dahlberg, J. A., Coleman-Derr, D., Lemaux, P. G., & Taylor, J. W. (2022). Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nature Communications, 13, 3867. Garbowski, T., Bar-Michalczyk, D., Charazińska, S., Grabowska-Polanowska, B., Kowalczyk, A., & Lochyński, P. (2023). An overview of natural soil amendments in agriculture. Soil and Tillage Research, 225, 105462. García-Fraga, B., da Silva, A. F., López-Seijas, J., & Sieiro, C. (2015). A novel family 19 chitinase from the marine-derived Pseudoalteromonas tunicata CCUG 44952T: Heterologous expression, characterization and antifungal activity. Biochemical Engineering Journal, 93, 84-93. Gasmi, M., Kitouni, M., Carro, L., Pujic, P., Normand, P., & Boubakri, H. (2019). Chitinolytic actinobacteria isolated from an Algerian semi-arid soil: development of an antifungal chitinase-dependent assay and GH18 chitinase gene identification. Annals of Microbiology, 69, 395-405. Gauch, H. G. (1982). Ordination. In E. Beck, H. J. B. Birks & E.F. Conner (Eds.), Multivariate Analysis in Community Ecology (pp. 109–172). Cambridge University Press. Ghimire, R., Bista, P., & Machado, S. (2019). Long-term management effects and temperature sensitivity of soil organic carbon in grassland and agricultural soils. Scientific Reports, 9, 12151. Goberna, M., & Verdú, M. (2022). Cautionary notes on the use of co-occurrence networks in soil ecology. Soil Biology and Biochemistry, 166, 108534. Gooday, G. W. (1990). Physiology of microbial degradation of chitin and chitosan. Biodegradation, 1, 177-190. González, P. J., Correia, C., Moura, I., Brondino, C. D., & Moura, J. J. G. (2006). Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. Journal of Inorganic Biochemistry, 100, 1015-1023. Guessous, G., Patsalo, V., Balakrishnan, R., Çağlar, T., Williamson, J. R., & Hwa, T. (2023). Inherited chitinases enable sustained growth and rapid dispersal of bacteria from chitin particles. Nature Microbiology, 8, 1695-1705. Guimerà, R., & Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic networks. Nature, 433, 895-900. Guo, B., Zhang, L., Sun, H., Gao, M., Yu, N., Zhang, Q., Mou, A., & Liu, Y. (2022). Microbial co-occurrence network topological properties link with reactor parameters and reveal importance of low-abundance genera. npj Biofilms and Microbiomes, 8, 3. Guo, T., Zhang, Q., Ai, C., Liang, G., He, P., Lei, Q., & Zhou, W. (2020). Analysis of microbial utilization of rice straw in paddy soil using a DNA-SIP approach. Soil Science Society of America Journal, 84, 99-114. Guseva, K., Darcy, S., Simon, E., Alteio, L. V., Montesinos-Navarro, A., & Kaiser, C. (2022). From diversity to complexity: microbial networks in soils. Soil Biology and Biochemistry, 169, 108604. Hallmann, J., Rodrı́guez-Kábana, R., & Kloepper, J. W. (1999). Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biology and Biochemistry, 31, 551-560. Hao, Z., Cai, Y., Liao, X., Liang, X., Liu, J., Fang, Z., Hu, M., & Zhang, D. (2011). Chitinolyticbacter meiyuanensis SYBC-H1T, gen. nov., sp. nov., a chitin-degrading bacterium isolated from soil. Current Microbiology, 62, 1732-1738. Hartman, K., van der Heijden, M. G. A., Wittwer, R. A., Banerjee, S., Walser, J.-C., & Schlaeppi, K. (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6, 14. Hashimoto, M., Ikegami, T., Seino, S., Ohuchi, N., Fukada, H., Sugiyama, J., Shirakawa, M., & Watanabe, T. (2000). Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. Journal of Bacteriology, 182, 3045-3054. van der Heijden, M. G. A., & Hartmann, M. (2016). Networking in the Plant Microbiome. PLOS Biology, 14, e1002378. Hermans, S. M., Buckley, H. L., Case, B. S., Curran-Cournane, F., Taylor, M., & Lear, G. (2016). Bacteria as emerging indicators of soil condition. Applied and Environmental Microbiology, 83, e02826-16. Honda, Y., Taniguchi, H., & Kitaoka, M. (2008). A reducing-end-acting chitinase from Vibrio proteolyticus belonging to glycoside hydrolase family 19. Applied Microbiology and Biotechnology, 78, 627-634. Horn, M. A., Ihssen, J., Matthies, C., Schramm, A., Acker, G., & Drake, H. L. (2005). Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. International Journal of Systematic and Evolutionary Microbiology, 55, 1255-1265. Hou, R., Ouyang, Z., Maxim, D., Wilson, G., & Kuzyakov, Y. (2016). Lasting effect of soil warming on organic matter decomposition depends on tillage practices. Soil Biology and Biochemistry, 95, 243-249. Hou, Y., Li, B., Feng, G., Zhang, C., He, J., Li, H., & Zhu, J. (2021). Responses of bacterial communities and organic matter degradation in surface sediment to Macrobrachium nipponense bioturbation. Science of The Total Environment, 759, 143534. Hsu, S. C., & Lockwood, J. L. (1975). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied Microbiology, 29, 422–426. Hu, X., Liu, J., Wei, D., Zhu, P., Cui, X. a., Zhou, B., Chen, X., Jin, J., Liu, X., & Wang, G. (2017). Effects of over 30-year of different fertilization regimes on fungal community compositions in the black soils of northeast China. Agriculture, Ecosystems & Environment, 248, 113-122. Hu, Z., Delgado-Baquerizo, M., Fanin, N., Chen, X., Zhou, Y., Du, G., Hu, F., Jiang, L., Hu, S., & Liu, M. (2024). Nutrient-induced acidification modulates soil biodiversity-function relationships. Nature Communications, 15, 2858. Huang, L., Garbulewska, E., Sato, K., Kato, Y., Nogawa, M., Taguchi, G., & Shimosaka, M. (2012). Isolation of genes coding for chitin-degrading enzymes in the novel chitinolytic bacterium, Chitiniphilus shinanonensis, and characterization of a gene coding for a family 19 chitinase. Journal of Bioscience and Bioengineering, 113, 293-299. Huber, K. J., Geppert, A. M., Wanner, G., Fösel, B. U., Wüst, P. K., & Overmann, J. (2016). The first representative of the globally widespread subdivision 6 Acidobacteria, Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil. International Journal of Systematic and Evolutionary Microbiology, 66, 2971-2979. Huet, J., Rucktooa, P., Clantin, B., Azarkan, M., Looze, Y., Villeret, V., & Wintjens, R. (2008). X-ray structure of papaya chitinase reveals the substrate binding mode of glycosyl hydrolase family 19 chitinases. Biochemistry, 47, 8283-8291. Hui, C., Jiang, H., Liu, B., Wei, R., Zhang, Y., Zhang, Q., Liang, Y., & Zhao, Y. (2020). Chitin degradation and the temporary response of bacterial chitinolytic communities to chitin amendment in soil under different fertilization regimes. Science of The Total Environment, 705, 136003. Inderbitzin, P., Ward, J., Barbella, A., Solares, N., Izyumin, D., Burman, P., Chellemi, D. O., & Subbarao, K. V. (2018). Soil microbiomes associated with Verticillium wilt-suppressive broccoli and chitin amendments are enriched with potential biocontrol agents. Phytopathology, 108, 31-43. Itoh, Y., Watanabe, J., Fukada, H., Mizuno, R., Kezuka, Y., Nonaka, T., & Watanabe, T. (2006). Importance of Trp59 and Trp60 in chitin-binding, hydrolytic, and antifungal activities of Streptomyces griseus chitinase C. Applied Microbiology and Biotechnology, 72, 1176-1184. Iwasaki, Y., Ichino, T., & Saito, A. (2020). Transition of the bacterial community and culturable chitinolytic bacteria in chitin-treated upland soil: from Streptomyces to methionine-auxotrophic Lysobacter and other genera. Microbes and Environments, 35, ME19070. Jaccard, P. (1900). Contributions au problème de l’immigration post-glaciaire de la flore alpine. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 547-579. Jacquiod, S., Franqueville, L., Cecillon, S., M. Vogel, T., & Simonet, P. (2013). Soil bacterial community shifts after chitin enrichment: an integrative metagenomic approach. PLoS One, 8, e79699. Jeranyama, P., Shrestha, A., & Neupane, N. (2020). Chapter 1 - Sustainable food systems: Diversity, scope and challenges. In L. Rusinamhodzi (Ed.), The Role of Ecosystem Services in Sustainable Food Systems (pp. 1-16). Academic Press. Jiao, S., Liu, Z., Lin, Y., Yang, J., Chen, W., & Wei, G. (2016). Bacterial communities in oil contaminated soils: Biogeography and co-occurrence patterns. Soil Biology and Biochemistry, 98, 64-73. Ju, J.-H., Kim, J.-S., Lee, D.-H., Jeon, J. H., Heo, S.-Y., Seo, J.-W., Kim, C. H., Park, D.-S., & Oh, B.-R. (2019). Thermomonas aquatica sp. nov., isolated from an industrial wastewater treatment plant. International Journal of Systematic and Evolutionary Microbiology, 69, 3399-3404. Kämpfer, P., Glaeser, S. P., Parkes, L., van Keulen, G., & Dyson, P. (2014). The Family Streptomycetaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes: Actinobacteria (pp. 889-1010). Springer Berlin Heidelberg. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016a). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44, D457-D462. Kanehisa, M., Sato, Y., & Morishima, K. (2016b). BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. Journal of Molecular Biology, 428, 726-731. Kanehisa, M. (2017). Enzyme Annotation and Metabolic Reconstruction Using KEGG. In D. Kihara (Ed.), Protein Function Prediction: Methods and Protocols (pp. 135-145). Springer New York. Kanaan, H., Frenk, S., Raviv, M., Medina, S., & Minz, D. (2018). Long and short term effects of solarization on soil microbiome and agricultural production. Applied Soil Ecology, 124, 54-61. Kassambara, A. (2023a). ggpubr: 'ggplot2' based publication ready plots. Kassambara, A. (2023b). rstatix: pipe-friendly framework for basic statistical tests. Kaufmann, M., Li, L., Van Poucke, C., Rhyner, N., De Tender, C., Uyttendaele, M., Heyndrickx, M., Zipfel, C., Pothier, J. F., & Cottyn, B. (2024). Soil type and associated microbiome influence chitin's growth promotion effect in lettuce. Phytobiomes Journal, 8, 248-261. Kawase, T., Saito, A., Sato, T., Kanai, R., Fujii, T., Nikaidou, N., Miyashita, K., & Watanabe, T. (2004). Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria. Applied and Environmental Microbiology, 70, 1135-1144. Kawase, T., Yokokawa, S., Saito, A., Fujii, T., Nikaidou, N., Miyashita, K., & Watanabe, T. (2006). Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Bioscience, Biotechnology, and Biochemistry, 70, 988-998. Keinath, A. P., Batson, W. E., Caceres, J., Elliott, M. L., Sumner, D. R., Brannen, P. M., Rothrock, C. S., Huber, D. M., Benson, D. M., Conway, K. E., Schneider, R. N., Motsenbocker, C. E., Cubeta, M. A., Ownley, B. H., Canaday, C. H., Adams, P. D., Backman, P. A., & Fajardo, J. (2000). Evaluation of biological and chemical seed treatments to improve stand of snap bean across the southern United States. Crop Protection, 19, 501-509. Khan, M. I., Sarfraz, R., Kim, T., Park, H.-J., Kim, P. J., & Kim, G. W. (2024). Partitioning carbon dioxide emissions from soil organic matter and urea in warm and cold cropping seasons. Atmospheric Pollution Research, 15, 101995. Khan, M. R., Poornima, K. S., Somvanshi, V. S., & Walia, R. K. (2022). Meloidogyne enterolobii: a threat to guava (Psidium guajava) cultivation. Archives of Phytopathology and Plant Protection, 55, 1961-1997. Khatri, S., Dubey, S., Shivay, Y. S., Jelsbak, L., & Sharma, S. (2023). Organic farming induces changes in bacterial community and disease suppressiveness against fungal phytopathogens. Applied Soil Ecology, 181, 104658. Kielak, A. M., Cretoiu, M. S., Semenov, A. V., Sørensen, S. J., & van Elsas, J. D. (2013). Bacterial chitinolytic communities respond to chitin and pH alteration in soil. Applied and Environmental Microbiology, 79, 263-272. Kim, B.-R., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K.-H., Lee, J.-H., Kim, H. B., & Isaacson, R. E. (2017). Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 27, 2089–2093. Kim, J. M., Roh, A.-S., Choi, S.-C., Kim, E.-J., Choi, M.-T., Ahn, B.-K., Kim, S.-K., Lee, Y.-H., Joa, J.-H., Kang, S.-S., Lee, S. A., Ahn, J.-H., Song, J., & Weon, H.-Y. (2016). Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. Journal of Microbiology, 54, 838-845. Kim, K.-H., Kabir, E., & Jahan, S. A. (2017). Exposure to pesticides and the associated human health effects. Science of The Total Environment, 575, 525-535. Kim, S.-J., Ahn, J.-H., Weon, H.-Y., Hong, S.-B., Seok, S.-J., Kim, J.-S., & Kwon, S.-W. (2015). Chujaibacter soli gen. nov., sp. nov., isolated from soil. Journal of Microbiology, 53, 592-597. Kim, S. K., Kim, Y. H., Jeong, Y. S., Na, H. B., Kim, J., Baik, K. S., Yun, H. D., Lee, J.-K., & Kim, H. (2012). Chitinibacter suncheonensis sp. nov., a chitinolytic bacterium from a mud flat in Suncheon Bay. Journal of Microbiology, 50, 1058-1062. Kirschbaum, M. U. F. (1995). The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry, 27, 753-760. Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift für analytische Chemie, 22, 366-382. Kojima, M., Yoshikawa, T., Ueda, M., Nonomura, T., Matsuda, Y., Toyoda, H., Miyatake, K., Arai, M., & Fukamizo, T. (2005). Family 19 chitinase from Aeromonas sp. No.10S-24: role of chitin-binding domain in the enzymatic activity. The Journal of Biochemistry, 137, 235-242. Komagata, K., Iino, T., & Yamada, Y. (2014). The Family Acetobacteraceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (pp. 3-78). Springer Berlin Heidelberg. Krukenberg, V., Reichart, N. J., Spietz, R. L., & Hatzenpichler, R. (2021). Microbial community response to polysaccharide amendment in anoxic hydrothermal sediments of the Guaymas Basin. Frontiers in Microbiology, 12, 763971. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583–621. Kumeta, Y., Inami, K., Ishimaru, K., Yamazaki, Y., Sameshima-Saito, R., & Saito, A. (2018). Thermogravimetric evaluation of chitin degradation in soil: implication for the enhancement of ammonification of native organic nitrogen by chitin addition. Soil Science and Plant Nutrition, 64, 512-519. Lacombe-Harvey, M.-È., Brzezinski, R., & Beaulieu, C. (2018). Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Applied Microbiology and Biotechnology, 102, 7219-7230. Lahti, L., & Shetty, S. (2012). microbiome R package. Lane D.J. (1991). 16S/23S rRNA Sequencing. In E. Stackebrandt, & M. Goodfellow (Eds.), Nucleic Acid Techniques in Bacterial Systematics (pp. 115-175), John Wiley and Sons. Larsen, T., Petersen, B. O., Storgaard, B. G., Duus, J. Ø., Palcic, M. M., & Leisner, J. J. (2010). Characterization of a novel Salmonella Typhimurium chitinase which hydrolyzes chitin, chitooligosaccharides and an N-acetyllactosamine conjugate. Glycobiology, 21, 426-436. Latgé, J. (2007). The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology, 66, 279-290. Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40, 2407-2415. Lazarovits, G., Tenuta, M., & Conn, K. L. (2001). Organic amendments as a disease control strategy for soilborne diseases of high-value agricultural crops. Australasian Plant Pathology, 30, 111-117. Le, B., & Yang, S. H. (2019). Microbial chitinases: properties, current state and biotechnological applications. World Journal of Microbiology & Biotechnology, 35, 144. Lee, C. G., Watanabe, T., Sato, Y., Murase, J., Asakawa, S., & Kimura, M. (2011). Bacterial populations assimilating carbon from 13C-labeled plant residue in soil: Analysis by a DNA-SIP approach. Soil Biology and Biochemistry, 43, 814-822. Lee, S. A., Kim, J. M., Kim, Y., Joa, J.-H., Kang, S.-S., Ahn, J.-H., Kim, M., Song, J., & Weon, H.-Y. (2020). Different types of agricultural land use drive distinct soil bacterial communities. Scientific Reports, 10, 17418. Lepš, J., & Šmilauer, P. (2003a). Basics of gradient analysis. In Multivariate analysis of ecological data using CANOCO (pp. 25-42). Cambridge University Press. Lepš, J., & Šmilauer, P. (2003b). Using the canoco for Windows 4.5 package. In Multivariate analysis of ecological data using CANOCO (pp. 43–59). Cambridge University Press. Levy-Booth, D. J., Prescott, C. E., & Grayston, S. J. (2014). Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry, 75, 11-25. Li, F., Chen, L., Zhang, J., Yin, J., & Huang, S. (2017). Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Frontiers in Microbiology, 8, 187. Li, H., Cai, X., Gong, J., Xu, T., Ding, G.-c., & Li, J. (2019). Long-term organic farming manipulated rhizospheric microbiome and Bacillus antagonism against pepper blight (Phytophthora capsici). Frontiers in Microbiology, 10. 342. Li, X., Liu, X., & Liu, X. (2020). Long-term fertilization effects on crop yield and desalinized soil properties. Agronomy Journal, 112, 4321-4331. Li, Y., Shang, Y., & Yang, Y. (2017). Clustering coefficients of large networks. Information Sciences, 382-383, 350-358. Ling, N., Wang, T., & Kuzyakov, Y. (2022). Rhizosphere bacteriome structure and functions. Nature Communications, 13, 836. Liu, H., Liu, R., Yang, S.-Y., Gao, W.-K., Zhang, C.-X., Zhang, K.-Y., & Lai, R. (2008). Flavobacterium anhuiense sp. nov., isolated from field soil. International Journal of Systematic and Evolutionary Microbiology, 58, 756-760. Liu, M.-Y., Chang, Q.-R., Qi, Y.-B., Liu, J., & Chen, T. (2014). Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China. CATENA, 115, 19-28. Luo, G., Li, L., Friman, V.-P., Guo, J., Guo, S., Shen, Q., & Ling, N. (2018). Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: a meta-analysis. Soil Biology and Biochemistry, 124, 105-115. Lv, C., Gu, T., Ma, R., Yao, W., Huang, Y., Gu, J., & Zhao, G. (2021). Biochemical characterization of a GH19 chitinase from Streptomyces alfalfae and its applications in crystalline chitin conversion and biocontrol. International Journal of Biological Macromolecules, 167, 193-201. Ma, B., Wang, Y., Ye, S., Liu, S., Stirling, E., Gilbert, J. A., Faust, K., Knight, R., Jansson, J. K., Cardona, C., Röttjers, L., & Xu, J. (2020). Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome, 8, 82. Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of Pesticides on Environment. In K. R. Hakeem, M. S. Akhtar, & S. N. A. Abdullah (Eds.), Plant, Soil and Microbes: Volume 1: Implications in Crop Science (pp. 253-269). Springer International Publishing. Malerba, M., & Cerana, R. (2019). Recent applications of chitin- and chitosan-based polymers in plants. Polymers, 11, 839. Mangiafico, S. S. (2024). rcompanion: functions to support extension education program evaluation. Manucharova, N. A., Yaroslavtsev, A. M., Senchenko, D. V., Stepanov, A. L., & Zvyagintsev, D. G. (2006). Microbial transformation of chitin in soil under anaerobic conditions. Biology Bulletin, 33, 191-194. Maiti, S. K., & Ahirwal, J. (2019). Chapter 3 - Ecological Restoration of Coal Mine Degraded Lands: Topsoil Management, Pedogenesis, Carbon Sequestration, and Mine Pit Limnology. In V. C. Pandey & K. Bauddh (Eds.), Phytomanagement of Polluted Sites (pp. 83-111). Elsevier. Matroodi, S., Motallebi, M., Zamani, M., & Moradyar, M. (2013). Designing a new chitinase with more chitin binding and antifungal activity. World Journal of Microbiology and Biotechnology, 29, 1517-1523. Mayerhofer, J., Thuerig, B., Oberhaensli, T., Enderle, E., Lutz, S., Ahrens, C. H., Fuchs, J. G., & Widmer, F. (2021). Indicative bacterial communities and taxa of disease-suppressing and growth-promoting composts and their associations to the rhizoplane. FEMS Microbiology Ecology, 97. fiab134. McClure, R., Farris, Y., Danczak, R., Nelson, W., Song, H.-S., Kessell, A., Lee, J.-Y., Couvillion, S., Henry, C., Jansson Janet, K., & Hofmockel Kirsten, S. (2022). Interaction networks are driven by community-responsive phenotypes in a chitin-degrading consortium of soil microbes. mSystems, 7, e00372-00322. McLaren, M. (2024). speedyseq: faster implementations of phyloseq functions. McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE, 8, e61217-e61217. Melillo, J. M., Steudler, P. A., Aber, J. D., Newkirk, K., Lux, H., Bowles, F. P., Catricala, C., Magill, A., Ahrens, T., & Morrisseau, S. (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2176. Mendel, R. R., & Bittner, F. (2006). Cell biology of molybdenum. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1763, 621-635. Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., Van Der Voort, M., Schneider, J. H. M., Piceno, Y. M., Desantis, T. Z., Andersen, G. L., Bakker, P. A. H. M., & Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097-1100. de Mendiburu, F. (2023). agricolae: statistical procedures for agricultural research. Mihajlovic, M., Rekanovic, E., Hrustic, J., Grahovac, M., & Pešić, B. (2017). Methods for management of soilborne plant pathogens. Pesticidi i fitomedicina, 32, 9-24. Min, W., Guo, H., Zhang, W., Zhou, G., Ma, L., Ye, J., Liang, Y., & Hou, Z. (2016). Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 66, 117-126. Minasny, B., McBratney, A. B., Wadoux, A. M. J. C., Akoeb, E. N., & Sabrina, T. (2020). Precocious 19th century soil carbon science. Geoderma Regional, 22, e00306. Mirarab, S., Nguyen, N., & Warnow, T. (2012). SEPP: SATé-enabled phylogenetic placement. Pacific Symposium on Biocomputing, 247-258. Natural Resources Conservation Service. (2011). Carbon to Nitrogen Ratios in Cropping Systems. U.S. Department of Agriculture. Natural Resources Conservation Service. (2022). Soil Tech Note 23A-Carbon:Nitrogen Ratio (C:N). U.S. Department of Agriculture. Retrieved Oct 18, 2024, from https://www.nrcs.usda.gov/resources/guides-and-instructions/soil-tech-notes-illinois Navarro-Noya, Y. E., Gómez-Acata, S., Montoya-Ciriaco, N., Rojas-Valdez, A., Suárez-Arriaga, M. C., Valenzuela-Encinas, C., Jiménez-Bueno, N., Verhulst, N., Govaerts, B., & Dendooven, L. (2013). Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biology and Biochemistry, 65, 86-95. Nguyen, T. T., Barber, A. R., Corbin, K., & Zhang, W. (2017). Lobster processing by-products as valuable bioresource of marine functional ingredients, nutraceuticals, and pharmaceuticals. Bioresources and Bioprocessing, 4, 27. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology [NC-IUBMB]. (1992). Classification and nomenclature of enzymes. In E. C. Webb (Ed.), Enzyme Nomenclature: Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology and the Nomenclature and Classification of Enzymes (pp. 5-22). Academic Press. Nurfikari, A., & de Boer, W. (2021). Chitin determination in residual streams derived from insect production by LC-ECD and LC-MS/MS methods. Frontiers in Sustainable Food Systems, 5, 795694 Nurfikari, A., Leite, M. F. A., Kuramae, E. E., & de Boer, W. (2024). Microbial community dynamics during decomposition of insect exuviae and frass in soil. Soil Biology and Biochemistry, 194, 109426. O'Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., Astashyn, A., Badretdin, A., Bao, Y., Blinkova, O., Brover, V., Chetvernin, V., Choi, J., Cox, E., Ermolaeva, O., Farrell, C. M., … Pruitt, K. D. (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic acids research, 44, D733–D745. Oh, K.-H., Kang, S.-J., Jung, Y.-T., Oh, T.-K., & Yoon, J.-H. (2011). Lysobacter dokdonensis sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 61, 1089-1093. Ohno, T., Armand, S., Hata, T., Nikaidou, N., Henrissat, B., Mitsutomi, M., & Watanabe, T. (1996). A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. Journal of bacteriology, 178, 5065-5070. Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M. D., Durand, S., . . . Weedon, J. (2024). vegan: community ecology package. Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences, 104, 19891-19896. Ootsuka, E., Iwasaki, Y., Takagi, K., & Saito, A. (2021). LMC60, a material containing low-molecular-weight chitin: degradation and effects on soil microorganisms in incubated upland soil. Soil Science and Plant Nutrition, 67, 389-399. Oyeleye, A., & Normi, Y. M. (2018). Chitinase: diversity, limitations, and trends in engineering for suitable applications. Bioscience Reports, 38, BSR2018032300. Pagliai, M., & De Nobili, M. (1993). Relationships between soil porosity, root development and soil enzyme activity in cultivated soils. Geoderma, 56, 243-256. Paine, R. T. (1969). A note on trophic complexity and community stability. The American Naturalist, 103, 91-93. Pan, Z., Chen, Y., Zhou, M., McAllister, T. A., & Guan, L. L. (2021). Microbial interaction-driven community differences as revealed by network analysis. Computational and Structural Biotechnology Journal, 19, 6000-6008. Panth, M., Hassler, S. C., & Baysal-Gurel, F. (2020). Methods for management of soilborne diseases in crop production. Agriculture, 10, 16. Pasche, J. M., Brito, J. A., Vallad, G. E., Brawner, J., Snyder, S. L., Fleming, E. A., Yang, J., Terra, W. C., & Martins, S. J. (2023). Assessing the impact of successive soil cultivation on Meloidogyne enterolobii infection and soil bacterial assemblages. Plant Pathology, 72, 1326-1334. Patil, N. S., & Jadhav, J. P. (2015). Penicillium ochrochloron MTCC 517 chitinase: An effective tool in commercial enzyme cocktail for production and regeneration of protoplasts from various fungi. Saudi Journal of Biological Sciences, 22, 232-236. Pawar, P., Doshi, J., Patil, S. G., Dandekar, P., & Poornima, K. (2023). The characterization of chitinolytic soil bacterial isolates for their antagonistic activity against root knot nematode Meloidogyne incognita: an effort towards developing ‘green’ nematicidal agents. BioControl, 68, 511-524. Peeters, J., Thas, O., Shkedy, Z., Kodalci, L., Musisi, C., Owokotomo, O. E., Dyczko, A., Hamad, I., Vangronsveld, J., Kleinewietfeld, M., Thijs, S., & Aerts, J. (2021). Exploring the microbiome analysis and visualization landscape. Frontiers in bioinformatics, 1, 774631. Pentekhina, I., Hattori, T., Tran, D. M., Shima, M., Watanabe, T., Sugimoto, H., & Suzuki, K. (2020). Chitinase system of Aeromonas salmonicida, and characterization of enzymes involved in chitin degradation. Bioscience, Biotechnology, and Biochemistry, 84, 1936-1947. Philbrick, A. N., Adhikari, T. B., Louws, F. J., & Gorny, A. M. (2020). Meloidogyne enterolobii, a major threat to tomato production: current status and future prospects for its management. Frontiers in Plant Science, 11, 606395. Pichyangkura, R., & Chadchawan, S. (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulturae, 196, 49-65. Piotrowska-Długosz, A., Kobierski, M., & Długosz, J. (2021). Enzymatic activity and physicochemical properties of soil profiles of luvisols. Materials, 14, 6364. Posit team. (2024). RStudio: Integrated Development Environment for R. Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., Daily, G., Castilla, J. C., Lubchenco, J., & Paine, R. T. (1996). Challenges in the quest for keystones: identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems. BioScience, 46, 609-620. Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156, 75-83. Puglisi, E., Del Re, A. A. M., Rao, M. A., & Gianfreda, L. (2006). Development and validation of numerical indexes integrating enzyme activities of soils. Soil Biology and Biochemistry, 38, 1673-1681. Pupin, B., Freddi, O. D. S., & Nahas, E. (2009). Microbial alterations of the soil influenced by induced compaction. Revista Brasileira De Ciência Do Solo, 33, 1207-1213. Qi, R., Li, J., Lin, Z., Li, Z., Li, Y., Yang, X., Zhang, J., & Zhao, B. (2016). Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Applied Soil Ecology, 102, 36-45. Qiu, L., Zhang, Q., Zhu, H., Reich, P. B., Banerjee, S., van der Heijden, M. G. A., Sadowsky, M. J., Ishii, S., Jia, X., Shao, M., Liu, B., Jiao, H., Li, H., & Wei, X. (2021). Erosion reduces soil microbial diversity, network complexity and multifunctionality. The ISME Journal, 15, 2474-2489. R Core Team. (2024). R: A language and environment for statistical computing [Software]. R Foundation for Statistical Computing. Radwan, M. A., Farrag, S. A. A., Abu-Elamayem, M. M., & Ahmed, N. S. (2012). Extraction, characterization, and nematicidal activity of chitin and chitosan derived from shrimp shell wastes. Biology and Fertility of Soils, 48, 463-468. Raiesi, F., & Beheshti, A. (2014). Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Applied Soil Ecology, 75, 63-70. Ramaiah, N., Hill, R. T., Chun, J., Ravel, J., Matte, M. H., Straube, W. L., & Colwell, R. R. (2000). Use of a chiA probe for detection of chitinase genes in bacteria from the Chesapeake Bay (1). FEMS microbiology ecology, 34, 63-71. Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 62, 142-160. Randall, T. E., Fernandez-Bayo, J. D., Harrold, D. R., Achmon, Y., Hestmark, K. V., Gordon, T. R., Stapleton, J. J., Simmons, C. W., & VanderGheynst, J. S. (2020). Changes of Fusarium oxysporum f.sp. lactucae levels and soil microbial community during soil biosolarization using chitin as soil amendment. PLOS ONE, 15, e0232662. Rashidifard, M., Fourie, H., Ashrafi, S., Engelbrecht, G., Elhady, A., Daneel, M., & Claassens, S. (2022). Suppressive effect of soil microbiomes associated with tropical fruit trees on Meloidogyne enterolobii. Microorganisms, 10, 894. Rassaei, F. (2024). Chitosan as an organic amendment to improve soil properties and plant growth in the presence of polystyrene microplastics. Environmental Progress & Sustainable Energy, 43, e14301. Rasweefali, M. K., Sabu, S., Muhammed Azad, K. S., Raseel Rahman, M. K., Sunooj, K. V., Sasidharan, A., & Anoop, K. K. (2022). Influence of deproteinization and demineralization process sequences on the physicochemical and structural characteristics of chitin isolated from Deep-sea mud shrimp (Solenocera hextii). Advances in Biomarker Sciences and Technology, 4, 12-27. Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1-27. Raza, S., Miao, N., Wang, P., Ju, X., Chen, Z., Zhou, J., & Kuzyakov, Y. (2020). Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Global Change Biology, 26, 3738-3751. Ren, X. B., Dang, Y. R., Liu, S. S., Huang, K. X., Qin, Q. L., Chen, X. L., Zhang, Y. Z., Wang, Y. J., & Li, P. Y. (2022). Identification and characterization of three chitinases with potential in direct conversion of crystalline chitin into N,N'-diacetylchitobiose. Marine Drugs, 20, 165. Reasoner, D. J., & Geldreich, E. E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49, 1-7. Revelle, W. (2024). psych: procedures for psychological, psychometric, and personality research. Richard, T. & Trautmann, N. (1996). C/N Ratio. Cornell composting science and engineering. https://compost.css.cornell.edu/calc/cn_ratio.html Robeson, M. S., II, O’Rourke, D. R., Kaehler, B. D., Ziemski, M., Dillon, M. R., Foster, J. T., & Bokulich, N. A. (2021). RESCRIPt: Reproducible sequence taxonomy reference database management. PLOS Computational Biology, 17, e1009581. Rodriguez-Kabana, R., Godoy, G., Morgan-Jones, G., & Shelby, R. A. (1983). The determination of soil chitinase activity: conditions for assay and ecological studies. Plant and Soil, 75, 95-106. Rodríguez-Kábana, R. (1986). Organic and inorganic nitrogen amendments to soil as nematode suppressants. Journal of Nematology, 18, 129-134. Rosenberg, E. (2014). The Family Chitinophagaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes: Other Major Lineages of Bacteria and The Archaea (pp. 493-495). Springer Berlin Heidelberg. Sainju, U. M., Liptzin, D., & Dangi, S. M. (2022). Enzyme activities as soil health indicators in relation to soil characteristics and crop production. Agrosystems, Geosciences & Environment, 5, e20297. Sala, O. E., Stuart Chapin, F., Iii, Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., & Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774. Salam, N., Jiao, J.-Y., Zhang, X.-T., & Li, W.-J. (2020). Update on the classification of higher ranks in the phylum Actinobacteria. International Journal of Systematic and Evolutionary Microbiology, 70, 1331-1355. Sanders, H. L. (1968). Marine Benthic Diversity: A Comparative Study. The American Naturalist, 102, 243-282. Sandhya, C., Binod, P., Nampoothiri, K. M., Szakacs, G., & Pandey, A. (2005). Microbial synthesis of chitinase in solid cultures and its potential as a biocontrol agent against phytopathogenic fungus Colletotrichum gloeosporioides. Applied Biochemistry and Biotechnology, 127, 1-15. Santos, V. P., Marques, N. S. S., Maia, P. C. S. V., Lima, M. A. B., Franco, L. O., & Campos-Takaki, G. M. (2020). Seafood waste as attractive source of chitin and chitosan production and their applications. International journal of Molecular Sciences, 21, 4290. Schrempf, H. (2001). Recognition and degradation of chitin by streptomycetes. Antonie van Leeuwenhoek, 79, 285-289. Schwarz, G., & Mendel, R. R. (2006). Molybdenum cofactor biosynthesis and molybdenum enzymes. Annual Review of Plant Biology, 57, 623-647. Schwarz, T., Li, C., Ye, W., & Davis, E. (2020). Distribution of Meloidogyne enterolobii in Eastern North Carolina and comparison of four Isolates. Plant Health Progress, 21, 91-96. Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12, R60. Severino, R., Froufe, H. J. C., Barroso, C., Albuquerque, L., Lobo-da-Cunha, A., da Costa, M. S., & Egas, C. (2019). High-quality draft genome sequence of Gaiella occulta isolated from a 150 meter deep mineral water borehole and comparison with the genome sequences of other deep-branching lineages of the phylum Actinobacteria. MicrobiologyOpen, 8, e00840. Shahrajabian, M. H., Chaski, C., Polyzos, N., Tzortzakis, N., & Petropoulos, S. A. (2021). Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, 11, 819. Shamshina, J. L., Kelly, A., Oldham, T., & Rogers, R. D. (2020). Agricultural uses of chitin polymers. Environmental Chemistry Letters, 18, 53-60. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379-423. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591-611. Sharp, R. G. (2013). A review of the applications of chitin and Its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy, 3, 757-793. Shi, S., Nuccio, E. E., Shi, Z. J., He, Z., Zhou, J., & Firestone, M. K. (2016). The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology Letters, 19, 926-936. Shimoi, Y., Honma, D., Kurematsu, A., Iwasaki, Y., Kotsuchibashi, Y., Wakikawa, Y., & Saito, A. (2020). Effects of chitin degradation products N-acetylglucosamine and N,Nʹ-diacetylchitobiose on chitinase activity and bacterial community structure in an incubated upland soil. Soil Science and Plant Nutrition, 66, 429-437. Shimosaka, M., Fukumori, Y., Narita, T., Zhang, X., Kodaira, R., Nogawa, M., & Okazaki, M. (2001). The bacterium Burkholderia gladioli strain CHB101 produces two different kinds of chitinases belonging to families 18 and 19 of the glycosyl hydrolases. Journal of Bioscience and Bioengineering, 91, 103-105. Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688-688. Singh, B. P., Singh, B., Noack, S., Mehra, P., Page, K., & Dang, Y. (2020). Crop residue management for improving soil carbon storage, nutrient availability, and fertilizer use efficiency. In R. Lal (Ed.), Soil and Fertilizers: Managing the Environmental Footprint (pp. 29-65). CRC Press. van der Sloot, M., Maerowitz-Mcmahan, S., Postma, J., Limpens, J., & De Deyn, G. B. (2024). Soil-borne disease suppressiveness after short and long term application of fermented, composted or fresh organic amendment treatments in arable soils. Applied Soil Ecology, 195, 105268. Smith, C. J., McKew, B. A., Coggan, A., & Whitby, C. (2017). Primers: Functional Genes for Nitrogen-Cycling Microbes in Oil Reservoirs. In T. J. McGenity, K. N. Timmis, & B. Nogales (Eds.), Hydrocarbon and Lipid Microbiology Protocols: Primers (pp. 207-241). Springer Berlin Heidelberg. Soil Science Division Staff. (2017). Examination and description of soil profiles. In C. Ditzler, K. Scheffe, & H.C. Monger, (Eds.) Soil survey manual (pp. 83-233). USDA Handbook 18. Government Printing Office. Soria, R., Rodríguez-Berbel, N., Sánchez-Cañete, E. P., Villafuerte, A. B., Ortega, R., & Miralles, I. (2023). Organic amendments from recycled waste promote short-term carbon sequestration of restored soils in drylands. Journal of Environmental Management, 327, 116873. Srinivasan, S., Kim, M. K., Sathiyaraj, G., Kim, H.-B., Kim, Y.-J., & Yang, D.-C. (2010). Lysobacter soli sp. nov., isolated from soil of a ginseng field. International Journal of Systematic and Evolutionary Microbiology, 60, 1543-1547. Srivastav, A. L. (2020). Chapter 6 - Chemical fertilizers and pesticides: role in groundwater contamination. In M. N. V. Prasad (Ed.), Agrochemicals Detection, Treatment and Remediation (pp. 143-159). Butterworth-Heinemann. Sun, J., Li, W., Li, C., Chang, W., Zhang, S., Zeng, Y., Zeng, C., & Peng, M. (2020). Effect of different rates of nitrogen fertilization on crop yield, soil properties and leaf physiological attributes in banana under subtropical regions of China. Frontiers in Plant Science, 11, 613760. Sun, R., Zhang, X.-X., Guo, X., Wang, D., & Chu, H. (2015). Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 88, 9-18. Swiontek Brzezinska, M., Jankiewicz, U., Burkowska, A., & Walczak, M. (2014). Chitinolytic microorganisms and their possible application in environmental protection. Current Microbiology, 68, 71-81. Taira, T. & Takashima, T. (2023) Structure and antifungal activity of chitin-degrading enzymes. Glycoforum, 26, A4 Takashima, T., Henna, H., Kozome, D., Kitajima, S., Uechi, K., & Taira, T. (2021). cDNA cloning, expression, and antifungal activity of chitinase from Ficus microcarpa latex: difference in antifungal action of chitinase with and without chitin-binding domain. Planta, 253, 120. Tan, W., Wang, J., Bai, W., Qi, J., & Chen, W. (2020). Soil bacterial diversity correlates with precipitation and soil pH in long-term maize cropping systems. Scientific Reports, 10, 6012. Tenuta, M., & Lazarovits, G. (2004). Soil properties associated with the variable effectiveness of meat and bone meal to kill microsclerotia of Verticillium dahliae. Applied Soil Ecology, 25, 219-236. Thakur, N., Management, Y., Parmar, H., Pradesh, I., Subhash, C., Parmar, P., Pandey, H., Thakur, K., Correspondence, N., Thakur, Nath, A., Chauhan, A., & Parmar, C. (2019). Chitinases from microbial sources, their role as biocontrol agents and other potential applications. Journal of Entomology and Zoology Studies, 7, 837-843 Tian, H., Riggs, R. D., & Crippen, D. L. (2000). Control of soybean cyst nematode by chitinolytic bacteria with chitin substrate. Journal of Nematology, 32, 370-376. Tian, W., Wang, L., Li, Y., Zhuang, K., Li, G., Zhang, J., Xiao, X., & Xi, Y. (2015). Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agriculture, Ecosystems & Environment, 213, 219-227. Tiedje, J. M., Sørensen, J., & Chang, Y. Y. L. (1981). Assimilatory and dissimilatory nitrate reduction: perspectives and methodology for simultaneous measurement of several nitrogen cycle processes. Ecological Bulletins, 33, 331-342. Tsujibo, H., Kubota, T., Yamamoto, M., Miyamoto, K., & Inamori, Y. (2003). Characterization of chitinase genes from an alkaliphilic actinomycete, Nocardiopsis prasina OPC-131. Applied and Environmental Microbiology, 69, 894-900. Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18, 1112. Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5, 99–114. Udaya Prakash, N. A., Jayanthi, M., Sabarinathan, R., Kangueane, P., Mathew, L., & Sekar, K. (2010). Evolution, homology conservation, and identification of unique sequence signatures in GH19 family chitinases. Journal of Molecular Evolution, 70, 466-478. Ueda, M., Kojima, M., Yoshikawa, T., Mitsuda, N., Araki, K., Kawaguchi, T., Miyatake, K., Arai, M., & Fukamizo, T. (2003). A novel type of family 19 chitinase from Aeromonas sp. No.10S-24. Cloning, sequence, expression, and the enzymatic properties. European Journal of Biochemistry, 270, 2513-2520. Ueda, M., Ohata, K., Konishi, T., Sutrisno, A., Okada, H., Nakazawa, M., & Miyatake, K. (2009). A novel goose-type lysozyme gene with chitinolytic activity from the moderately thermophilic bacterium Ralstonia sp. A-471: cloning, sequencing, and expression. Applied Microbiology and Biotechnology, 81, 1077-1085. Veliz, E. A., Martínez-Hidalgo, P., & Hirsch, A. M. (2017). Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiology, 3, 689-705. Veloso, J. S., Câmara, M. P. S., & Souza, R. M. (2021). Guava decline: updating its etiology from ‘Fusarium solani’ to Neocosmospora falciformis. European Journal of Plant Pathology, 159, 455-460. Viens, P., Dubeau, M.-P., Kimura, A., Desaki, Y., Shinya, T., Shibuya, N., Saito, A., & Brzezinski, R. (2015). Uptake of chitosan-derived D-glucosamine oligosaccharides in Streptomyces coelicolor A3(2). FEMS Microbiology Letters, 362. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38. Wantulla, M., van Loon, J. J. A., & Dicke, M. (2023). Soil amendment with insect exuviae causes species-specific changes in the rhizosphere bacterial community of cabbage plants. Applied Soil Ecology, 188, 104854. Watanabe, T., Kanai, R., Kawase, T., Tanabe, T., Mitsutomi, M., Sakuda, S., & Miyashita, K. (1999). Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology, 145, 3353-3363. Watson, C. A., Atkinson, D., Gosling, P., Jackson, L. R., & Rayns, F. W. (2002). Managing soil fertility in organic farming systems. Soil Use and Management, 18, 239-247. Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., Lozupone, C., Zaneveld, J. R., Vázquez-Baeza, Y., Birmingham, A., Hyde, E. R., & Knight, R. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5, 27. Welch, B. L. (1947). The generalization of ‘students’ problem when several different population variances are involved. Biometrika, 34, 28-35. Weon, H.-Y., Yoo, S.-H., Kim, Y.-J., Son, J.-A., Kim, B.-Y., Kwon, S.-W., & Koo, B.-S. (2009). Chitinophaga niabensis sp. nov. and Chitinophaga niastensis sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 59, 1267-1271. Wharton, D. (1980). Nematode egg-shells. Parasitology, 81, 447-463. Whitman, T., Pepe-Ranney, C., Enders, A., Koechli, C., Campbell, A., Buckley, D. H., & Lehmann, J. (2016). Dynamics of microbial community composition and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter. The ISME Journal, 10, 2918-2930. Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338. Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21, 213-251. Wickham, H. (2007). Reshaping Data with the reshape Package. Journal of Statistical Software, 21, 1-20. Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4, 1686. Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). dplyr: a grammar of data manipulation. Wickham, H., Hester, J., & Bryan, J. (2024). readr: Read Rectangular Text Data. Wieczorek, A. S., Hetz, S. A., & Kolb, S. (2014). Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries. Biogeosciences, 11, 3339-3352. Wieczorek, A. S., Schmidt, O., Chatzinotas, A., Von Bergen, M., Gorissen, A., & Kolb, S. (2019). Ecological functions of agricultural soil bacteria and microeukaryotes in chitin degradation: a case study. Frontiers in Microbiology, 10, 1293. Wilke, C. O., & Wiernik, B. M. (2022). ggtext: improved text rendering support for 'ggplot2'. Williams, S. T., & Robinson, C. S. (1981). The role of Streptomycetes in decomposition of chitin in acidic soils. Microbiology, 127, 55-63. Winkler, A. J., Dominguez-Nuñez, J. A., Aranaz, I., Poza-Carrión, C., Ramonell, K., Somerville, S., & Berrocal-Lobo, M. (2017). Short-chain chitin oligomers: promoters of plant growth. Marine Drugs, 15, 40. Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20, 257. Wu, Y., Xi, X., Tang, X., Luo, D., Gu, B., Lam, S. K., Vitousek, P. M., & Chen, D. (2018). Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proceedings of the National Academy of Sciences, 115, 7010-7015. Xiao, E., Ning, Z., Xiao, T., Sun, W., & Jiang, S. (2021). Soil bacterial community functions and distribution after mining disturbance. Soil Biology and Biochemistry, 157, 108232. Xiao, K., Yu, L., Xu, J., & Brookes, P. C. (2014). pH, nitrogen mineralization, and KCl-extractable aluminum as affected by initial soil pH and rate of vetch residue application: results from a laboratory study. Journal of Soils and Sediments, 14, 1513-1525. Xiao, X., Wang, F., Saito, A., Majka, J., Schlösser, A., & Schrempf, H. (2002). The novel Streptomyces olivaceoviridis ABC transporter Ngc mediates uptake of N-acetylglucosamine and N,N'-diacetylchitobiose. Molecular Genetics and Genomics, 267, 429-439. Xu, J. M., Tang, C., & Chen, Z. L. (2006). The role of plant residues in pH change of acid soils differing in initial pH. Soil Biology and Biochemistry, 38, 709-719. Xu, Q., Vandenkoornhuyse, P., Li, L., Guo, J., Zhu, C., Guo, S., Ling, N., & Shen, Q. (2022). Microbial generalists and specialists differently contribute to the community diversity in farmland soils. Journal of Advanced Research, 40, 17-27. Xu, Y., Seshadri, B., Bolan, N., Sarkar, B., Ok, Y. S., Zhang, W., Rumpel, C., Sparks, D., Farrell, M., Hall, T., & Dong, Z. (2019). Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environment International, 125, 478-488. Yadav, V., Panilaitis, B., Shi, H., Numuta, K., Lee, K., & Kaplan, D. L. (2011). N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus. PLOS ONE, 6, e18099. Yan, N., & Chen, X. (2015). Sustainability: don't waste seafood waste. Nature, 524, 155-157. Yang, C., & Zhang, L. (2023). ggpicrust2: Make 'PICRUSt2' output analysis and visualization easier. Yang, F., Zhang, Z., Barberán, A., Yang, Y., Hu, S., & Guo, H. (2021). Nitrogen-induced acidification plays a vital role driving ecosystem functions: insights from a 6-year nitrogen enrichment experiment in a Tibetan alpine meadow. Soil Biology and Biochemistry, 153, 108107. Yang, Y., Liu, H., Wu, J., Zhang, S., Gao, C., Zhang, S., & Tang, D. W. S. (2023). Soil enzyme activities, soil physical properties, photosynthetic physical characteristics and water use of winter wheat after long-term straw mulch and organic fertilizer application. Frontiers in Plant Science, 14, 1186376. Yang, Y., Shi, Y., Kerfahi, D., Ogwu, M. C., Wang, J., Dong, K., Takahashi, K., Moroenyane, I., & Adams, J. M. (2021). Elevation-related climate trends dominate fungal co-occurrence network structure and the abundance of keystone taxa on Mt. Norikura, Japan. Science of The Total Environment, 799, 149368. Yang, Z.-D., Zhang, M.-S., Lu, D.-L., Li, Z.-W., Mao, H.-H., Wu, L., Zhang, J.-R., Ni, J.-T., Deng, J.-J., & Luo, X.-C. (2023). The chitin utilization mechanisms of a new Chitinibacter sp. isolate SCUT-21. Green Chemistry, 25, 5575-5590. Ye, Y., & Doak, T. G. (2009). A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLOS Computational Biology, 5, e1000465. Ye, Y., Sun, X., Zhao, J., Chen, X., Wang, M., Li, J., & Guan, Q. (2023). Thinning alters the network patterns and keystone taxa of rhizosphere soil microbial communities in Chinese fir plantation. Applied Soil Ecology, 189, 104956. Yurgel, S. N., Nadeem, M., & Cheema, M. (2022). Microbial consortium associated with crustacean shells composting. Microorganisms, 10, 1033. van de Zande, E. M., Wantulla, M., van Loon, J. J. A., & Dicke, M. (2024). Soil amendment with insect frass and exuviae affects rhizosphere bacterial community, shoot growth and carbon/nitrogen ratio of a brassicaceous plant. Plant and Soil, 495, 631-648. Zasada, I. A., Halbrendt, J. M., Kokalis-Burelle, N., LaMondia, J., McKenry, M. V., & Noling, J. W. (2010). Managing nematodes without methyl bromide. Annual Review of Phytopathology, 48, 311-328. Zeng, J., Liu, X., Song, L., Lin, X., Zhang, H., Shen, C., & Chu, H. (2016). Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology and Biochemistry, 92, 41-49. Zelený, D. (2021, June 2). PCoA & NMDS (distance-based unconstrained ordination). Analysis of community ecology data in R. https://www.davidzeleny.net/anadat-r/doku.php/en:pcoa_nmds Zelený, D. (2022, March 9). Ordination analysis. Analysis of community ecology data in R. https://www.davidzeleny.net/anadat-r/doku.php/en:ordination Zelený, D. (2024, May 5). Indices of diversity and eveness. Analysis of community ecology data in R. https://anadat-r.davidzeleny.net/doku.php/en:div-ind Zelezniak, A., Andrejev, S., Ponomarova, O., Mende, D. R., Bork, P., & Patil, K. R. (2015). Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proceedings of the National Academy of Sciences, 112, 6449-6454. Zhang, H., Degré, A., De Clerck, C., Li, S., Lian, J., Peng, Y., Sun, T., Luo, L., Yue, Y., Li, G., & Zhang, J. (2024). Changes in bacterial community structure and carbon metabolism in sandy soil under the long-term application of chitin-rich organic material and attapulgite. Applied Soil Ecology, 194, 105161. Zhang, L., Zheng, Q., Liu, Y., Liu, S., Yu, D., Shi, X., Xing, S., Chen, H., & Fan, X. (2019). Combined effects of temperature and precipitation on soil organic carbon changes in the uplands of eastern China. Geoderma, 337, 1105-1115. Zhang, Q., Guo, T., Sheng, K., Shi, W., Han, Y., Wang, Y., & Li, H. (2022). Continuous straw return for 8 years mitigates the negative effects of inorganic fertilisers on C-cycling soil bacteria. European Journal of Soil Science, 73, e13322. Zhang, S., Li, X., Chen, K., Shi, J., Wang, Y., Luo, P., Yang, J., Wang, Y., & Han, X. (2022). Long-term fertilization altered microbial community structure in an aeolian sandy soil in northeast China. Frontiers in Microbiology, 13, 979759. Zhang, X., Yuan, J., Li, F., & Xiang, J. (2021). Chitin synthesis and degradation in crustaceans: a genomic view and application. Marine Drugs, 19, 153. Zhang, Y., Ye, C., Su, Y., Peng, W., Lu, R., Liu, Y., Huang, H., He, X., Yang, M., & Zhu, S. (2022). Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agriculture, Ecosystems & Environment, 340, 10817. Zhao, Z.-B., He, J.-Z., Quan, Z., Wu, C.-F., Sheng, R., Zhang, L.-M., & Geisen, S. (2020). Fertilization changes soil microbiome functioning, especially phagotrophic protists. Soil Biology and Biochemistry, 148, 107863. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96967 | - |
dc.description.abstract | 由於全球環保意識抬頭,各國政府陸續禁用高毒性化學農藥以及推廣降低化學肥料的使用量,對於環境友善的永續農法逐漸受到重視。有機廢棄物來源的土壤改良劑除了可以達成資源循環的目標,還可以改善土壤性質、促進植物生長或抑制植物病蟲害,成為施行永續農法時減少化學肥料以及化學農藥使用量的解方之一。其中,甲殼類廢棄物被認為因其主成分為幾丁質而具促進植物生長,甚至抑制植物病蟲害發生之功效,長久以來備受關注。然而,幾丁質是如何造成此效應之機制仍有許多未明之處。因此,本研究藉由將幾丁質添加到不同的土壤樣品,來探討幾丁質降解過程中,土壤物理化學性質之變化,並利用菌相分析各土壤於添加幾丁質後細菌族群組成和結構上的改變、細菌間的關聯性以及菌相可能的功能改變等,也實際種植小白菜來驗證幾丁質促進植物生長的能力。最後更基於菌相分析結果,從土壤中分離候選細菌菌株以驗證幾丁質是否可透過提高特定土壤微生物種類增強抑制植物病害的能力。本研究結果揭露三種測試土壤於添加幾丁質後會有不同程度但趨勢相似的物化性質改變,有效氮含量皆顯著提升,其中土樣 V 的有效氮含量隨時間上升的幅度最為明顯;有機碳含量和總氮含量在三種土壤樣本中的變化較不明顯,而三種土壤樣本的碳氮比與 pH 值皆隨時間下降。經由兩次孵育試驗的 16S rDNA 總體基因體分析後可得知,在施用幾丁質後的 15 天內,可降解幾丁質的細菌物種大幅度增加,到了後期,則出現較多可利用幾丁質分解後下游產物的細菌物種。進一步針對施用後初期的樣本進行共現網路及其關鍵物種的分析可以得知,添加幾丁質後細菌物種間的關係變得更為緊密;功能性基因體預測除了觀察到與微生物生長相關功能的基因豐度增加外,與幾丁質降解和硝化作用相關功能的基因豐度也均有上升的情形,凸顯幾丁質對於氮循環的貢獻。接著利用酵素活性分析驗證功能預測的結果,發現幾丁質酶與 N-乙醯葡萄糖胺酶的活性於添加幾丁質後在土樣 O 中增加最多。由於添加幾丁質後測到有效氮含量增加的現象,推測應可提高作物生物量,因此利用添加幾丁質後 90 天的土樣種植小白菜,結果發現無論是何種土樣,35 天大的小白菜生物量皆較未添加幾丁質的對照組高,其中土樣 C 的提升效果最為明顯,證實土壤中添加幾丁質可以促進植物生長,且可能是透過提高有效氮含量所致。最後根據生物資訊學分析結果,分離出添加幾丁質後在土壤中占比大幅提升的細菌屬菌株,包括 Chitinibacter spp. 和 Flavobacterium spp.,並以幾丁質培養基確認其可迅速降解幾丁質。對峙試驗中雖未觀察到其可抑制真菌菌絲生長的能力,但均有破壞南方根瘤線蟲蟲卵,並造成其孵化率下降的情形。綜言之,本研究透過使用更多土壤樣品的分析,了解幾丁質的添加可增加土壤中的有效氮含量,進而促進植物生長;雖然添加幾丁質造成微生物族群組成及結構的變化在各土樣中不盡相同,但均可觀察到參與幾丁質降解、功能相似的菌種數量或占比增加的情形,然而這些菌種是否是造成添加幾丁質能抑制病害效果的原因,仍有待後續研究探討。 | zh_TW |
dc.description.abstract | As environmental awareness rises, authorities are gradually banning highly toxic chemical pesticides and promoting the lower usage of chemical fertilizers. Thus, environmentally friendly approaches to sustainable agriculture are considered important. Soil amendments derived from organic wastes are much more appealing as an alternative to chemical pesticides and fertilizers thanks to their effects on improving soil quality, promoting plant growth, and suppressing soil-borne diseases. Crustacean wastes are a rising star, given that the main component, chitin, is suggested to promote plant growth and suppress diseases. However, the mechanisms underlying these effects are still vague. Therefore, this study investigated how soil physicochemical properties were affected during chitin degradation after amending chitin into soil samples collected from different locations. Metagenomic approaches were then utilized to investigate how microbial communities derived from different soils respond to chitin amendment in terms of composition, structure, association, and function, and the plant growth-promoting effect of chitin was confirmed by planting Chinese cabbage in soil 90 days after chitin amendment. Finally, the bacteria were isolated from the representative soil samples based on bioinformatic information and further verified for their disease suppressiveness abilities. The data from this study revealed that in the presence of chitin, soil physicochemical properties changed differently in three tested soils with similar trends. The available nitrogen content changed the most, and soil sample V had the highest increase of available nitrogen content. There were marginal differences in soil organic carbon and total nitrogen, while soil pH and C/N ratio decreased for all three soil samples. Metagenomic analyses of two incubation experiments revealed that the chitinolytic taxa were greatly enriched during the early stage of chitin application (before 15 days), while the taxa utilizing downstream products from chitin degradation were enriched during the later stage of chitin application. Further co-occurrence analysis of the taxa from the early stage after the chitin amendment indicated that tighter associations among microorganisms in soil amended with chitin could be observed, and the number of keystone taxa also increased. Metagenome function prediction showed that in addition to the genes related to microbial growth, gene functions associated with chitin degrading and nitrification were significantly enriched, suggesting the contribution of chitin degradation to the nitrogen cycle. By determining enzyme activities to validate the results from functional analysis, it was shown that higher activities of chitinase and β-N-acetylglucoaminidase were detected in soil sample O upon chitin addition. The drastic increase in available nitrogen content implies the capability of enhancing crop biomass; thus, all soil samples collected after 90-day incubation with chitin were used for cultivating Chinese cabbage. The biomass of 35-day-old cabbages grown in the chitin-amended soil was higher, of which soil sample C had the most significant increase, supporting the hypothesis that enhanced available nitrogen content after chitin amendment could help promote plant growth. Finally, based on the metagenomic data, bacterial taxa enriched in chitin-amended soil were successfully isolated, including Chitinibacter spp. and Flavobacterium spp., and their chitinolytic activities were also confirmed using in vitro assays with chitin agar. Antagonistic assays revealed that these isolated bacterial strains had limited anti-fungal ability, but they can damage eggs of Meloidogyne incognita, leading to reduced hatchability. All in all, more soil samples were used to analyze the effect of chitin amendment in one study, and the results indicate that the available nitrogen content upon chitin amendment increased over time, regardless of the soil samples, contributing to enhancing crop biomass. Even though the soil microbial community composition shifted differently in response to chitin amendment in different soil samples, similar trends of increased number or proportion of chitinolytic bacteria could be observed. However, further research and investigations are required to truly understand whether those bacteria are the leading cause of suppressing soil-borne diseases. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:16:25Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-25T16:16:25Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv 目次 vii 表次 xi 圖次 xii 附表次 xiv 壹、前人研究 1 一、 永續農業 1 二、 土壤改良劑 (soil amendments) 2 三、 幾丁質作為土壤改良劑 4 1. 甲殼類廢棄物再利用 4 2. 幾丁質的降解 4 3. 幾丁質可促進植物生長 6 4. 幾丁質可降低土傳性病蟲害的發生 7 四、 研究土壤改良劑的挑戰 8 1. 土壤改良劑的效果限制 8 2. 研究幾丁質作為土壤改良劑的挑戰 9 五、 微生物菌相 (microbiome) 的分析 12 貳、動機與目的 19 參、材料方法 21 一、 土壤樣本採集 21 二、 添加幾丁質土壤之孵育試驗 21 三、 土壤物理化學性質分析 22 1. 土壤水分含量 (soil moisture content) 測定 22 2. 有效氮 (available nitrogen, AN) 測定 23 3. 總氮 (total nitrogen, TN) 測定 23 4. 有機碳 (soil organic carbon, SOC) 與有機質 (soil organic matter, SOM) 的測定 24 5. pH 值測定 25 6. 碳氮比 (C/N ratio) 25 四、 土壤微生物基因體 DNA (genomic DNA) 萃取與 16S rDNA 定序分析 25 1. 土壤微生物基因體 DNA 的萃取 25 2. 以 Oxford Nanopore technologies (ONT) 進行 16S rDNA 基因體定序與生物資訊學分析 25 3. 利用 PacBio SMRT sequencing technologies進行16S rDNA 基因體定序與生物資訊學分析 26 五、 土壤酵素活性分析 27 六、 植物生長盆栽試驗 28 七、 具幾丁質酶活性潛力細菌菌株之分離 28 1. 土壤樣本的儲存 28 2. 具幾丁質酶活性潛力細菌菌株之分離 29 3. 細菌分離株的保存 29 4. 細菌分離株的幾丁質降解試驗 29 八、 菌種鑑定 30 1. 基因體 DNA 萃取 30 2. 聚合酶連鎖反應 (Polymerase chain reaction, PCR) 31 九、 潛力細菌菌株與病原真菌的對峙試驗 (antagonistic assay) 31 十、 候選菌株對根瘤線蟲蟲卵影響試驗 32 1. 線蟲消毒並製備蟲卵懸浮液 32 2. 線蟲蟲卵孵化試驗 32 十一、 統計分析 33 肆、結果 34 一、 第一次幾丁質孵育試驗 34 1. 幾丁質對於土壤物化性質的影響 34 2. 幾丁質對微生物族群的影響 35 2-1. Alpha 多樣性分析 35 2-2. Beta 多樣性分析 37 2-3. 環境因子對 beta 多樣性的影響 39 二、 第二次幾丁質孵育試驗 40 1. 幾丁質對土壤物化性質的影響 41 2. 幾丁質對微生物族群的影響 42 2-1. Alpha 多樣性分析 42 2-2. Beta 多樣性分析 44 2-3. 環境因子對 beta 多樣性之影響 45 2-4. 添加幾丁質對微生物豐度消長的影響 45 2-5. Linear discriminant analysis Effect Size (LEfSe) 分析 46 2-6. 幾丁質對物種間相互依賴性之影響 48 2-7. 菌種功能性預測分析 52 3. 土壤酵素活性分析 57 三、 添加幾丁質對植物生長之影響 58 四、 具幾丁質酶活性潛力的細菌菌株分離與鑑定 59 五、 潛力細菌菌株與病原真菌的對峙試驗 63 六、 候選菌株對根瘤線蟲蟲卵影響試驗 63 伍、討論 65 陸、結論 81 柒、參考文獻 82 捌、表 127 玖、圖 138 拾、附表 186 | - |
dc.language.iso | zh_TW | - |
dc.title | 添加幾丁質對土壤性質、微生物菌相與植物生長影響之研究 | zh_TW |
dc.title | Study on effects of chitin amendment on soil properties, microbiome, and plant growth | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳宜龍;陳俊堯;楊姍樺 | zh_TW |
dc.contributor.oralexamcommittee | Yi-Lung Chen;Chun-Yao Chen;Shan-Hua Yang | en |
dc.subject.keyword | 土壤改良劑,幾丁質,微生物菌相,幾丁質分解細菌,南方根瘤線蟲, | zh_TW |
dc.subject.keyword | soil amendment,chitin,microbiome,chitinolytic bacteria,root-knot nematode, | en |
dc.relation.page | 187 | - |
dc.identifier.doi | 10.6342/NTU202500545 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-02-13 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農業化學系 | - |
dc.date.embargo-lift | 2028-02-10 | - |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 7.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。